
Evaluating the effect of data merging and post-acquisition normalization on statistical analysis of 1 

untargeted high-resolution mass spectrometry based urinary metabolomics data 2 

Fynn Brix,†,* Tobias Demetrowitsch,† Julia Jensen-Kroll,† Helena Zacharias,∇, #,⊥ Silke Szymczak,§ 3 

Matthias Laudes,#, ǁ Stefan Schreiber,#, ǁ Karin Schwarz† 4 

†Institute of Human Nutrition and Food Science, Kiel University, Kiel, Heinrich-Hecht-Platz 10, 24118 5 

Kiel, Germany 6 

∇Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 7 

30625 Hannover, Germany 8 

§Institute of Medical Biometry and Statistics, University of Luebeck and Medical Centre Schleswig-9 

Holstein, Campus Luebeck, 23562 Luebeck, Germany 10 

#Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, 11 

Germany 12 

⊥Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-13 

Holstein, Campus Kiel, 24105 Kiel, Germany 14 

ǁInstitute of Diabetes and Clinical Metabolic Research, Kiel University, Düsternbrooker Weg 17, 24105, 15 

Kiel, Germany 16 

ABSTRACT: Urine is one of the most widely used biofluids in metabolomic studies, because it can be 17 

collected non-invasively and is available in large quantities. However, it shows large heterogeneity in 18 

sample concentration and consequently requires normalization to reduce unwanted variation and 19 

extract meaningful biological information. Biological samples like urine are commonly measured with 20 

electrospray ionization (ESI) coupled to a mass spectrometer, producing datasets for positive and 21 

negative mode. Combining these gives a more complete picture of the total metabolites present in a 22 

sample. However, the effect of this data merging on subsequent data analysis, especially in 23 

combination with normalization, has not yet been analysed. To address this issue, we conducted a 24 

neutral comparison study to evaluate the performance of eight post-acquisition normalization 25 

methods under different data merging procedures using 1029 urine samples from the Food Chain plus 26 

(FoCus) cohort. Samples were measured by a Fourier transform ion cyclotron resonance mass 27 

spectrometer (FT-ICR-MS). Normalization methods were evaluated by five criteria capturing the ability 28 

to remove sample concentration variation and preserve relevant biological information. Merging data 29 

after normalization was generally favourable for quality control (QC) sample similarity, sample 30 

classification and feature selection for most of the tested normalization methods. Merging data after 31 

normalization and the usage of probabilistic quotient normalization (PQN) in a similar setting are 32 

generally recommended. Relying on a single analyte to capture sample concentration differences, like 33 

with post-acquisition creatinine normalization, seems to be a less preferable approach, especially 34 

when data merging is applied. 35 

 36 

Urine is one of the most widely used biofluids in metabolomic studies, because it can be collected non-37 

invasively and is available in large quantities.1 However, it has a large heterogeneity in sample 38 

concentration2 and volume may change up to 15-fold under normal conditions.3  39 

Consequently, numerous normalization methods have been developed to reduce variation originating 40 

from unwanted factors.1 These normalization methods may be categorized as being pre- or post-41 

acquisition.2 Pre-acquisition methods adjust the sample volumes based on measured reference 42 

quantities These parameters can also be used in post-acquisition methods, but requires an additional 43 

workflow step and information on sample volume is prerequisite.4  44 



Post-acquisition normalization methods are applied after data collection.5 Several evaluation studies 45 

have been conducted for human urine,2,6–8 serum,9 and plasma,10 as well as animal urine,11,3,12 46 

measured by nuclear magnetic resonance spectroscopy or liquid chromatography-mass spectrometry. 47 

Frequently used methods include PQN,11,13,2,6,8,5 as well as variance stabilization normalization 48 

(VSN),6,8,14 and quantile normalization.6,7,14.  49 

Most post-acquisition normalization methods adjust for sample-to-sample variation, whereas VSN 50 

additionally adjusts for variation on the metabolite level.7,8 All of the above normalization methods 51 

make specific assumptions about the data. Whether or not these assumptions are met for a specific 52 

data set may influence the performance of the normalization methods.15 Thus, the selection of a 53 

particular normalization method should be made based on the data characteristics, research question 54 

and the subsequent data analysis methods.13  55 

Studies comparing post-acquisition normalization methods with urine samples and mass spectrometry 56 

(MS) with ESI are either using positive ionization of molecules only,16–18 or include datasets of both 57 

polarities.19,8,12 However, none used merged datasets from both polarities. Furthermore, most studies 58 

are based on small sample sizes with < 100 samples,19,16,17,2,6,7,20,5 and only few are based on data sets 59 

with > 1000 samples.8,21 The combined effect of data merging and normalization has not yet been 60 

evaluated in the workflow for pre-processing metabolomics data. Thus, in this neutral comparison 61 

study we aim to objectively evaluate the performance of eight post-acquisition normalization methods 62 

under different data merging procedures based on a large-scale urinary metabolomics dataset. Based 63 

on our results we will provide recommendations for different data merging procedures and 64 

normalization methods in different scenarios. 65 

MATERIALS AND METHODS 66 

Human Urine Samples and Sample preparation. Urine metabolomics profiling was performed in the 67 

Food Chain Plus (FoCus) cohort, which has been published recently.22 The cohort was established in 68 

2011 for population-based research with a focus on metabolic inflammation. The study was approved 69 

by the local ethics committee of the Kiel University (A156-03/Date 2011/07/28) and was registered 70 

under the clinical trial number DRKS00005285 at the German Clinical Trials Register in Cologne.22 The 71 

average age of the study participants who gave urine is 52 years with biological sex of 40% males and 72 

60% females. 73 

Spot urine samples of 1031 participants were available; two samples were excluded, because 74 

creatinine was lacking or data for one analytical method were missing. Samples were diluted 1:500 75 

with methanol and water (50:50, v/v) prior to analysis. The preparation of the quality control (QC) 76 

samples followed a procedure modified from a previous publication.23 77 

Data acquisition. Data were acquired using a 1260 Infinity HPLC (Agilent, Waldbronn, Germany) for 78 

direct injection of samples. The HPLC was linked to an ultrahigh-resolution Fourier transform ion 79 

cyclotron resonance mass spectrometer (FT-ICR-MS) (7T, SolariXR, Bruker, Bremen, Germany). Mass 80 

spectra were acquired with electrospray ionization (ESI) source in both modes (positive and negative 81 

ionization) and two methods with a mass range between 65 and 1500 Da (USM, SM), leading to four 82 

data sets per sample. The intensity threshold was 10^6 counts. Data were calibrated using an in-house 83 

database in the quadratic mode with a tolerated mass error < 0.5 mDa. Detailed instrumental 84 

parameters can be found in an earlier publication.24 Blank samples were injected prior to each batch. 85 

Pooled QC samples were injected at the start and end of each batch.  86 

Data processing and merging. Bruker raw data (.d) were processed in the MetaboScape 2021b 87 

software (Bruker, Bremen, Germany). Ion deconvolution and other settings are given in Table S1. Most 88 

probable chemical formulas were assigned based on accurate measured masses, isotopic patterns, as 89 

well as the seven golden rules.25 Potential compound names were assigned based on the Human 90 

Metabolome Database  entries (version 5.0) for all human biospecimens.26 The raw Bucket tables were 91 



exported and further processed in R (version 4.1.2). Figure 1 shows a schematic depiction of the 92 

different analysis workflows. Signal correction, peak filtering and imputation of missing values were 93 

conducted using the R package statTarget version 1.24.0.27 Signal correction was applied using QC-94 

based random forest signal correction (QC-RFSC). Peak filtering was conducted by only including 95 

compounds that were detected in at least 80% of the samples. Imputation of missing values was done 96 

using the k-Nearest Neighbour (kNN) method.27 97 

After the signal correction the datasets were merged. Data merging was done in three different ways: 98 

merging all four analytical datasets into one (“by-method”), merging positive and negative data into 99 

two datasets (“by-polarity”) and no merging at all prior to normalisation (“singles”). Merging of 100 

compounds detected in multiple datasets was done by selecting the compound with either the lowest 101 

number of missing values, the highest median intensity, or the highest mean intensity calculated using 102 

all samples. In case of ties the criteria are applied in the described order. Compounds only detected in 103 

one of the datasets are simply added to the respective merged dataset. For the next step, each of the 104 

merged datasets was corrected with each of the normalisation methods. Subsequently, all datasets 105 

were merged into one dataset for comparison. 106 

 107 

 108 

Figure 1: Schematic depiction of the analysis workflows. First, signal corrected data are merged 109 

either to one set, two sets or kept as four individual sets. Different normalization methods are 110 

applied and data are merged subsequently and evaluated by different criteria. 111 

 112 

Evaluated normalization methods. Post-acquisition normalization methods evaluated were: 113 

creatinine, sum, MS total useful signal (MSTUS),12 PQN28 with median of all QC samples as reference 114 

spectrum and all samples as reference, quantile,29 median, VSN,30 and cubic spline normalization 115 

(CSN)31 . A description for each method and the R packages which have been used can be found in 116 

Table S2. Baseline data refers to data corrected using a QC-based random forest signal correction 117 

method.27 118 

Evaluation criteria. The performance evaluation of the normalization methods emphasized on 119 

removal of sample concentration variation and preservation of biological information. Sample 120 

concentration variation removal was assessed by QC clustering in principal component analysis (PCA) 121 



and the median of the relative standard deviations (RSD) of all metabolites in QC samples. QC 122 

clustering was determined in a quantitative way by calculating the average auto scaled distances of 123 

each QC sample to the centroid of all QC samples in the score plot. 124 

Preservation of biological information was evaluated by training random forest (RF) models using the 125 

R package ranger32 with default parameter settings to predict subjects’ sex. To identify compounds 126 

differentiating for sex a Web of Science literature search was conducted. For literature search 127 

keywords and the resulting 41 compounds see Tables S3 and S4.  128 

RESULTS AND DISCUSSION 129 

Common post-acquisition normalization methods were evaluated under different merging procedures 130 

by the ability to remove sample concentration variation and to preserve biological information. The 131 

first criterion was tested via reduction of QC sample variation and the latter via comparing prediction 132 

accuracy, number of significant metabolites, and matches with previously reported differing 133 

metabolites for biological sex. 134 

Comparison of merging procedures. All normalization methods except for creatinine achieved the 135 

lowest average distance among QC samples after the “singles” merging procedure (Table 1). 136 

Furthermore, almost all normalization methods except for creatinine exhibited a monotonic decline of 137 

the QC distance. This trend is also reflected in the total distance score for all normalisation methods 138 

combined, which ranged from 85 for “by-method” to 56 for “by-polarity” and down to 26 for “singles” 139 

merging procedure. Results for the RSD of QCs were similar to those of the QC distance, since all 140 

normalization methods expect for one (here CSN) achieved the lowest average RSD value after 141 

“singles” merging. In addition, a monotonic decline in the RSD was also observed for five of the 142 

normalization methods, namely the MSTUS, creatinine, PQN(QC), sum, and median normalization. A 143 

systematic decline was also observed, calculating the total of the RSD values. Merging procedures “by-144 

method” and “by-polarity” did not differ much, with values of 120 and 118 respectively. However, this 145 

value decreased to 107 for the “singles” merging procedure. The smallest change in the QC distance 146 

and average RSD in QCs was found for VSN normalized data. This is because the variance stabilization 147 

reduces variability and the data is on a different scale after the normalization. 148 

 149 

Table 1: Average distance of QCs in the PCA score plots and average RSD of features in QCs, for each 150 

normalization method and merging procedurea 151 

Normalization 
methods 

PCA QC aDist QC RSD 

By-  
method 

By-  
polarity 

Singles 
By-  

method 
By-  

polarity 
Singles 

Baseline 2.57 2.6 2.61 5.55 5.55 5.55 
Creatinine 0.6 4.65 1.91 11.98 10.58 8.33 

Sum 2.35 1.4 0.75 6.94 6.00 4.27 
MSTUS 2.06 1.41 1.21 6.51 5.16 5.13 
Median 2.02 1.32 0.56 5.73 5.22 4.39 

PQN 1.93 1.61 0.60 6.84 7.26 4.42 
PQN(QC) 2.03 1.28 0.53 5.72 5.15 4.31 
Quantile 32.22 16.32 7.5 53.14 54.56 52.28 

CSN 36.93 22.50 7.9 17.68 18.14 17.73 
VSN 3.06 3.04 3.00 0.83 0.85 0.82 

Total: 85.77 56.13 26.57 120.92 118.47  107.23 

aQC aDist, Average distance of QCs; QC RSD, average RSD of features in QCs. Bold letters indicate best 152 

values for the respective merging procedure (column). 153 



The balanced accuracy of the random forest models predicting the sex of subjects using the differently 154 

merged and normalized data is shown in Table 2. The highest balanced accuracy was achieved by 155 

models built using data from the “singles” merging procedure. MSTSU and VSN were the exceptions, 156 

which had the best values after merging according to polarity. Also, the majority of normalization 157 

methods attained the most significant metabolites for predicting sex (Table 5) after the “singles” 158 

merging procedure. Moreover, there is also a positive increasing trend for the average number of 159 

significant metabolites calculated including all normalization methods for each respective merging 160 

procedure. Normalization methods benefitting from “singles” merging include creatinine, PQN(QC), 161 

sum, median and CSN. Merging “by-polarity” was the best procedure for MSTUS normalization. 162 

Merging “by-method” resulted in the highest number of significant features for PQN and VSN 163 

normalized data. 164 

 165 

Table 2: Test set based average balanced accuracy for predicting the subjects’ sexa 166 

Normalization 
methods 

Average balanced 
accuracy (SD) 

By  
method 

By  
polarity 

Singles 

Baseline 74.68 
(3.50) 

75.58 
(2.99) 

74.67 
(3.05) 

Creatinine 69.81 
(2.82) 

71.91 
(1.31) 

73.05 
(3.90) 

Sum 76.33 
(2.60) 

76.02 
(3.59) 

76.49 
(3.08) 

MSTUS 74.77 
(4.46) 

75.77 
(3.58) 

74.26 
(3.34) 

Median 76.26 
(3.70) 

76.05 
(3.56) 

77.98 
(3.37) 

PQN 76.35 
(2.71) 

75.91 
(3.61) 

77.42 
(2.93) 

PQN(QC) 75.86 
(3.19) 

76.14 
(2.83) 

76.64 
(3.24) 

Quantile 76.65 
(3.02) 

76.96 
(2.91) 

77.62 
(3.18) 

CSN 76.35 
(2.19) 

76.34 
(3.43) 

77.46 
(2.99) 

VSN 74.75 
(3.29) 

75.97 
(3.63) 

75.38 
(3.93) 

Average: 75.18 
(2.04) 

75.66 
(1.37) 

76.10 
(1.67) 

aBold letters indicate best values for each merging procedure. Merging procedures are compared 167 

row-wise and normalization methods column-wise. 168 

 169 

To summarize the above results, a comparison was made for each normalization method as to which 170 

merging procedure lead to the best values for each of the evaluation criteria (Table S6). “Singles” 171 

merging led to the highest values for four out of five evaluation criteria for all normalization methods 172 

except for MSTUS. Median normalization achieved best values with the same merging procedure 173 

(“singles”) for all evaluation criteria. VSN and MSTUS normalization had the highest prediction values 174 

with polarity merging and for RSD and PCA, “singles” merging led to better results. 175 

 176 



Table 3: Number of shared significant metabolites for predicting the subjects’ sexa 177 

Normalization 
methods 

# of shared significant 
metabolites  

By  
method 

By  
polarity 

Singles 

Baseline 98 96 95 
Creatinine 107 110 116 

Sum 103 106 108 
MSTUS 103 105 97 
Median 102 111 122 

PQN 123 116 112 
PQN(QC) 107 104 116 
Quantile 106 100 105 

CSN 105 113 117 
VSN 98 97 89 

Total: 1137 1145 1164 
aSignificant metabolites were identified as described in the Material and Methods section. Bold 178 

letters indicate best values for the respective merging procedure.  179 

 180 

The above results showed that the “singles” merging procedure was optimal for almost all 181 

normalisation methods. One possible explanation is, that with separate normalization of the datasets, 182 

the assumptions of the normalization methods are better met. This is supported by the fact that 183 

methods with similar assumptions benefit from the same merging procedure. The methods sum, 184 

MSTUS, median, and both PQN variants all share the premise that only a small proportion of the 185 

compounds (i.e. metabolites) is up and down regulated in equal frequencies.6,10 These methods all 186 

perform the best with “singles” merging procedures, except for one of the evaluation criteria (Table 187 

S5). The MSTUS method seems to favour merging “by-polarity”, however, the performance for this 188 

particular method may also depend on the number of compounds detected in all samples, which 189 

differs between merging procedures. Better performance for single merging for CSN and quantile 190 

normalization may be due to compound intensities being more comparable from sample to sample, if 191 

datasets are kept separate for normalization.7 192 

Another influencing factor may be, that compound signal levels could differ between analytical 193 

methods or ESI modes, due to different ionization efficiencies.33 Therefore, a single compound, like in 194 

creatinine normalization, may not be representative enough for the whole dataset, which includes 195 

peaks generated with differing ionizations or analytical methods. This would be a possible explanation 196 

for the bad performance of creatinine normalization. Nevertheless, creatinine is still frequently used.1,5  197 

Reported gender related metabolites. In order to evaluate the potential loss of biological 198 

information by normalization and merging, the number of matches of the significant metabolites 199 

with the reported sex-specific metabolites was calculated and compared to the number of the 200 

baseline data (Table 5). A total of eight studies34–41 were used for the compilation of the sex related 201 

metabolites and initially 65 compounds were included. A chemical formula was identified for 56 of 202 

the compounds and 41 compounds were matched by chemical formula in the study datasets. It has 203 

to be noted that it is not expected for any normalization method to match with all the differential 204 

metabolites as they are not established biomarkers themselves. The “singles” merging procedure led 205 

to the highest number of matches for eight out of nine normalization methods. For PQN, VSN, and 206 

sum normalization, the numbers were equal between singles and “by-polarity” merging procedures. 207 

For PQN(QC), “singles” and “by-method” merging were the best merging procedures. For the MSTUS 208 

method, the merging “by-method” was the optimal procedure.  209 



Table 5: Number of matches among the significant metabolites with reported sex metabolitesa 210 

Normalization 
methods 

# matches with reported 
sex metabolites  

By  
method 

By  
polarity 

Singles 

Baseline 7 9 8 
Creatinine 5 4 8 

Sum 8 9 9 
MSTUS 11 10 8 
Median 10 8 12 

PQN 11 12 12 
PQN(QC) 12 9 12 
Quantile 10 9 12 

CSN 9 10 11 
VSN 7 9 9 

Total: 96 94 106 
aBold letters indicate best values for the respective merging procedure.  211 

 212 

Comparing the overlap of the significant features with the reported sex related metabolites showed 213 

that, generally, normalization methods with a high number of significant metabolites also showed a 214 

high number of matches with sex metabolites, compared to methods with a lower number of 215 

significant metabolites (Table 3). Creatinine is the exception, showing a high number of significant 216 

metabolites, which is not reflected by the number of matches for the sex metabolites. This may be 217 

indicative of possibly more low-quality features being selected among the significant metabolites for 218 

creatinine normalized data in comparison to the other. PQN and PQN(QC) achieved the highest 219 

number of matches and showed stable performance across merging procedures. Creatinine and VSN 220 

normalized data led to a low number of matches across merging procedures. Creatinine normalization 221 

did not improve baseline data for all merging procedures. 222 

 223 

Gender/sex have been used to evaluate urinary sample normalization methods in the past, e.g., for 224 

sample clustering in PCA,42 relation of model variance,1 and as group variable to determine differential 225 

metabolites.15 PQN normalization gave the highest matches of significant metabolites with reported 226 

sex metabolites, however, none of the normalization methods was superior. Similarly, Li and 227 

colleagues8 also found comparable performance of the normalization methods PQN, CSN, MSTUS, 228 

VSN, and quantile normalization in terms of the overlap between experimentally validated biomarkers 229 

and spiked-in biomarkers with determined statistically significant metabolites. Quantile normalization 230 

performed slightly lower based on a spike-in dataset, which was not observed in our study. It is 231 

possible, that intensity differences due to the spiking-in of compounds with different concentrations 232 

are diminished in quantile normalization, because of the assignment of average values during the 233 

normalization.  234 

In this study, all normalization methods exceeded or at least equalled the baseline data in terms of 235 

matches with the reported gender metabolites except for creatinine and median normalization. Kohl 236 

and colleagues7 evaluated the retention of genuine biological information by relating variation of 237 

expected constant features with that of varied spiked-in features. In line with this work, PQN 238 

performed the best and was comparable to the non-normalized data. Quantile, CSN, and VSN 239 

performed fairly comparable and did not match the non-normalized ones, however, the spiked-in 240 

signals still clearly stood out. Mervant and colleagues1 also used gender and assessed biological 241 

information when comparing normalization methods. They evaluated the explained variance 242 



associated with sex after normalization using a modified partial least squares (PLS) method. Contrary 243 

to the results here, they found post-acquisition creatinine to slightly increase variance related to sex, 244 

while PQN and MSTUS did not increase variance, compared to the reference data. Possible reasons for 245 

differing results may include differences in the PQN application, statistical workflow, and that 246 

explained variance may not be directly correlate with matches for reported sex metabolites. 247 

Comparison of normalization methods. To determine which normalization methods performed 248 

optimal considering all evaluation criteria and merging procedures, individual ranks for each evaluation 249 

criterion were assigned (Table 4). These ranks were equally weighted by the same factor and the 250 

resulting weighted ranks summed up. The method with the lowest weighted sum is placed on rank 1 251 

overall.  252 

 253 

Table 4: Ranking of normalization methods based on evaluation criteria for each merging procedurea 254 

Merged by method 

Method Rank 
Weighted 

Sum 
PCA RSD 

RF 
(BA1) 

RF (sig 
mets2) 

RF (lit 
matches3) 

PQN 1 2.80 2 6 2.5 1 2.5 

PQN(QC) 2 3.30 4 3 6 2.5 1 

Median 3 4.90 3 4 5 8 4.5 

MSTUS 4 5.20 5 5 7 6.5 2.5 

Quantile 5 6.10 9 10 1 4 4.5 

Sum 6 6.30 6 7 4 6.5 7 

Creatinine 7 6.70 1 8 10 2.5 10 

CSN 8 6.90 10 9 2.5 5 6 

VSN 9 7.20 8 1 8 9.5 8.5 

Baseline 10 7.40 7 2 9 9.5 8.5 

Merged by polarity 

PQN(QC) 1 3.84 1 2 3 7 6.2 

PQN 2 4.20 5 7 7 1 1 

Median 3 4.40 2 4 4 3 9 

MSTUS 4 4.70 4 3 8 6 2.5 

Sum 5 5.04 3 6 5 5 6.2 

CSN 6 5.50 10 9 2 2 2.5 

VSN 7 5.84 7 1 6 9 6.2 

Baseline 8 7.24 6 5 9 10 6.2 

Quantile 9 7.24 9 10 1 8 6.2 

Creatinine 10 8.20 8 8 10 4 10 

Singles 

Median 1 1.79 2 4 1 1 2.5 

PQN(QC) 2 3.71 1 3 5 3.5 2.5 

PQN 3 3.79 3 5 4 5 2.5 

Sum 4 5.07 4 2 6 6 6.5 

CSN 5 5.43 10 9 3 2 5 

Quantile 6 5.21 9 10 2 7 2.5 

VSN 7 6.79 8 1 7 10 6.5 

MSTUS 8 8.00 5 6 9 8 9 

Creatinine 9 8.50 6 8 10 3.5 9 

Baseline 10 8.14 7 7 8 9 9 

aBA, balanced accuracy; sig mets, significant metabolites; lit matches, matches with literature 255 

metabolites for sex. Bold letters indicate best values for each evaluation criterion. 256 



Methods with top ranks for QC clustering in PCA include PQN, PQN(QC), median, MSTUS and sum 257 

normalization (Table 4). The QC distance values for these methods were similar across merging 258 

procedures (Table 1). Normalization methods with low ranking performance include VSN, quantile, 259 

CSN. The results for the RSD were very similar to those of the PCA analyses. PQN(QC), PQN, median, 260 

sum and MSTUS showed similar performance and are at the top of the ranking across merging 261 

procedures. Creatinine, CSN and quantile normalized data consistently achieved lower ranks and none 262 

of them achieved a lower RSD than the baseline data. Remarkably, for merging “by-method”, none of 263 

the normalization methods (except VSN) were able to achieve a lower RSD than the value of 5.55 from 264 

the QC-RFSC corrected data. However, VSN normalized data are on a generalised logarithm scale with 265 

base 2 and thus not immediately comparable to the average RSD of the other normalization methods.  266 

 267 

The balanced accuracy values of the sex prediction were similar across normalization methods, expect 268 

for creatinine normalization, which yielded the lowest values (Table 2). Creatinine normalized data did 269 

not achieve a higher balanced accuracy than the baseline data, which was also true for MSTUS if 270 

merged by “singles” procedure. Quantile and CSN had the highest accuracies across the three merging 271 

procedures. The number of significant metabolites across all normalization methods were also fairly 272 

similar. Only PQN with merging “by-method” exhibited more significant metabolites (123), followed 273 

by creatinine with 107 (Table 3). CSN, creatinine, and PQN normalization led to a high number of 274 

significant metabolites across all merging procedures compared to the other methods. VSN showed 275 

the lowest number of significant metabolites across all merging procedures. 276 

 277 

PQN and PQN(QC) normalizations were among the best methods, resulting in the lowest weighted sum 278 

of individual ranks for each evaluated criterion across all merging procedures (Table 4).  This is in line 279 

with other studies,11,9,13,6,8,43 which also found PQN to perform best and recommended it as optimum 280 

normalization method. Median normalization despite its simplicity was also among the top methods 281 

across merging procedures. Other studies have also found Median normalization comparable to PQN 282 

in terms of sample clustering in PCA and pooled RSD using test samples,15 as well as RSD in QC 283 

samples,43 which is in accordance with findings of this work. The similarity in the performance between 284 

PQN and median normalization may be due to the fact that both methods operate in a similar manner 285 

by relating each sample to a median spectrum.43 The performance of a normalization method may 286 

depend on how well the assumptions of the respective method are met by the data.15 Therefore, one 287 

possible explanation for the performance of PQN and median may be, that the current data meets the 288 

assumptions of these two methods more, compared to those of the other methods. Quantile 289 

normalization varied in its overall ranking across merging procedures, but showed particular good 290 

performance for the sample classification, which is consistent with other research.7 Post-acquisition 291 

creatinine normalization showed low performance in agreement with earlier studies.16,17,7,1,20,36,5,18,12,42 292 

In the PCA analysis, creatinine normalized QC samples showed greater dispersion in comparison to 293 

other normalization methods, in line with previous reports.17,20,12 Sum normalization showed a 294 

mediocre performance in this work, ranging in the middle of the tested normalisation methods. Sum 295 

normalization may be susceptible to compounds with large abundance,10 which would explain the 296 

spread of QC samples in PCA. Therefore, some authors questioned the usage of sum normalization for 297 

metabolomics data.6,10  298 

CONCLUSION 299 

The present study shows for the first time that data merging has an effect on normalization 300 

performance and subsequent analysis steps and must be considered when planning the data analysis. 301 

Merging data after normalization was generally favourable for QC similarity, sample classification and 302 

feature selection for most of the tested normalization methods. PQN and Median normalization 303 

showed the best performance overall, considering all tested criteria. Based on this, several 304 



recommendations can be provided. Merging data after normalization (“singles”) and the usage of PQN 305 

in a similar setting are generally recommended. PQN is preferred here over median normalisation 306 

because of the more suitable assumptions made about the data. Relying on a single analyte to capture 307 

sample concentration differences, like with post-acquisition creatinine normalization, seems to be a 308 

less preferable approach, especially when data merging is applied. The results of this study may have 309 

broader implications, since other biological matrices like saliva, sweat or faeces also show 310 

heterogeneity in sample concentration or metabolite signals. 311 

 312 
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