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Abstract 

This review summarizes mainly the activity of our labs. We established more than one 

laboratory for materials synthesis, characterization, and applications. Our laboratories provide 

the synthesis of several nanoparticles including metal oxide nanoparticles (e.g., Fe3O4, ZnO, 

ZrOSO4,  MoO3-x, CuO, AgFeO2, Co3O4, SiO2, and CuFeO2), metallic nanoparticles (Ag, Au, 

Pd, and Pt), carbon-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, 

and carbon dots (CDs)), biopolymers (cellulose, nanocellulose, TOCNF, alginate, and 

chitosan), organic polymers (conjugated polymers, covalent-organic frameworks (COFs), and 

intrinsic microporous polymers), and hybrid materials e.g. metal-organic frameworks (MOFs). 

These materials were applied for energy, environmental, and biomedicine applications. They 

were applied in several fields such as environmental-based technologies (e.g., water 

remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, 

solar cells, and supercapacitors), and biomedical sectors (sensing/biosensing, cancer therapy, 

and drug delivery). They can act as efficient adsorbents and catalysts to remove emerging 

contaminants such as metals, dyes, drugs, antibiotics, pesticides, and oils in water via 

adsorption. They can be also used as catalysts for catalytic degradation, reduction, and 

oxidation of organic pollutants. They can be used as filters for air purification by removing 

greenhouse gases such as carbon dioxide (CO2), volatile organic compounds (VOCs), and 

particulate matter (PMs).  They can be used for hydrogen production via water splitting, alcohol 

oxidation, and hydrolysis of NaBH4. Biomedical applications such as antibacterial, drug 

delivery, and biosensing were also involved.  
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Introduction 

Materials are objects containing a mixture of substances. They can be classified based on 

several strategies including 1) physical and chemical properties; 2)  origin (e.g., natural or 

synthetic); and 3) biological function. Natural materials can be prepared using raw materials 

via several procedures including purification, extraction, and shaping.  On the other side, 

synthetic materials can be prepared via several procedures. Human classified their prehistory 

based on material types into; Stone Age, Bronze Age, and Iron Age. The steel age, plastic age, 

and silicon age were named for the 19th century, the middle of the 20th century, and the second 

half of the 20th century, respectively. Materials advanced several applications including energy 

[1–4], environmental, analytical techniques [5–10], and biomedical applications [11–14].  

We have established an advanced multifunctional materials laboratory (Figure 1).  Our lab, an 

advanced multifunctional materials laboratory, can synthesize, characterize, and investigate 

applications for several fields. We can synthesize materials such as:- 

1) Metal oxide nanoparticles, e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, CeO2, AgFeO2, 

Co3O4, SiO2, and CuFeO2.  

2) Metallic nanoparticles, e.g., Ag, Au, Pd, and Pt. 

3) Carbon-based nanomaterials, e.g., graphene, graphene oxide, reduced graphene oxide, 

and carbon dots (CDs). 

4) Biopolymers e.g., cellulose, nanocellulose, TOCNF, alginate, and chitosan. 

5) Organic polymers e.g., conjugated polymers, covalent-organic frameworks (COFs), 

and intrinsic microporous polymers. 

6) Ionic liquids (Ils) [15–21]. 

7) Metallodrugs [22]. 
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8) Hybrid materials e.g., metal-organic frameworks (MOFs).  

We can do characterization using techniques such as X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution 

TEM (HR-TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) 

analysis and mapping, atomic absorption flame spectroscopy (AAFS), UV-Vis spectroscopy, 

diffuse reflectance spectroscopy (DRS), and electrochemical measurements (cyclic 

voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy 

(EIS), galvanostatic charge-discharge, differential pulse voltammetry (DPV), and Mott-

Schottky (MS). 
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Figure 1 Advanced Multifunctional Materials Laboratory established by Dr. Hani Nasser 

Abdelhamid. 

We can test any materials for several applications. Most of these applications are summarized 

as shown in Figure 1.  We can report full analysis for applications such as:- 

1. Energy:- 

a) Hydrogen generation via hydrolysis of sodium borohydride (NaBH4). 

b) Photocatalytic water splitting for hydrogen generation. 

c) Photocatalytic alcohol oxidation for hydrogen generation and carbonyl compounds 

synthesis. 

d) Supercapacitors. 
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e) Lithium-ion Battery. 

f) Dye-sensitizing solar cells (DSSCs) [23]. 

2. Environmental:- 

a) Water treatment via pollutants removal e.g., adsorption and degradation. 

b) Air purification; removal of greenhouse gases via adsorption. 

c) Adsorption of volatile organic compounds (VOCs). 

d) Photocatalytic degradation of drugs, antibiotics, and pharmaceuticals. 

e) Heavy metal removal via adsorption. 

f) Precious metal recovery.  

3. Biomedical Applications:-  

a) Cancer therapy; chemotherapy, photodynamic, and photothermal. 

b) Drug delivery [24,25]. 

c) Gene delivery using cell-penetrating peptides (CPPs)[26,27]. 

d) Antimicrobial agents; antibacterial, and antifungal [28–33].  

e) Nanotoxicity and Environmental fate for nanoparticles [34–36]. 

f) Bone regeneration. 

g) Wound healing. 

h) Tissue Engineering. 

i) Nanozymes and MOFZyme (artificial enzyme based on MOFs materials) 

j) Biosensing of biomarkers, biological heavy metals, enzymes, and proteins. 

k) Detection and analysis of pathogenic bacteria. 

l) Proteomics and clinical research [37]. 

m) Synthesis of biologically active compounds [38,39]. 

n) Investigate effective matrix for matrix-assisted laser desorption ionization mass 

spectrometry [40,41]. 
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Metallic Nanoparticles 

Metallic nanoparticles e.g., silver (Ag), gold (Au), palladium (Pd)[42], and platinum (Pt), 

advanced several applications. Silver nanoparticles have been used for many applications such 

as catalysis [43], energy [44], biosensing [45], laser desorption/ionization mass spectrometry 

(LDI-MS) and mass spectrometry imaging (MSI) [46], and others [47]. In our lab, we 

investigated Ag NPs' antimicrobial activity against bacterial flora of bull semen [48]. AgFeO2 

exhibit high antibacterial activity against several bacteria species [49,50]. Ag NPs were used 

as a probe for the detection of the freshness of fruits and vegetables via graphene-enhanced 

Raman spectroscopy (GERS) [51]. Silver nanoparticles can be used as a surface for 

microextraction proteins and other analytes for the analysis using surface-assisted laser 

desorption-ionization mass spectrometry (SALDI-MS) [52]. It can be also modified with 

chitosan for the separation and detection of biothiols [53].  

The spermicidal effects of Ag NPs against flora bacteria were reported [48]. Silver salts were 

mixed with melamine. The mixture was then polymerized at 550 oC to generate graphitic 

carbon-embedded Ag NPs i.e. Ag@C NPs.  Analytical techniques such as XRD, XPS, AAFS, 

TEM, and HR-TEM confirm the material's phases, composition, morphology, and particle size. 

Ag@C NPs display a particle size of 1-5 nm with an average particle size of 2.5 nm. The 

nanoparticles were embedded into carbon. Ag@C NPs were investigated as antimicrobial 

agents in bacteriospermia of fresh semen collected from five fertile bulls. They exhibited high 

antibacterial activity against bacteria species found in semen such as Escherichia coli (E. Coli), 

Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa). It offered 

minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 

3.125-12.5 μg/mL and 3.125 μg/mL, respectively. There was no detrimental effect (P ˃ 0.05) 

on the percentage of sperm motility, plasma membrane integrity, acrosome integrity, and 

normal sperm morphology at concentrations of 15-30 μg/mL. Ag@C NPs is a promising 



7 
 

antibiotic agent for bull semen extender during cold storage. It can be used in applications such 

as the field of artificial insemination [48].  The antibacterial activity of silver ferrite (AgFeO2) 

was investigated. AgFeO2 was modified with polyethylene glycols (PEGs) to render their 

dispersion high [49,50]. The antibacterial activity against pathogenic bacteria was quantified 

using plate counting, and the turbidity using optical density at wavelength 600 nm (OD600). 

AgFeO2 nanoparticles exhibited high antibacterial activity [49,50]. 

Silver nanoparticles were modified with 1-octadecanethiol (1-ODT)/4-aminothiophenol (4-

AMP) and 1-ODT/1-thioglycerol (1-TG) to prepare Ag@ODT/AMP and  Ag@ODT/TG, 

respectively [52].  The materials were used in microextraction as a pseudo-stationary phase via 

single-drop microextraction (SDME). They can extract proteins and peptides e.g., insulin, 

ubiquitin, t cytochrome c, cysteine, homocysteine, and lysozyme. The separated proteins can 

be detected after extraction using matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MS). The method can be used for the analysis of real samples e.g., urine 

and milk [52].  Silver ferrite iron oxide nanoparticles (AgFeO2 NPs) were reported for biothiols 

separation [53]. AgFeO2 and AgFeO2 modified chitosan (AgFeO2@CTS NPs) can be used for 

the separation of biological thiols e.g., sulfamethizole, thiabendazole, dithiothreitol, and 

glutathione before the analysis using MALDI-MS and surface assisted laser 

desorption/ionization mass spectrometry (SALDI–MS) [53]. 

Au NPs enhanced GERS detection of the freshness of fruits and vegetables [51]. It can be used 

as a probe for surface-enhanced Raman spectroscopy (SERS, Figure 2). Au or Ag 

nanoparticles were synthesized into reduced graphene oxide nanosheets (e.g., Au@G and 

Ag@G). The materials can be used as a probe for the analysis of the freshness of fruits and 

vegetables (e.g., Carrot, Wax apple, Lemon, Red pepper, and Tomato) [51]. One-pot synthesis 

of Au NPs@carbon dots was reported for the cytosensing of metals in cancer cells [54]. Au 

NPs enhanced the analysis of simple molecules to intact cells using SALDI-MS [55]. 
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Figure 2 Schematic representation for GERS analysis of fruits and vegetables using Ag and 

Au NPs. Figure reprinted with permission from Ref. [51]. 
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Carbon Nanomaterials and their Applications 

Zero-dimension carbon can be also known as carbon dots (CDs), carbon nanodots (C NDs), or 

carbon quantum dots (CQDs) [56–62].  CDs were applied for several promising applications 

such as drug delivery [63], imaging [64–68], sensing [57,69–71], biosensing [78],  energy-

based applications [77], biomedical [72], and theranostic [73]. Carbon nanodots, including 

carbon dots and graphene quantum dots, carbon quantum dots (C QDs), or carbon dots (CDs), 

are emerging new carbon allotropes nanomaterials [74–76].  Carbon nanomaterials have 

advanced electrochemical-based applications [68,79]. CDs have advanced electrochemical 

applications [80,81] such as O2  and H2O2 reduction [82], and biosensing of glucose [83–89]. 

C-dots can be doped with P [90], N [91], S [67], F [92], B [93], nitrogen and sulfur co-doped 

carbon dots (N, S-CDs) [94,95], and N/B [96]. C dots exhibit good optical properties including 

photoluminescence in the visible range [97,98], and high quantum yields (QY)[58,99]. The 

photoluminescence properties of CDs can be tuneable by changing their size, surface 

modification with functional groups at the graphitic edges of the materials, doping with 

heteroatoms, or selecting a suitable synthesis method [100,101]. They can be tuned offering 

fluorescence emission from blue to green [90,102]. It has been used for tackling COVID-19 

[103], the virus [104]. It offered naked eye sensors [105]. N-doped CDs especially exhibit 

remarkable acid-evoked fluorescence enhancement under acidic conditions [106]. 

Two-dimensional carbon nanomaterials such as graphene, graphene oxide (GO), and reduced 

graphene oxide were intensively used for several applications. Graphene oxide was used for 

rare-earth metal adsorption [107]. It can be modified with thymine for selective detection of 

toxic heavy metals such as mercury (Hg(II)) [108]. The layer structure of GO enables the 

intercalation of an organic matrix such as sinapinic acid [109]. GO can be modified with SiO2 

for SALDM-MS [110]. It can use for heavy metal detection such as mercury ions [111], lipids 
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[112], and metallodrugs [113].  It exhibited high efficiency for bone and skin wound 

regeneration [114] and wound healing [115]. It can use for the drug delivery of in-soluble 

antibiotics such as gramicidin [116].  It can be used as a co-carrier to enhance the gene 

transfection of CPPs [117]. GO/cellulose nanocomposite accelerated skin wound healing [118]. 

Graphene can be used as a surface for SALDI-MS [119]. 

Metal Oxides 

Metal oxides such as CeO2 enabled the extraction and detection of pathogens proteins [120]. 

Fe3O4@ SiO2 enabled rapid and direct identification of pathogenic bacteria from blood using 

[121]. Magnetic nanoparticles modified graphene oxide was reported for separation and 

preconcentration of pathogenic bacteria for sensitive detection using MALDI-MS [122]. 

Chitosan magnetic nanoparticles were reported for endotoxin separation and detection using 

SALDI-MS [123]. ZnO nanoparticle-modified polymethyl methacrylate was used for 

dispersive liquid–liquid microextraction for rapid analysis of pathogenic bacteria using 

MALDI-MS [124]. SnO2@GO exhibited high antibacterial activity [125] 

Commercial MoO3 was used for the exfoliation to synthesize a few layers of MoO3-x (Figure 

3) [126]. The synthesis procedure involved the reflux of a bulk α-MoO3  at 80 °C in water for 

7 days. The prepared MoO3–x nanosheets displayed infrared plasmonic properties offering 

localized surface plasmon resonance (LSPR) peaks at 954 and 1160 nm due to the oxygen 

vacancies upon light excitation.  The plasmonic properties of the nanosheets can be enhanced 

using visible light irradiation for only 10 min. The materials were used as photocatalysts for 

dye degradation under visible light irradiation [126]. 
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Figure 3 The Exfoliation of α-MoO3 into MoO3–x Nanosheets. Figure reprinted from Ref. 

[126]. This is an Open Access Article. Copyright belongs to the American Chemical Society 

(ACS). 

 

Ruthenium oxide (RuO2) with mesopore was synthesized via a surfactant-assisted procedure 

[127]. The materials exhibited higher catalytic oxidation activity of water using ceric 

ammonium nitrate (CAN).  

Magnetic nanoparticles can be synthesized via several procedures including laser techniques 

[128]. Abdelhamid reviewed the application of delafossite nanoparticles in energy, 

nanomedicine, and environmental applications [129]. Magnetic nanoparticles of  Fe3O4 were 

incorporated into polyplexes of CPPs/oligonucleotides (ONs) for cell transfection [130]. Three 

different oligonucleotides (e.g., plasmid (pGL3), splicing correcting oligonucleotides (SCO), 

and small interfering RNA (siRNA)) and six CPPs (e.g. PeptFect220 (denoted PF220), PF221, 

PF222, PF223, PF224, and PF14) were investigated. Magnetic nanoparticles enhanced the cell 
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transfection up to 4-fold compared to the noncovalent PF14-SCO complex, which exhibited 

higher efficiency compared to a commercial vector called Lipofectamine™2000 [130].  

Quantum Dots (QDs) 

Quantum dots (QDs) are nano‐sized semiconductor crystals that have been found as interesting 

materials in different areas of science, especially in biology.[1, 2] QDs were first discovered in 

the 1980s by a Russian physicist, Alexei Ekimov.[3] These materials are composed of groups 

II–VI or III–V elements of the periodic table and are defined as particles with physical 

dimensions smaller than the Bohr radius of the exciton.[4] After more than two decades after 

their introduction,[5, 6] their usability of them is increasing.[7] Quantum dots were used for drug 

delivery [131].  

Cadmium sulfide (CdS) quantum dots were used for selective biosensing of Staphylococcus 

aureus [132] and proteomics [133,134]. It can be used as a surface for SALDI-MS analysis of 

several analytes [135]. It enabled soft ionization offering the analysis of labile compounds such 

as metallodrugs [136]. It can also be used for fluorescence spectroscopy[137]. CdS QDs were 

in-situ grown into chitosan (CTS) enabling CdS QDs@CTS [138,139]. The material 

CdS@CTS exhibited selective interaction with Cu2+ due to the formation of Cd1-xCuxS 

[138,139].  The positive charge on chitosan exhibited also high interaction with the negative 

charge on the bacteria cell membranes [140]. CdS@CTS was also reported as a carrier for drug 

delivery of a natural anticancer drug called sesamol [141].  

Biopolymers 

Biopolymers including polysaccharides are intensively applied for biomedical applications 

[142,143]. Polysaccharides were applied as excipients for tablet formulation, dental implants, 

bone/tissue engineering, and drug delivery [142,143]. They can also be used for antimicrobial 

https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0004
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0005
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.202000117#biot202000117-bib-0007
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textiles [144–146].  Silver ferrite (AgFeO2) can be modified with chitosan to render their 

external surface positive for biothiol separation [53]. Alginate can improve the gene delivery 

of oligonucleotides [147,148]. Modern technology such as 3D printing enabled simple 

processing of polylactic acid and hydroxyapatite for water treatment [149]. 

Cellulose-based advanced several applications such as biomedicine including antifouling 

[150–153]. They improved bioengineering [154] and water treatment via pollutants adsorption 

[155]. Cellulose/ZIF-8 composite was used for water remediation via adsorption and catalytic 

degradation of organic pollutants such as dyes [156]. Cellulose enabled three-dimensional 

printing of porous materials such as leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted 

as CelloZIF-L. Direct ink writing (DIW) or robocasting was used to proceed with the materials. 

The materials with a ZIF content of 84% were achieved. The materials were used for the 

adsorption of carbon dioxide (CO2) and heavy metals offering capacities of 0.64-1.15 

mmol/g (at 1 bar, 0 °C) and 554.8±15 mg/g, respectively. The adsorbent exhibited selectivity 

toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+ of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19%, 

respectively [157]. Cellulose enabled also the processing of ZIF materials into filter paper 

[158,159] and foams [160]. Most of these biopolymers are biodegradable [161,162] compared 

to synthetic polymers [163]. They can proceed into the membrane for oil separation [161]. 

Chitosan improved gene delivery [164]. It can stabilize magnetic nanoparticles that enabled 

high-cell transfection [165]. Magnetic nanoparticles modified chitosan was used for surfactant 

capture and analysis using SALDI-MS [166]. Chitosan can be modified with thymine to enable 

specific preconcentration of mercury (II) before analysis using SELDI-MS [167]. It can be used 

as a porogen for creating mesopores inside microporous materials [168]. The created 

hierarchical porous materials can be then used for oligonucleotide delivery offering efficient 

gene treatment. Chitosan mitigates the toxicity of CdS QDs offering efficient drug delivery of 

the anticancer drug sesamol [141]. 
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Metal-organic frameworks (MOFs) 

MOFs advanced several applications including biosensing [169–172]. Lanthanide MOF was 

reported for the detection of ferric ions and vitamin C [173]. The material was stable and can 

form high dispersion with high fluorescence emission signals. Fe(III) ions can selectively 

quench the fluorescence signal enabling a linear relationship in the concentration range of 

16.6–167 μM with a limit of detection (LOD) of 16.6 μM (S/N ratio of >3) [173]. Explosive 

materials such as nitroaromatic was detected using Zn-MOF [174]. 

A composite of hierarchical porous bimetallic of (Co, Zn)‐ZIF-8, and semiconductor 

photocatalyst TiO2 (Co@ZIF‐8/TiO2) was reported for hydrogen generation via photocatalytic 

water splitting [175]. Co@ZIF‐8/TiO2 showed a photocatalytic hydrogen generation rate of  13 

mmol•h−1•g−1 representing a 151‐fold high catalytic performance of pristine TiO2 [175]. 

Co@ZIF‐8 improved also hydrogen generation via the hydrolysis of NaBH4 [176]. Carbonized 

MOF enabled selective dehydrogenation of isopropanol [177]. 

We reported several procedures to prepare hierarchical porous zeolitic imidazolate frameworks 

(ZIFs)[178,179]. Template-free and template-based procedures were reported [180]. Dye 

encapsulation and one-pot synthesis of hierarchical porous (microporous–mesoporous) ZIF-8 

were reported for CO2 sorption and adenosine triphosphate biosensing [181]. A cobalt ZIF 

material, ZIF-67, was used for hydrogen generation via the hydrolysis of NaBH4 [182,183]. 

The generated hydrogen can be used for dye degradation [182]. ZIFs-based materials were 

reviewed as efficient adsorbents and catalysts for CO2 removal via adsorption and conversion 

into value-added compounds [184–188]. ZIF-8 and ZIF-67 can be in-situ grown into cellulosic 

filter paper that was used as an efficient catalyst for the reduction of water pollutants such as 

nitrophenols [189]. Our synthesis procedures offered several advantages including the 
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formation of a hierarchical porous structure with fast and potential to use for large-scale 

production [190]. 

ZIFs materials including ZIF-8 are biocompatible materials [191]. Thus, ZIF-8 was widely 

used for biomedical applications [192] including gene delivery [193]. However, our recent 

study showed the transfer of the metal ions into the environment that caused a significant effect 

on the colonization and decomposition of shaded outdoor mice carrions by arthropods [194]. 

A zirconium-based MOF, UiO-66, can enhance bone generation offering induction of bone 

defects in rabbit femoral condyles [195]. UiO-66 catalyzed the hydrogen formation via the 

hydrolysis of NaBH4 [196]. It was also reported as a precursor for the synthesis of ZrOSO4@C 

for hydrogen generation [197] and dimethyl ether formation [198].  

A cerium MOF (Ce-MOF) exhibited Fenton-like properties that enabled catalytic oxidation of 

olefins, alcohol, and dyes degradation [199]. It offered 100% and 53% conversion of cinnamyl 

alcohol and styrene, respectively. It provided high selectivity of 75% and 100% towards styrene 

oxide and benzaldehyde, respectively. It can catalytically degrade organic pollutants such as 

dyes [199]. Ce-MOF was also used probe for fluorescence detection of ferric ions and hydrogen 

peroxide [200], and MOFZyme for the inhibition of fungi [201,202]. 

A copper-based MOF (Cu and 1,4-benzene dicarboxylic acid as metal nodes and linker, 

respectively) was in-situ grown into the fiber of cotton textile via a solvothermal procedure 

[203]. CuBDC@Textile was investigated as a solid sensor and adsorbent for volatile organic 

compounds (VOCs). It offered selective detection of pyridine via the colorimetric method. 

Pyridine turned the turquoise color of the prepared materials into deep blue color. It offered a 

pyridine adsorption capacity of  137.9 mg/g [203]. Lanthanide MOFs were also incorporated 

into cotton textiles for the photodegradation of stains for smart textiles [204]. 
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Three-dimensional (3D) printing can be used to proceed MOF materials such as leaf-like 

zeolitic imidazolate frameworks (ZIF-L) into 3D objects with custom porosity and dimension 

(Figure 4)[157]. Direct ink writing (DIW) or robocasting was used to proceed with the 

materials. The printed materials with a ZIF content of 84% were achieved. The materials can 

adsorb CO2 and heavy metals. 3D CelloZIF-L exhibited adsorption capacities of 0.64-1.15 

mmol/g for CO2 gases at 1 bar (0 °C). They showed adsorption capacities of 389.8-554.8 mg/g 

for Cu2+ ions with a selectivity of 86.8% toward Fe3+ ions [157].  A filter paper containing 

cellulose and ZIF-8 were reported [158,159]. The prepared filter paper, denoted as 

CelloZIFPaper, was used for heavy metal adsorption. The materials offered adsorption 

capacities of 66.2–354.0 mg/g. CelloZIFPaper was also tested as a flexible electrode for toxic 

heavy metal detection [158,159].  The reader can directly go to our recent Review on the topic 

of cellulose-MOF composite (denoted as CelloMOF) and their applications [205]. CelloMOF 

enabled multifunctional applications being efficient adsorbents and catalysts [156]. ZIF-8 was 

also reported for the recovery of rare-earth elements [206]. 

 

Figure 4 Schematic representation for the synthesis of ZIF-L in TEMPO-oxidized cellulose 

nanofibers (TOCNF) and 3D printing into cubes and filaments. Figure reprinted with 

permission from Ref. [157]. 

 

Magnetic nanoparticle-modified MOF materials were reported for heavy metal adsorption and 

removal [207]. Fe3O4@ZIF-8 and Fe3O4@UiO-66–NH2) were investigated for the adsorption 
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of Cd2+ and Pb2+ ions. Fe3O4@UiO-66–NH2 and Fe3O4@ZIF-8 offered adsorption capacities 

of 714.3 mg/g, and 370 mg/g for Cd2+, respectively, and 833.3 mg/g, and 666.7 mg/g for Pb2+, 

respectively [207].  

CuBDC has used the reduction of nitrophenol into aminophenol [208]. CuBDC was used as a 

precursor for the synthesis of CuO-embedded C i.e. CuO@C [209,210]. CuO@C exhibits a 

particle size of 36-123 nm [209]. It can be used as an antifungal agent against Alternaria 

alternata, Fusarium oxysporum, Penicillium digitatum, and Rhizopus oryzae with inhibition 

zones of 36, 20.2, 16, and 10.2 mm, respectively [209]. CuO@C was also used as a 

photocatalyst for pharmaceuticals e.g. paracetamol degradation [211]. It offered an efficiency 

of 95% within 60 min [211]. It can also used for the reduction of 4-nitrophenol into 4-

aminophenol [212]. In the presence of NaBH4, CuO@C undergo catalytic degradation of 

organic dyes [213]. 

ZIF-67 was carbonized into Co3O4@N-doped C [214]. The materials after carbonization were 

used as electroactive material for electrode fabrication.  Co3O4@N-doped C electrode offered 

a specific capacitance of 709 F g−1 at 1 A g−1 [214]. It can be also used as co-catalyst to enahnce 

the photocatalytic water splitting of semiconductor TiO2 [215]. ZnO@C was prepared via 

carbonization of ZIF-8 [216]. It was used for supercapacitor [216]. ZIF-8 was used to prepare 

ZnO@C photocatalyst that can degrade dyes [217,218]. ZnO@C can be also used an efficient 

catalyst for methanol dehydration forming dimethyl ether that can be used as energy fuel [219]. 

Covalent Organic Frameworks (COFs)  

COFs were used as support for the in-situ growth of palladium nanocrystals (Pd NCs@COF) 

[220,221]. Pd NCs@COF was used as the catalyst for carbon-carbon coupling reactions with 

high efficiency and excellent selectivity [220,221]. A composite of COFs material with two-

dimensional nanoparticles e.g., graphene oxide, boron nitride, and graphitic carbon nitride (g-
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C3N4) was synthesized via a one-pot procedure [222]. The nanocomposites were used in water 

treatment via organic pollutants adsorption [222]. 

COFs have an advanced energy sector [223,224]. A triazine COF was synthesized via in-situ 

and ex-situ procedures in the presence of graphene oxide (GO, Figure 5) [225,226]. The 

composite was used to synthesize N-doped carbon (N-doped C)/reduced GO (rGO) after 

carbonization. N-doped C/rGO displayed a specific capacitance of 234 F·g−1 at the current 

density of 0.8 A·g−1. The electrochemical performance of two symmetric supercapacitor 

devices displayed specific energy and specific power of 14.6 W·h·kg−1 and 400 W·kg−1, 

respectively (Figure 5) [225]. A one-pot synthesis of COFs/graphitic carbon nitride (g-C3N4) 

nanocomposite was also reported in our lab [227,228]. The synthesis procedure involved the 

polycondensation of melamine and benzene-1,3,5-tricarboxyaldehyde in the presence of g-

C3N4. COF/g-C3N4 was used as a precursor for the synthesis of N-doped carbon and N-doped 

carbon/g-C3N4. The prepared materials were used as electrode materials for supercapacitors 

and lithium-ion batteries (LIBs). COF, COF/g-C3N4, N-doped carbon, and N-doped carbon/g-

C3N4 exhibited specific capacitance of 211, 257.5, 450, and 835.2 F·g–1, respectively. N-doped 

carbon/g-C3N4 was used to assemble asymmetric devices that offered energy density and 

power density of 45.97 Wh·kg–1 and 659.3 W·kg–1, respectively [227,228].  
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Figure 5 A) Synthesis procedure of the materials and B)electrochemical performance of the 

prepared electrode using a) CV curves at 50 mV s scan rates b) GCD curves, and c) capacitance 

over current density. Figure reprinted with permission from Ref.[225]. 

 

Conclusions 

I summarized the potential of our laboratories to be applied in several fields such as 

environmental trends e.g., water remediation, air purification, and gas storage; energy e.g., 

A

B
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production of hydrogen, dimethyl ether, solar cells, and supercapacitors; and biomedical 

sectors e.g., sensing/biosensing, cancer therapy, and drug delivery. We can synthesize materials 

that can be used as efficient adsorbents and catalysts to remove emerging contaminants such 

as metals, dyes, drugs, antibiotics, pesticides, and oils in water via adsorption. The materials 

can be also used as catalysts for pollutants degradation, synthesis of new organic compounds, 

reduction, and oxidation of organic pollutants. They have been applied as filters for air 

purification by adsorption of greenhouse gases such as carbon dioxide (CO2), volatile organic 

compounds (VOCs), and particulate matter (PMs).  They can be used for hydrogen production 

via water splitting, oxidation of alcohol, and hydrolysis of NaBH4. They can be applied for 

biomedical applications such as antibacterial, drug delivery, and biosensing.  
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