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ABSTRACT 

Natural products have proven to be valuable, particularly in the fields of drug discovery and chemogenomics. Tandem 

mass spectrometry, along with reference mass spectral libraries, has been frequently used to assist the characterization of 

natural products present in unknown complex mixtures. As current spectral libraries only contain a small percentage of 

known natural products, their continual expansion is crucial for accurate molecular identification. However, doing so 

through experimental means is often expensive and time-consuming. This study explores the use of ab initio molecular 

dynamics simulations (AIMD) based on the lightweight GFN2-xTB semiempirical Hamiltonian, to generate mass spectra 

for small natural products molecules. Through this approach, more than 2,700 unique mass spectra were generated and 

analysed in relation to the Global Natural Products Social Molecular Networking (GNPS) database. This study found that 

AIMD performs relative well (mean cosine similarity score of 0.68), with improved performance observed in aromatic 

molecules but limitations found when applied to molecules with carboxylic acid groups. Other key findings relating to 

experimental and simulated conditions also led to several recommendations for future work in this area. Overall, AIMD 

proved to have huge potential to be used to develop a putative natural product mass spectral library. 

1 INTRODUCTION 

Natural products are molecules produced by living organisms,1 and have wide ranging applications, especially in the 

fields of drug discovery and chemogenomics.2,3 They can also act as bio-betters in comparison with synthetic molecules 

as they offer greener production routes and higher biodegradability.4 As such, there is a tremendous potential for them to 

be capitalised in answering growing calls for sustainability. However, one of the main challenges faced in the 

identification of unknown natural products, present in complex biological mixtures, is the lack of reliable methods in 

elucidating their molecular structures. In the past decades, the use of tandem mass spectrometry with Electron Spray 

Ionisation (ESI) and Collision Induced Dissociation (CID) for structural elucidation of natural products have grown in 

popularity.5   

ESI is a soft ionisation process that imparts a charge to the target molecule, and often results in little fragmentation.6 The 

process usually generates a precursor ion, often with the addition or removal of a proton (which will be referred to as 

‘M+H’ and ‘M-H’ respectively in this report). This precursor ion is then made to collide with a neutral gas atom or 

molecule (CID) where it fragments into smaller fragments. Larger fragments bend less relative to smaller fragments in 

the presence of an electric and/or magnetic field, which allows fragments of different masses-to-charge ratio (m/z) to be 
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separated. A mass analyser then records the frequency of each fragment as the intensity of its corresponding m/z value, 

which forms a molecule’s mass spectrum. This technique has an edge over other fragmentation methods as it allows for 

non-volatile and thermally labile natural products to be analysed as well.7 

Mass spectral libraries are usually used in conjunction with a search algorithm to identify an unknown molecule from its 

mass spectrum.8,9 However, the applicability of these tools is often constrained by the limited size of the reference 

database, as molecules cannot be identified if its mass spectrum is not present in the library. While mass spectral libraries 

are constantly being updated,10 the acquisition of experimental mass spectral data of known molecules is time-consuming, 

expensive, chemically complex, and could even be dangerous.11 In this respect, various computational methods have been 

developed to map molecules to their corresponding mass spectra, and vice versa, to augment these databases. They are 

typically based on chemical fragmentation rules,12 machine learning (ML),13,14 atomistic simulations,15,16 or a combination 

of methods.17 

ML algorithms can be used to perform in silico fragmentation or directly generate mass spectra without predicting bond-

breaking probabilities.18 Though these algorithms are advantageous in their speed, they are reliant on large datasets for 

training which may not be always available. Furthermore, using trained ML algorithms to predict mass spectra often have 

limited domains of applicability as they do not extrapolate well beyond the type of molecules that they have been trained 

on. Rule-based methods are also limited in the same way as generalisability is limited to known fragmentation pathways. 

On the other hand, atomistic simulations, through the use of ab initio molecular dynamics (AIMD), do not share this 

limitation. While it is usually slower than ML or rule-based algorithms, they are only based on physical laws. This means 

that it could in theory, be used to generate the mass spectrum for any arbitrary compound.19  

Motivated by the many functional properties of natural products and the challenges faced in identifying them, this study 

aims to build an in silico natural product tandem mass spectral (MS2) library to complement existing experimental MS2 

libraries. As natural product MS2 libraries like the Global Natural Product Social Molecular Networking (GNPS)20 are 

relatively small (circa 30,000 unique molecules), machine learning algorithms, that are often data-hungry (usually trained 

with >500,000 structures), 21 will usually underfit and not generalize well. Therefore, we employ semi-empirical quantum 

chemistry via AIMD to bridge this gap. A total of 2708 MS2 spectra comprising of 3 different collision energies and 2 

ion modes were generated and compared with known MS2 spectra from GNPS (refer to section 2.3 for more details). 

Both the accuracy and generalisability of these generated spectra were studied to determine the viability of using AIMD 

to build a high-fidelity putative natural product MS2 library.  

TABLE 1: DISTRIBUTION OF MOLECULES 

Ionisation 

Mode 

Unique 

Molecules 

Aromatic 

Compounds* 

Carbonyls Amines Alcohol Sulfur 

Containing 

Ether 

M+H 194 71 117 116 48 21 9 

M-H 133 44 93 63 51 16 2 

Total 327 115 210 179 99 37 11 

*Refers to compounds with at least one aromatic functional group 
Note that the values for total molecules do not tally because some molecules have multiple functional groups  



 

 

2 METHODOLOGY 

2.1 Experimental Data  

Experimental mass spectral data were taken from the GNPS MS2 library (accessed on 1 April 2022),20 which contained 

MS2 data for natural products. The data from the GNPS database was filtered to obtain entries with valid Simplified 

Molecular-Input Line-Entry System (SMILES)22 containing less than 15 atoms. Only neutral, single-species molecules 

were chosen for simplicity. This filtered database contained 4,794 valid mass spectra of 246 unique molecules, which 

included both positive and negative ionisation modes. Majority of these entries used M+H and M-H as its precursor ion 

with M+Na being the next most common one (Fig. 1). Hence, this study mainly focuses on molecules with M+H or M-

H as precursor ions. Molecules with other precursor ions were only briefly analysed in the overview but filtered out for 

in subsequent sections of the paper. The distribution in functional groups of this filtered set of moleculesis shown in Table 

1. One major limitation of using this dataset is that few entries contain information on the experimental collision energy 

used (393 out of 4,794 entries). Furthermore, factors like chamber lengths and the inert species used for collision were 

not reported in the database. Since these factors affect the fragmentation that occurs16, several assumptions had to be 

made in the selection of experimental spectra. This is elaborated in greater detail in sections 2.3.  

 

Figure 1. Distribution of different precursor ions from the GNPS. (Refer to Table S1 and Fig. S1 for a detailed breakdown). 

2.2 Generation of Spectral Data 

In silico fragmentation begins by the identifying different sites in molecules that can be (de-)protonated during ESI. This 

was done using Conformer–Rotamer Ensemble Sampling Tool (CREST)23, a computational chemistry tool that outputs 

coordinates of all possible stable (de-)protonated structures. These structures of a particular molecule will be referred to 

as (de-)protomers. In this study, CREST was set to output structures that form within as 30kcal/mol window, for both 

M+H and M-H to simulate both positive and negative ion modes.  Next, mass spectral peaks were generated using the 

quantum chemistry package, QCxMS.16 QCxMS uses ab initio molecular dynamics (AIMD) simulations with the 

semiempirical GFN2-xTB Hamiltonian, which provides an efficient quantum mechanical description of all elements up 

to Z = 86 (Rn). The x in QCxMS stands for either electron ionisation (EI) or Collision Induced Dissociation (CID), but 

only CID was used in this study (as that is used in tandem mass spectrometry). CID was simulated with an Argon atom 

in a chamber of length 25cm (default QCxMS settings) while charge used was varied according to input from CREST. 

As fragmentation is dependent on collision energy,16 three independent simulations for every (de-)protomer was carried 

out at 40, 60 and 80 eV (This will now be referred to as the simulated collision energy). A complete list of specifications 

for QCxMS runs is reported in Annex B.  



 

2.3 Evaluation  

Similarity Metric  

To evaluate the accuracy of generated spectra, a similarity function is required as a metric to compare them with the 

ground-truth spectra from GNPS. Three cosine similarity functions (with different weights), Euclidean distance, absolute 

distance, and a composite function13,24 was used to evaluate the similarity between two mass spectra. (Refer to Annex C 

for more details). It was found that the functions were generally in good agreement with each other and that the weighted 

cosine similarity function (weights mass 1, intensity 0.5) had the highest agreement rate among them. Therefore, the 

function used in this study to evaluate the various mass spectra was the weighted cosine similarity function13 as shown in 

Equation (1). Note that as larger m/z peaks are more characteristic, they bear higher weightages when computing the 

similarity value. 

Similarity(𝐼𝑞 , 𝐼𝑙) = 
∑ 𝑚𝑘𝐼𝑞𝑘

0.5∙𝑚𝑘𝐼𝑙𝑘
0.5𝑀𝑚𝑎𝑥

𝑘=1

√∑ (𝑚𝑘𝐼𝑞𝑘
0.5)2𝑀𝑞

𝑘=1 ∙∑ (𝑚𝑘𝐼𝑙𝑘
0.5)2𝑀𝑙

𝑘=1

    (1) 

 

Equation 1: Similarity Score between a query spectrum 𝐼𝑞 and a library spectrum 𝐼𝑙, whereby 𝑀𝑚𝑎𝑥 is the largest m/z peak in both spectra and 𝐼𝑞𝑘  and 

𝐼𝑙𝑘 represent the 𝑘𝑡ℎ intensity peak in the query and library spectrum respectively.  

 

Differences between Precursor Ions 

 

Figure 2. Generation of 2 different mass spectra of succinimide for 2 unique protomers 

Each precursor ion can have different (de-)protomers that are generated by CREST which yields a different mass spectrum 

from QCxMS (Fig. 2). Therefore, there is a need to select a unique spectrum for each molecule. Since a protomer with a 

higher abundance would contribute more to the final mass spectra, a weighted average of all the different mass spectra 

based on their relative abundance was taken.  

𝑍 = ∑ 𝑒
−

1

𝑘𝐵𝑇
𝐸𝑖𝑛

𝑖     (2) 

 

Equation 2: The canonical ensemble partition function that encodes information on how the probabilities of different microstates of molecule with 

energy E and temperature T are partitioned (n is the number of discrete microstates).25  

 

𝑃𝑖 =
𝑒

−
1

𝑘𝐵𝑇𝐸𝑖

𝑍
   (3) 

 

Equation 3: The probability that the system with energy 𝐸𝑖  occupies the 𝑖𝑡ℎ microstate calculated with the partition function (2). 

 



 

Each protomer’s abundance was determined using the partition function (shown in equations (2) and (3)), calculated using 

electronic energy levels determined at the GFN2-xTB level of theory. The intensity peaks of all the different (de-

)protomers’ mass spectrum were then scaled by their relative abundance and summed together to form a unique mass 

spectrum, which I will now refer to as the Boltzmann weighted spectrum. Unless otherwise specified (in sections 3.4), 

this spectrum was taken as the generated spectrum for the rest of the paper.  

Differences in Experimental Conditions 

In the GNPS library, some molecules have multiple mass spectral entries that were likely obtained under varying 

experimental conditions. The weighted cosine similarity scores for these mass spectra and the generated spectra would 

be different. Therefore, to evaluate a molecule’s performance, there is a need to obtain a unique cosine similarity score 

from an experimental-generated mass spectrum pair. Since the exact specifications of experimental conditions like 

collision energy and chamber length were largely unknown (refer to section 2.2), the cosine similarity score corresponding 

to the closet matching experimental-generated mass spectrum pair was taken. This was done under the assumption that 

the chosen pair had the closest matching conditions.   

 

Figure 3. The cosine similarity values of homocysteine thiolactone, a molecule with six entries in GNPS. As seen here, 40 eV and entry 5 was taken 

as the best experimental-generated mass spectrum. Therefore, 0.7531 was taken as the similarity score for this molecule. 

As an example, entry 5 of homocysteine thiolactone (Fig. 3) was assumed to match the simulated collision energy (40 

eV) most closely so 0.7531 was taken as the cosine similarity score. Therefore, unless specified otherwise (section 3.4) 

the best mass spectrum for the different entries was taken as the experimental mass spectrum for the rest of this paper. 

Note that for comparisons of subsets of molecules (like precursor ions or collision energy), the best entry of that subset 

is taken.  

2.4 Technical Details on Analysis  

Through the course of this study, the following python packages have been used to aid in analysis: 

• RDKit26 was used to obtain 3D coordinates of SMILES found in the GNPS database, as well as obtain descriptors 

used in analysis of different molecules (section 3.2) 

• xyz2mol27 was used to obtain SMILES of 3D structures of (de-)protomers that were generated from CREST. This 

was used with Marvin Sketch 28 so that the 2D structures of different (de-) protomers could be visualised. 

• IFG (Identify Functional Groups)29 was a python package that outputs all functional groups found in a molecule from 

its SMILES.  



 

• Pandas30 python library was used to process data 

• Matplotlib31 and Seaborn32 python libraries were used to plot figures in this report 

• Avogadro 233,34 was used to generate 3D structures from xyz coordinates for figures 

3 RESULTS and DISCUSSION 

3.1 Overall Results  

Overall, QCxMS performs well in predicting mass spectra for both M+H and M-H precursor ions as shown in Figure 

4(a). There are no observable differences between the distribution of cosine similarities. Furthermore, both the mean 

(0.68) and median (0.73) scores of both ion modes were identical up to 2d.p. This shows that QCxMS has no bias for ion 

mode and that both modes are comparable in terms of accuracy. However, other precursor ions for both positive and 

negative ion modes performed significantly worse than M+H and M-H, with a mean of 0.28 and median of 0.16. When 

the precursor ion contains a different added species (defined as the charged atom or molecule that is added during ESI) 

like M+Na, every m/z value that corresponds to a fragment with that added species would be predicted wrongly. The stark 

contrast between accuracies of the predicted spectra shows that many of the fragments contain the added species, which 

results in a very poor performance for those precursor ions. Hence, following Figure 4(a), all other results have been 

filtered to remove entries with non-M+H and non-M-H entries to keep conditions constant. 

 

Figure 4. Distribution of cosine similarities for (a) different precursor ions, (b,c) different collision energies used in QCxMS for both ion modes. 

TABLE 2: SPREAD OF COSINE SIMILARITIES FOR VARIOUS QCXMS RUN-TYPES 

Collision Energy 40 eV 60 eV 80 eV 

M+H Mean  0.61 0.52 0.56 

Median 0.64 0.55 0.62 

M-H Mean  0.54 0.50 0.61 

Median 0.55 0.51 0.67 

 



 

When comparing different simulated collision energies, 60eV performed worst for both M+H and M-H with the lowest 

mean and median scores. 40 eV performed slightly better than 80 eV for positive ion modes, but slightly worse for 

negative ion mode (Table 2). In both ion modes, 40 eV has a bi-modal distribution while 60 and 80 eV only as a single 

mode (Fig 4(b) and (c)). The effects of collision energies are discussed in greater detail in section 3.3, whereby both 

experimental and simulated collision energies were studied in greater detail. 

3.2 Molecular Analysis  

Next, molecules were classified based on the functional groups present in them (Table 1), resulting in two noticeable 

trends being identified. 

Aromatic Rings 

 

Figure 5. (a) Distribution of cosine similarity scores of both M+H and M-H ions for molecules containing Aromatic Rings. (b,c) Comparison of 

experimental spectra from GNPS (black, top) and generated spectra from QCxMS (red, inverted) of 1-Chlorobenzotriazole (b) and Phenol (c). The mass 

spectra here show the weighted average of different protomers. The 3D structures of significant fragments and precursor ions were displayed beside 

their peaks. Only protomer 1 at 0.00kcal/mol was displayed as the precursor ion as the contributions of other protomers were not significant (<1%).  

As shown in Fig. 5(a), the presence of aromatic rings improves the accuracy of QCxMS significantly for M+H, with the 

mean score increasing from 0.59 (no rings) to 0.79 (one ring) and 0.88 (two rings). In M-H, the mean score first decreases 

from 0.72 (no rings) to 0.60 (one ring) but increases to 0.80 (two rings). While the trend is not as clearly reflected in M-

H, molecules with 2 aromatic rings still had the highest mean score. The standard deviation for all the entries is less than 

0.23 (Table S2). Due to resonance35, aromatic ring structures present in the molecule rarely fragment upon collision with 



 

a neutral gas atom. QCxMS can predict peaks corresponding to these unfragmented ring with a high degree of accuracy. 

This results in the increased performance for aromatic molecules.  For example, in Fig. 5(b), QCxMS accurately predicted 

that the Cl-N bond in 1-Chlorobenzotriazole’s precursor ion would undergo homolytic bond cleavage, with the stable ring 

system remaining intact. Note that chlorine is not seen in this mass spectra as it was uncharged when fragmented and thus 

not detected. 

However, this trend was not clearly observed for molecules with a single aromatic ring in negative ion modes (M-H). 

This stabilising effect of rings was not as prominent here as fragmentation of the ring structures was more commonly 

observed. For example, in Fig. 5(c), there were multiple steps in the fragmentation of the Phenolate precursor ion, in 

which the ring did not remain intact. It is worth nothing here that while aromaticity limits fragmentation of rings, such a 

correlation is not clearly observed with the total number of fragments (Fig. S2) in the mass spectrum. This is because the 

number of fragments depend on other factors like the kinds of bond cleavage that occur.5,6 Therefore, conclusions drawn 

above were based on empirical observations of various mass spectra plotted. Another interesting observation noted was 

that aromatic rings also affect trends seen in other descriptors. For example, there is a positive correlation between the 

number of amines present in molecule and the distribution of cosine similarity scores (Fig. S3(a)). However, this can be 

attributed to the increased percentage of aromatic molecules when the number of amines increases (Fig. S3(b)).  The 

inverse corelation is also observed with the number of rotatable bonds present in a molecule (Fig. S4). Like before, this 

is related to aromatic rings as rings do not contain rotatable bonds. Aromatic rings were proposed to be the causal factor 

in these trends as it had the soundest theoretical backing and was a common factor among them. 

Carboxylic Acid 

 

Figure 6. (a) Distribution of cosine similarity scores of both M+H and M-H ions for molecules containing Carboxylic Acid groups. (b,c) Comparison 

of experimental spectra from GNPS (black, top) and generated spectra from QCxMS (red, inverted) of hydroxypropionic acid (b) and Lactate (c). The 

mass spectra here show the weighted average of different protomers. The 3D structures of significant fragments and precursor ions were displayed 

beside their peaks. Only protomer 1 at 0.00kcal/mol was displayed as the precursor ion as the contributions of other protomers were not significant 

(<1%).  



 

Fig. 6(a) shows an inverse relationship between the number of carboxylic acid groups in a molecule and the cosine 

similarity score for M+H, with the mean decreasing from 0.78 (no carboxylic acid) to 0.55 (one carboxylic acid) to 0.47 

(two carboxylic acids). However, for M-H, the trend is not clear as the mean changes from 0.65 (no carboxylic acid) to 

0.73 (one carboxylic acid) to 0.67 (two carboxylic acids). Like before, the standard deviations are all less than 0.23 (refer 

to Table S2 for all the data). On the surface, this correlation appears to be a result of a relationship with aromatic rings 

because there exists an inverse relationship between the number of carboxylic acid groups and the percentage of molecules 

that are aromatic (Fig. S5). When there are no carboxylic acid groups, 60% of molecules are aromatic.  This percentage 

drops to 20% and then to 0% for 1 and 2 carboxylic acid groups respectively. Furthermore, like before, the trend is 

prominent for M+H but not M-H. However, if the correlation observed were simply dependent on aromatic rings, the 

distribution of similarity scores for molecules with 2 carboxylic acids should resemble the distribution of all non-aromatic 

molecules. This is not true for M+H as the mean for those two classes differ greatly by 0.12 (0.47 for molecules with 2 

carboxylic acid groups but 0.59 for those with no aromatic rings).  

While aromaticity could play a factor in this trend, the evidence shown above points to additional limitations regarding 

carboxylic acid groups. It is noted empirically that for M+H precursor ions that contain carboxylic acid groups, many m/z 

values are often predicted wrongly by QCxMS (as opposed to only intensities being predicted wrongly). For example, in 

Fig 6(b), experiments suggest a cleavage of the C-O bond in the hydroxypropionic acid precursor ion, resulting in peaks 

of m/z =74 (loss of OH). However, QCxMS instead predicted a major peak at m/z = 44 and 31, corresponding to 𝐶𝑂2
+ 

and 𝐶𝐻3𝑂+, revealing the limitations of the semi-empirical GFN2-xTB method. This could point to the need for more 

expensive methods to accurately predict the mass spectrum of such molecules. 

For M-H, this limitation is not observed, with the mean scores only differing by 0.02 for molecules with 0 and 2 carboxylic 

acid groups (0.31 difference for M+H). Furthermore, unlike M+H, the distribution of scores for all non-aromatic 

molecules and molecules with 2 carboxylic acid groups are very similar (only differing by 0.05). This could be due to 

carboxylic acids being de-protonated at the same spot most of the time. QCxMS displays its capabilities here in accurately 

predicting the fragments for the carboxylate anion. For example, as seen in Fig. 6(c), two major peaks in lactate’s mass 

spectrum of m/z = 44 and 89 were accurately predicted.   

Other analysis 

Five other functional groups, as well as 13 other RDKit 2D descriptors  were investigated here. However, QCxMS appears 

to be relatively unbiased to these factors as they generally yielded poor correlations. Refer to Annex D for the plots and 

data of all the descriptors.  

3.3 Collision Energy  

For a fair comparison between different experimental and simulated collision energies, we further shortlist molecules 

with a wide range of collision energies labelled for analysis. Therefore, while there were 88 unique molecules with their 

collision energies (in eV) labelled, only 20 unique molecules for M+H and 15 molecules for M-H were chosen. (Refer to 

annex E for the full list of molecules). These molecules were chosen because they contained labelled experimental spectra 

for the same fixed range of collision energies. For M+H, the spectra varied from 20-70 eV at regular intervals of 10 eV, 

while for M-H, the spectra varied from 10-40 eV at regular intervals of 15 eV. The average values for each experimental 

and simulated collision energy were plotted below in Fig. 7. 



 

 

Figure 7. Annotated heatmap showing variation of average cosine similarities across collision energies in experimental and simulated mass spectra 

The results shown in Fig. 7 do not point conclusively to any trends in collision energy and cosine similarity scores. Rather, 

it suggests that collision energy does not play that big of a part in affecting the accuracy of QCxMS for this set of 

molecules with less than 15 atoms. This is supported by the low standard deviation between the various cosine similarity 

scores. When comparing scores due to variations in experimental collision energy, the standard deviation is 0.023 (M+H) 

and 0.011 (M-H). For variations due to simulated collision energy, the standard deviation is 0.069 (M+H) and 0.088 (M-

H). Relative to a score that ranges from 0 to 1, this variation is not very significant. 

 

Figure 8. Variation of generated spectra of malonic acid (M-H) for collision energies of (a) 40 eV, (b) 60eV and (c) 80eV 

 

This is likely because mass spectra of different collision energies often share similar peaks with varying intensities. For 

example, the predicted mass spectra of malonic acid shown in Fig. 8 has prominent peaks corresponding to m/z = 17 and 

59 (𝑂𝐻−and 𝐶𝐻2𝐶𝑂𝑂𝐻−). Those two peaks are present in all three variations of the simulated collision energy, which 



 

results in the mass spectra being relatively similar to each other. This can be accounted for by the limited number of 

fragmentation pathways for this set of molecules with 15 atoms. 

An interesting point noted from Fig. 7 is that QCxMS always predicts better when the simulated collision energy is higher 

than experimental one. A similar findings was also reported by Koopman et al.,16,36 where the generated spectra were 

matched with experimental spectra that were approximately 15-30 eVs lower in collision energy.   

3.4 Different (de-)protomer mass spectrum 

 

Figure 9. Distribution of cosine similarity scores when taking the 1𝑠𝑡(de-)protomer’s mass spectrum (lowest energy) , an evenly weighted average or 

the Boltzmann weighted average mass spectrum as the generated spectrum. 

In this paper, the Boltzmann weighted mass spectrum was taken as the generated mass spectrum because it (in theory) 

allows for the most accurate depiction of tandem mass spectrometry. Two other ways of identifying a unique mass 

spectrum from different (de-)protomers were explored here. The first method is to take the first (de-) protomer’s 

(corresponding to the lowest GFN2-xTB energy) mass spectrum as the true mass spectrum.  The second method takes the 

average of all the different mass spectra generated from each (de-)protomer by scaling each intensity peak evenly. This 

means that all the mass spectra contribute equally to the final spectrum regardless of its relative abundance. (This will 

now be referred to as the evenly weighted mass spectrum). It is seen in Fig. 9 that there are no significant differences 

between using the three ways to select a unique generated mass spectrum. The mean cosine similarity for all three methods 

were identical for M-H (up to 2d.p.), and only differed by 0.01 for M+H (evenly weighted mass spectrum performed 

worse than the other two by 0.01). Refer to Table S3 for the data. This can be attributed to the fact that the mass spectra 

generated for (de-)protomer structures of the same molecule and conditions are very similar. The average cosine similarity 

between (de-)protomer structures is 0.91 (here the mean was calculated across both ion modes and all simulated collision 

energies). This results in the distribution of cosine similarity scores for the three methods being almost identical. 

3.5 Recommendations for Mass Spectral Library 

In the development of a putative natural product mass spectral library, considering only small molecules (molecules with 

fewer than 15 atoms), the following two recommendations are made. 

- Perform calculations to simulate the mass spectrum with one collision energy. Performing multiple calculations at 

different energy levels to match different experimental collision energies is not recommended as the impact on 

collision energy on small molecules is not very significant. Since a higher simulated collision energy (relative to 



 

experimental collision energy) has a slightly better performance, 80 eV is recommended. Furthermore, using 80 eV 

would usually result in peaks with larger intensity at lower m/z values which will make the spectrum more 

characteristic and hence could be better for matching in a mass spectral library.  

- Only consider the lowest energy (de-)protomer structure when simulating mass spectrum since the performance of it 

is almost identical to calculating mass spectra for all structures. This is expected to significantly reduce the total 

amount of computational time. 

4 CONCLUSIONS 

A comprehensive study on the use of ab initio molecular dynamics (AIMD) to generate putative mass spectra of small 

natural product molecules was performed. 2,708 unique mass spectra across three collision energies and two ion modes 

were generated and benchmarked against experimental spectra from GNPS. Overall, AIMD has shown good potential in 

generating accurate mass spectra, with the mean cosine similarity score being 0.68. We  found that there were no 

significant differences in the performance for positive and negative ion modes. Another key finding is that the AIMD 

spectra of molecules containing aromatic rings has higher accuracy as aromatic structures are often un-fragmented. 

Limitations in the predictive power of AIMD for molecules with carboxylic acid groups were also identified. In addition, 

it was found that variations in collision energy and differences due to different (de-) protomer structures did not affect 

the accuracy of our predictions.  

These findings led to several recommendations for developing a natural product mass spectral library. To further improve 

the reliability of a generated mass spectral library, a benchmarking work of using various approximated Hamiltonians can 

be explored to mitigate limitations in molecules that contain carboxylic acid groups. Such a study will be useful in 

identifying more efficient and accurate methods for putative natural product mass spectral library generation. 

Furthermore, the use of machine learning (ML) could also be employed to improve spectra accuracies. For example, the 

generated spectra from AIMD could be passed through a spectra-to-spectra model to map them to the ground experimental 

truths. It is envisaged that the synergy between AIMD and ML techniques will allow efficient building of high-fidelity 

putative MS2 spectra library and allow scientists to discover functional natural products from biological mixtures with 

an unprecedented speed. 
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Annex A: Supplementary Figures 
TABLE S1: BREAKDOWN OF PRECURSOR IONS 

Positive Ion Mode 

Precursor Ion M+H M+Na 2M+H M-H+2Na M-H2O+H 2M+Na 

Count 2568 1053 16 7 7 2 

Negative Ion Mode 

Precursor Ion M-H 2M-2H+Na 2M-H M+acetate - 

Count 1096 21 20 4 - 

 

 

Figure S1. Distribution of number of entries for different molecules, with blue representing entries with either M+H 

or M-H as the precursor ion and orange representing entries with other precursor ions for (a) positive mode and (b) 

negative mode of ionisation. 

 

TABLE S2: DATA FOR MOLECULAR ANALYSIS 

Functional Group / 

Descriptors 

Aromatic Rings Carboxylic Acid 

Count 0 1 2 0 1 2 

M+H Mean 0.59 0.79 0.88 0.73 0.55 0.47 

Median 0.63 0.86 0.95 0.78 0.61 0.50 

StDev 0.22 0.17 0.17 0.21 0.23 0.15 

M-H Mean 0.72 0.60 0.80 0.65 0.73 0.67 

Median 0.73 0.65 0.82 0.72 0.76 0.68 

StDev 0.16 0.23 0.11 0.23 0.14 0.12 

Functional Group / 

Descriptors 

Amines Rotatable Bonds 

Count 0 1 2 3 4/5 0 1 2 3 

M+H Mean 0.58 0.72 0.77 0.88 0.83 0.77 0.62 0.51 0.35 

Median 0.64 0.75 0.82 0.92 0.89 0.84 0.66 0.53 0.38 

StDev 0.24 0.19 0.13 0.12 0.17 0.20 0.22 0.18 0.15 

M-H Mean 0.66 0.66 0.68 0.74 0.82 0.64 0.76 0.70 0.54 

Median 0.69 0.73 0.71 0.76 0.83 0.70 0.79 0.70 0.54 

StDev 0.20 0.22 0.16 0.12 0.08 0.23 0.13 0.13 0.04 

 



 

 
Figure S2. Plot showing the average number of peaks (defined as an m/z value with intensity above 1) for M+H (blue) 

and M-H (orange). A decreasing trend between aromatic rings and lesser peaks is not observed here.   

 

 

Figure S3. (a) The distribution of cosine similarity against number of amines (see table S2 for data) (b) Percentage of 

molecules that are aromatic plotted for different number of Amines in a molecule, the increasing trend shown in (a) is 

due to an increase in aromatic compounds. 

 

 

Figure S4. The distribution of cosine similarity against number of 

rotatable bonds (see table S2 for data) 

 

Figure S5. The percentage of molecules that 

are aromatic plotted for different number of 

carboxylic acids in a molecule 

TABLE S3: DATA FOR SECTION 3.4 

 Boltzmann Weighted Evenly Weighted First (de-)protomer 

M+H M-H M+H M-H M+H M-H 

Mean 0.68 0.67 0.67 0.67 0.68 0.67 

Median 0.73 0.71 0.71 0.72 0.73 0.72 

Standard Deviation 0.24 0.21 0.23 0.21 0.24 0.21 



 

Annex B: QCxMS Details 

Breakdown of run-types 

Collision Energy / eV Type Succeeded SCF convergence failure 

40 M+H 621 4 

M-H 261 5 

60 M+H 759 3 

M-H 261 5 

80 M+H 618 4 

M-H 261 5 

Total - 2781 26 

 

QCxMS settings: 

QC Program            : xTB 

QC Level              : GFN2-xTB 

Dispersion            : D4 

  

M+ Ion charge(charge) :    1,-1 

total traj.   (ntraj) :  25 x number of atoms 

time steps    (tstep) :    0.50 fs 

sim. time / MD (tmax) :    0.75 ps 

Initial temp. (tinit) :  500.00 K 

 ----------- CID settings ----------- 

Collision Gas         : Ar 

E (LAB)               :   40.00, 60.00, 80.00 eV 

Activation Run - Type : General 

Gas Pressure   (PGas) :    0.132 Pa 

Gas Temp.      (TGas) :  300.00  K 

Cell length  (lchamb) :    0.250 m 

  



 

Annex C: Evaluation Metrics  

To evaluate all the different metrics, all the molecules in GNPS database were compared. The goal of this study was to 

evaluate if the metrics agree with each other in terms of which entry had the highest score.  

The 6 functions13,24 that were investigated are the following:  

Cosine Similarity: 

(∑ 𝑊𝐿𝑊𝑈)2

∑ 𝑊𝐿
2 ∑ 𝑊𝑈

2 

Euclidean Distance: 

(1 +
∑(𝑊𝐿 − 𝑊𝑈)2

∑ 𝑊𝑈
2 )−1 

Absolute Distance:  

(1 +
∑ |𝑊𝐿 − 𝑊𝑈|

∑ 𝑊𝑈
)−1 

Composite: 

𝑁𝑈𝐹𝐷 + 𝑁𝐿&𝑈𝐹𝑅

𝑁𝑈 + 𝑁𝐿&𝑈
 

 

Whereby, the following terms are defined as follows: 

L = library spectrum, taken to be generated spectrum for QCxMS 

U = unknown/query spectrum, taken to be experimental spectrum from GNPS 

𝑊 = (𝑚/𝑧 𝑣𝑎𝑙𝑢𝑒)𝑀𝑊 ∗ (𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)𝐼𝑊, MW and IW are unique constants (below)  

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑒𝑎𝑘𝑠 

𝐹𝐷 = 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 

𝐹𝑅 =
1

𝑁𝐿&𝑈
∑ (

𝑊𝐿,𝑖

𝑊𝐿,𝑖−1

𝑊𝑈,𝑖−1

𝑊𝑈,𝑖
)𝐼𝑊𝐿&𝑈

𝑖  , Ratio of peaks term 

 

With the following values taken for MW and IW: 

 MW IW 

Cosine Similarity 1 1 0.5 

Cosine Similarity 2 3 0.6 

Cosine Similarity 3 0.5 0.5 

Euclidean Distance 2 0.6 

Absolute Distance (Ratio of peaks 

term) 

0 1 

Absolute Distance (Cosine Similarity 

Term) 

3 0.5 

 



 

Here, 335 unique molecules and ion modes were studied. The cosine similarity scores of the Boltzmann weighted 

spectrum and all experimentally generated mass spectrum were calculated for every entry in GNPS. Molecules and ion 

modes with only 1 entry were not considered. The entry that has the highest similarity score was recorded as the best 

entry. The metrics are said to agree if they compute the same entry to be the best entry for a particular molecule and ion 

mode.  

As seen in Fig. C1, all 6 metrics agree 39% of the time (130/335). This good agreement shows that the metrics used were 

all generally suitable to evaluate the similarity of two mass spectra. 

To determine the ‘best’ of the 6 metrics, the number of times a metric agrees falls within the ‘majority’ of metrics is 

recorded. The majority is defined as the highest agreement possible for a particular molecule and ion mode. For example, 

for agreement 6, all metrics would fall in the ‘majority’. For agreement 5, 5 of the metrics fall in the ‘majority’ while one 

does not. For molecules and ion modes with multiple best entries (for eg two metrics point to entry 1, another two point 

to entry 2), then both are taken as the ‘majority’. In Fig.C2, it is also seen that cosine similarity 1 agrees with the ‘majority’ 

91% of the time, therefore, it is the chosen metric. 

 

 

Figure C1: Agreement of all 6 Similarity Metrics 

 

Figure C2: Agreement rates of all 6 Similarity Metrics 

 

  



 

Annex D: Other Descriptors 
The sign (R) beside the descriptor indicates that the values have been rounded and binned into 4 distinct bins for the sake 

of the plot. Here, the mean of the bin is reported. For integer values like number of atoms, the values have been binned 

and the exact range is reported. If the standard deviation is not reported, it means that that value only has one entry.  

Legend (Precursor Ion Colour): 

 

Other Functional Groups 

 
 

Alcohol 0 1 2 3 

M+H Mean 0.69 0.67 0.64 0.45 

Median 0.75 0.67 0.65 0.45 

StDev 0.22 0.25 0.20 0.04 

M-H Mean 0.72 0.61 0.71 0.45 

Median 0.76 0.67 0.72 0.45 

StDev 0.18 0.21 0.16 - 

 
 

Carbonyls 0 1 2 3 

M+H Mean 0.76 0.62 0.64 0.26 

Median 0.80 0.66 0.65 0.26 

StDev 0.19 0.24 0.22 0.16 

M-H Mean 0.64 0.73 0.69 0.63 

Median 0.69 0.757 0.70 0.63 

StDev 0.24 0.15 0.15 0.17 

 
 

Ketone 0 1 2 

M+H Mean 0.69 0.58 0.76 

Median 0.73 0.67 0.76 

StDev 0.23 0.26 0.09 

M-H Mean 0.68 0.64 0.80 

Median 0.73 0.61 0.80 

StDev 0.20 0.14 - 

 

 

Ether 0 1 

M+H Mean 0.69 0.56 

Median 0.73 0.60 

StDev 0.23 0.23 

M-H Mean 0.68 0.74 

Median 0.73 0.74 

StDev 0.20 0.15 

 

Sulfur Based 0 1 2 

M+H Mean 0.69 0.58 0.50 

Median 0.73 0.62 0.50 

StDev 0.22 0.29 - 

M-H Mean 0.68 0.68 0.61 

Median 0.73 0.69 0.61 

StDev 0.19 0.27 0.08 



 

*Refers to functional groups that contain Sulfur 

Other RDKit 2D Descriptors 

Refer below for explanations of what some these descriptors mean 

 

 
 

Number of 

Atoms 

5-8 9-10 11-12 13-14 

M+H Mean 0.71 0.68 0.68 0.68 

Median 0.83 0.75 0.71 0.69 

StDev 0.28 0.23 0.22 0.23 

M-H Mean 0.81 0.80 0.68 0.66 

Median 0.94 0.79 0.72 0.70 

StDev 0.23 0.10 0.19 0.20 

 

 
 

Number of 

Heavy Atoms 

2-4 5-7 8-10 11-12 

M+H Mean 0.72 0.64 0.74 0.59 

Median 0.76 0.67 0.81 0.59 

StDev 0.24 0.22 0.23 - 

M-H Mean 0.94 0.74 0.66 0.38 

Median 0.94 0.78 0.69 0.40 

StDev - 0.16 0.19 0.22 

 

 
 

Mol Weight (R) 101 172 311 489 

M+H Mean 0.68 0.70 - - 

Median 0.73 0.71 - - 

StDev 0.23 0.19 - - 

M-H Mean 0.74 0.48 0.51 0.02 

Median 0.78 0.42 0.54 0.02 

StDev 0.15 0.18 0.22 - 

 

 
 

Heavy Atom 

Mol Weight (R) 

95 168 309 488 

M+H Mean 0.68 0.70 - - 

Median 0.73 0.71 - - 

StDev 0.23 0.19 - - 

M-H Mean 0.74 0.48 0.51 0.02 

Median 0.78 0.42 0.54 0.02 

StDev 0.15 0.18 0.22 - 

 

 
 

Number of 

Hetero Atoms 

1-2 3-4 5-6 7 

M+H Mean 0.75 0.63 0.68 - 

Median 0.78 0.65 0.71 - 

StDev 0.18 0.25 0.24 - 

M-H Mean 0.79 0.68 0.64 0.48 

Median 0.82 0.71 0.70 0.48 

StDev 0.17 0.18 0.22 0.16 



 

 

 
 

Number of H 

Acceptors  

0-1 2-3 4-5 6 

M+H Mean 0.70 0.67 0.72 0.86 

Median 0.75 0.71 0.71 0.86 

StDev 0.21 0.24 0.21 - 

M-H Mean 0.57 0.71 0.75 0.63 

Median 0.62 0.74 0.79 0.63 

StDev 0.27 0.16 0.15 - 

 

 
 

Number of H 

Donors 

0 1 2 3-4 

M+H Mean 0.73 0.73 0.65 0.58 

Median 0.79 0.78 0.66 0.53 

StDev 0.21 0.21 0.25 0.19 

M-H Mean 0.78 0.64 0.73 0.62 

Median 0.78 0.70 0.76 0.63 

StDev 0.03 0.23 0.15 0.12 

 

 
 

Average Orbital 1.67 1.75 1.8 2.0 

M+H Mean 0.69 0.72 0.90 0.60 

Median 0.73 0.75 0.90 0.62 

StDev 0.23 0.21 0.02 0.24 

M-H Mean 0.77 0.76 0.55 0.55 

Median 0.80 0.79 0.55 0.57 

StDev 0.13 0.09 0.02 0.23 

M+H 2.17: One entry cosine similarity 0.79 

 

 

 

 

Mol logP (R)  -1 1 2 4 

M+H Mean 0.63 0.73 0.67 - 

Median 0.64 0.78 0.62 - 

StDev 0.24 0.21 0.23 - 

M-H Mean 0.74 0.72 0.46 0.33 

Median 0.75 0.78 0.40 0.30 

StDev 0.13 0.18 0.16 0.28 

 

 
 

TPSA (R) 21 44 68 92 

M+H Mean 0.73 0.70 0.67 0.48 

Median 0.78 0.72 0.71 0.51 

StDev 0.19 0.23 0.23 0.21 

M-H Mean 0.41 0.73 0.73 0.65 

Median 0.39 0.78 0.76 0.67 

StDev 0.23 0.18 0.13 0.14 



 

 

 
 

Labute ASA (R)  32 47 69 99 

M+H Mean 0.67 0.69 0.65 - 

Median 0.72 0.75 0.64 - 

StDev 0.21 0.24 0.23 - 

M-H Mean 0.80 0.70 0.45 0.33 

Median 0.80 0.71 0.39 0.26 

StDev 0.10 0.16 0.17 0.35 

 

 
 

Valence 

Electrons (R) 

24 34 45 57 

M+H Mean 0.75 0.66 0.68 0.59 

Median 0.82 0.71 0.73 0.59 

StDev 0.21 0.22 0.24 - 

M-H Mean 0.96 0.77 0.69 0.40 

Median 0.96 0.79 0.70 0.39 

StDev 0.03 0.16 0.16 0.18 

 

 
 

Hall Kier Alpha 

(R) 

-1 0 1 

M+H Mean 0.69 0.65 - 

Median 0.73 0.62 - 

StDev 0.23 0.24 - 

M-H Mean 0.70 0.63 0.02 

Median 0.75 0.67 0.02 

StDev 0.18 0.23 - 

 

Descriptor Meaning 

Average Orbital The average orbital is calculated by taking the average of the orbitals 

(1,2,3) of every atom in the molecule 

Mol logP Mol logP represents molecular lipophilicity, which is calculated by 

the octanol-water partition coefficient  

TPSA TPSA is the Topological Polar Surface Area 

Labute ASA Labute ASA is the Approximate Surface Area 

Hall Kier Alpha Represents the electrotopological-state of a molecule 

  



 

Annex E: eV Data 

M+H  

eV range: 20,30,40,50,60,70 

SMILES Name 

C[C@H](N)C(=O)O L-Alanine 

NCC(=O)O Glycine 

CN(C)C Trimethylamine 

Oc1ccccn1 2-pyridone 

CC(C(=O)O)C(=O)O Methylmalonic acid 

NCCS(=O)O Hypotaurine 

c1ncc2[nH]cnc2n1 Purine 

N[C@@H](CS)C(=O)O L-Cysteine 

NCCS(=O)(=O)O Taurine 

O=C(O)c1cccnc1 Niacin 

Nc1ccnc(=O)[nH]1 Cytosine 

C[C@H](O)C(=O)O L-Lactic acid 

Oc1ncnc2nc[nH]c12 Hypoxanthine 

O=C1CCNC(=O)N1 Dihydrouracil 

CNC(=N)N Methylguanidine 

O=C(O)c1ccccn1 Picolinic acid 

NC1CCSC1=O DL-Homocysteine thiolactone 

O=CNCC(=O)O N-Formylglycine 

O=C(O)c1ccc[nH]1 Pyrrole-2-carboxylic acid 

CC(=O)CC(=O)O Acetoacetic acid 

 

 

 

 

 

 

 

 

 



 

M-H  

eV range: 10,25,40 

CC(C(=O)O)C(=O)O Methylmalonic acid 

C[C@H](O)C(=O)O L-Lactic acid 

O=C(O)CC(=O)O Malonic acid 

O=C(O)CCC(=O)O Succinic Acid 

O=C(O)CC(=O)C(=O)O Oxalacetic acid 

O=C(O)/C=C/C(=O)O Fumaric acid 

O=C(O)[C@H](O)CO D-Glyceric acid 

O=C(O)/C=C\\C(=O)O Maleic acid 

O=C(O)c1ccco1 2-Furoic acid 

CCCC(=O)O Butyric Acid 

O=C(O)CO Glycolic acid 

O=CC(=O)O Glyoxylic acid 

CCC(=O)C(=O)O 2-Oxobutanoic acid 

C[C@@H](O)C(=O)O D-Lactic acid 

O=C(O)C(=O)CS 3-Mercaptopyruvic acid 
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