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ABSTRACT: Enamides are valuable building blocks in or-
ganic synthesis that give access to complex nitrogen-con-
taining compounds. However, despite their high interest, 
synthetic strategies to access enamides with carbon-cen-
tered chirality are scarce. Herein, we report a mild and 
robust synthetic method towards novel 𝛾-chiral, trifluo-
romethylated enamides from easily accessible 𝛼-chiral 
allylic amines through efficient chirality transfer (up to 
99.5%) with excellent yields, diastereo- and enantioselec-
tivities. A broad and diverse scope is presented that toler-
ates various substituents and functional groups. Addition-
ally, multiple organic transformations were performed to 
access new chiral complex scaffolds. Among them, a 
novel protocol for the E/Z isomerization of enamides is 
presented. 

Enamides are stable and masked enamine surrogates, 
which are of utmost interest in synthetic organic chemis-
try.1 The ambiphilic character of the double bond allows 
for manifold synthetic transformations, while simultane-
ously being tempered/protected by the electron-with-
drawing functionality upon the nitrogen center.2,3 The 
unique structural properties of this potent functional 
group offers a balanced compromise between stability 
and reactivity.4 As a result, a growing interest in its reac-
tivity has been sparked over the last years to exploit its 
potential in various organic transformations. Besides be-
ing important pharmacophores in natural products and ac-
tive drugs with various anticancer, antifungal and cyto-
toxic properties,5–8 enamides have recently emerged as 
versatile building blocks in a direct entry to complex ni-
trogen-containing molecules.9–13 Apart from asymmetric 
hydrogenation as a well-studied and powerful approach 
to yield chiral amines and amino acids,14 recent reports 
include hydrofunctionalization15–18 and difunctionaliza-
tion19–22 of the double bond, C-H activation,23–26 asym-
metric C-C bond formation,27,28 [4+2] and [2+2] cycload-
ditions,29,30 rearrangements31,32 and synthesis of heterocy-
cles (Scheme 1B).33–36 As a result, new methodologies to 
obtain these versatile compounds, especially with unprec-
edented derivatization patterns, are highly desirable.  
Classical approaches for the synthesis of enamides in-
clude acid-catalyzed condensation of ketones/aldehydes 
and amides,37,38 Curtius rearrangement of 𝛼, 𝛽-unsatu-
rated acyl azides,39 Peterson olefination40 and Horner-
Wadsworth-Emmons reactions.41    

Scheme 1. A) Modern Synthetic Methodologies for 
Secondary Enamides and B) Examples of Possible Or-
ganic Transformations 

 
However, these methods typically suffer from harsh con-
ditions, low yields and are unable to control the E/Z olefin 
stereoselectivity. The most commonly employed method 
is the metal-catalyzed cross-coupling between an amide 
and alkenyl halide or triflate.5,6,42–46 Other important tran-
sition metal-catalyzed strategies encompass the hydroam-
idation of terminal alkynes with primary amides47–49 and 
the isomerization of N-allyl amides (Scheme 1A).50–53 
Therein, Trost and co-workers reported a highly efficient 
Ru-catalyzed isomerization to obtain geometrically de-
fined and highly substituted enamides.54 Recently, the 
groups of Maulide, Jiao and Xu presented a more direct 
approach by N-dehydrogenation of amides, which either 
requires strong oxidative conditions or superstoichio-
metric amounts of reagents and is limited to tertiary en-
amides.55–57 Currently, synthetic strategies to access en-
amides with a stereogenic center, especially at the more 
challenging C𝛾-position, are scarce and the field is under-
explored. Nevertheless, such compounds seem to be of 
interest as demonstrated by recent examples for the syn-
theses of axially chiral enamides.58–60 Additionally, the 
construction of CF3-substituted chiral sp3-carbon centers 
remains a difficult synthetic task despite the high poten-
tial of fluorinated motifs in medicinal chemistry.61,62 
Thus, efficient asymmetric methodologies to access such 
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moieties, particularly without the usage of oxidative/cor-
rosive trifluoromethyl sources (Togni, Umemoto rea-
gents, etc.), are still underdeveloped.63–65 There is only 
one example for the synthesis of 𝛾-chiral enamides, de-
scribed by the group of Li through an elegant Ir-catalyzed 
hydroalkenylation strategy of unactivated 𝛼-olefins pro-
moted by a chiral ligand (Scheme 2A).66 This method in-
volves pre-protected substrates and the scope is limited to 
aliphatic alkenes. According to our previous interest,67–69 
we recently developed a one-pot stereoselective isomeri-
zation method of 𝛼-chiral allylic amines catalyzed by 
1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a simple or-
ganocatalyst followed by a diastereoselective reduction 
of the imine-tautomer with DIBAL-H to obtain 𝛼, 𝛾-chi-
ral aliphatic amines (Scheme 2B).70  

Scheme 2. Enantioselective Strategies for the Synthe-
sis of 𝜸-Chiral Enamides 

 

In the first key step, the chirality of the 𝛼-chiral allylic 
amine is transferred from C𝛼- to C𝛾-position by the TBD 
organocatalyst in a stepwise manner, through the for-
mation of a tight-ion-pair intermediate with induced non-
covalent chirality. A mixture of imine and enamine inter-
mediates were formed, which upon reduction afforded 
α,γ-chiral trifluoromethylated amines, however only 
moderate diastereoselectivity was obtained. Herein, we 
report the selective trapping the enamine-tautomer after 
the stereospecific isomerization through subsequent acid 
chloride addition in a one-pot two steps procedure to syn-
thesize 𝛾-chiral, trifluoromethylated secondary enamides, 
which can be further transformed into various chiral com-
plex scaffolds (Scheme 2C).  

Table 1. Optimization of the One-Pot Synthesis of 
(rac,Z)-2a.a 

 

Entry Base (equiv.) BzCl (equiv.) Yield [%]b 

1 Et3N (2.2) 1.0 65 

2 Et3N (2.2) 2.0 79 

3 Et3N (2.2) 2.5 78 

4 Et3N (2.8) 2.0 83 

5 Et3N (2.8) 2.0 46c 

6 DMAP (1.0) 2.0 31 

7 TBD (1.0) 2.0 30 

8 DABCO (1.0) 2.0 >95 

9 DABCO (0.5) 2.0 64 
a Reaction conditions: (rac,E)-1a (0.15 mmol). b Yields 

determined by 1H-NMR integration relative to 1,3,5-tri-
methoxybenzene (TMB) as internal standard. c At 20 °C. d 

Reaction time of 1 h. 

As the optimal conditions for the stereospecific isomeri-
zation of 𝛼-chiral allylic amines have been previously es-
tablished,70 we started our investigation by optimizing the 
parameters for the one-pot two steps synthesis of the 
𝛾-chiral enamides by adding BzCl and Et3N after the 
isomerization. Firstly, the amount of BzCl was examined 
and we observed that 2.0 equiv. of BzCl were necessary 
to obtain the desired product in high yields (Table 1, entry 
1-3). Then, we optimized the equivalents of Et3N (Table 
1, entry 4). Lowering the temperature to 20 °C had drastic 
effect on the yield of the reaction (Table 1, entry 5). Fur-
ther evaluation of other organic bases demonstrated that 
DABCO was the most efficient base for this step (Table 
1, entry 6-8). Attempts to lower the amount of DABCO  
only led to a decreased in yield (Table 1, entry 9).  

Next, we studied the scope of this two-step one-pot pro-
tocol towards 𝛾-chiral enamides (Scheme 3).  Firstly, the 
reaction could be successfully scaled up to 5 mmol (1.4 g) 
scale with the model substrate (2a), providing high yields 
and enantiomeric excess with excellent control over the 
E/Z stereoselectivity and transfer of the chirality (99.5%). 
The opposite enantiomer ((S)-2a) could also be success-
fully synthesized. Various substituents at the R1-position 
on the 𝛼-chiral allylic amine (C𝛼) could be tolerated in-
cluding trifluoromethyl- (2b), bromide- (2c) and m-meth-
oxy-groups (2d). The bulky naphthyl-substituent (2e)
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Scheme 3. Scope of 𝜶-Chiral Allylic Amines and Acyl Chlorides 

Reaction conditions: i. (R,E)-1a-1y (0.25 mmol, 1 equiv.), TBD (0.013 mmol, 0.05 equiv.), dry toluene (2.5 mL, 0.1 M), 
60 °C, 16 h. ii. Acyl chloride (0.5 mmol, 2.0 equiv.), DABCO (0.25 mmol, 1.0 equiv.), 80 °C, 2 h. Isolated yields are reported. 
E/Z ratio determined by 19F NMR spectroscopy before purification. Chirality transfer (c.t.): (eeproduct/eeSM) x 100%. a Reac-
tion performed on a 5.0 mmol (1.4 g) scale. b Isomerization at 100 °C.  
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afforded the desired compound with excellent stereose-
lectivity. Furthermore, the R2-position of the 𝛼-chiral al-
lylic amine (C𝛾) was also varied by employing different 
substituents on the aryl group such as p-methyl (2f), p-
chloride (2g), and even a thiophene heterocycle (2h) with 
good compatibility.  The methyl-substituent (2i) proved 
to be more challenging probably due to increasing flexi-
bility, and only moderate yields, Z/E ratios and ee was ob-
tained. The achiral allylic amine 2j was also successful. 
Limitations were highly electron-donating substituents 
such as p- and o-methoxy-substituents on the aryl at the 
R1-position, and an electron-withdrawing p-trifluorome-
thyl-group at the R2-position (see Supplementary Infor-
mation). The R3-position on the acyl chloride could also 
be varied with a diverse class of moieties. An electron-
donating p-methyl- (2k), p-halides (2l, 2m) and electron-
withdrawing-groups (2n, 2o) were all tolerated. Similarly, 
heterocycles such as quinoline (2p) and thiophene (2q) 
delivered the enamides in high yields, high enantiomeric 
excesses and E/Z ratio. Saturated cyclic (2r, 2s) and acy-
clic (2t) side-chains were also compatible as well as a 
bulky adamantyl-group (2u), albeit with lower yield and 
decrease in E/Z ratio. Comparably, methyl- (2v) and 
methoxy-groups (2w) led to slight E/Z isomerization, but 
with good yields and enantiomeric excess. Furthermore, 
an ester- (2x) and alkyne-functional group (2y) was also 
tolerated. Interestingly, the acyl chloride of the natural 
amino acid L-Phenylalanin (2z) could be subjected to the 
reaction with excellent yields and enantiomeric excess, 
albeit with lower diastereoselectivity. Control reactions 
show that this originates from a racemization of the 𝛼-
carbon stereocenter caused by deprotonation by DABCO. 
Some limitations include highly electron-donating group 
as in p-methoxy, cyclic amide, alkene and indole (see 
Supplementary Information).  

To demonstrate the synthetic utility of our method, some 
organic transformations to access unprecedented scaf-
folds were carried out (Scheme 4A). For example, the 
model enamide 2a was hydrogenated under simple Pd/C 
conditions at atmospheric pressure to obtain quantitative 
yields of 3a with high diastereoselectivity. Importantly, 
this method provides the anti-diastereomer predomi-
nantly, in contrast with our previous approach.70 Addi-
tionally, a Rh-catalyzed hydroboration protocol by Li and 
co-workers71 with an achiral ligand can be applied to ar-
rive to a boron-containing compound 4a with three con-
tiguous stereocenters. The pinacolborane moiety would 
provide another opportunity for other potential transfor-
mations. Next, alkylation to the respective tertiary en-
amide followed by a Au-catalyzed cyclization step, ac-
cording to the conditions by Xu and co-workers,72 fur-
nished a pentasubstituted chiral pyrrole 5a in 40% yield 
over two steps. With these results in hand, we wondered 
if it would be possible to invert the E/Z geometry of the 
double bond 

Scheme 4. Chemical Transformations of 𝜸-Chiral En-
amides and Isomerization Scope 

 
Reaction conditions: i. Hydrogenation: Pd/C (1 mol% Pd), 
1 atm H2, THF, 20 °C, 1.5 h; ii. Hydroboration: 
Rh(COD)SbF6 (3.0 mol%). DiPrPF (3.6 mol%), HBpin 
(2.0 equiv.), dry THF, 30 °C, 16 h, N2; iii. Alkylation & Cy-
clization:  3-Bromo-1-phenylpropyne (1.1 equiv.), NaH (1.2 
equiv.), dry DMF, 0–20°C, 16 h, then [(JohnPhos)-AuCl] 
(5.0 mol%), HFIP, 20 °C, 16 h; iv. Isomerization: 
Ir[dF(CF3)ppy]2(dtbpy)PF6 (1.0 mol%), white LEDs, dry 
MeCN, 60 °C, 16 h; a Reaction in dry MeCN after prior sol-
vent evaporation. b Reaction in dry toluene without solvent 
evaporation. 
 

to gain access to the opposite diastereoisomer. The only 
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amides has been reported by Gooßen and co-workers 
through addition of Et3N at elevated temperatures to yield 
the thermodynamically favoured stereoisomer.49 How-
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enamides in the presence of an Ir-photocatalyst and white 
LED. Under these conditions, it is possible to carry out an 
isomerization of the double bond to obtain the opposite 
diastereoisomer 6a with excellent inversion of the E/Z ge-
ometry. Control experiments prove that this reaction is in-
deed photocatalytic as both the photocatalyst and light are 
necessary.  The E/Z isomerization could also be carried 
out in a one-pot three steps procedure starting directly 
from the 𝛼-chiral allylic amine 1a with or without prior 
evaporation of the solvent (Scheme 4B). Furthermore, a 
small scope was synthesized with diverse substituents and 
functional groups in different positions. In all cases, ex-
cellent inversion of the E/Z geometry alongside with high 
yields were obtained. Limitations were discovered to be 
2s and 2y (see Supplementary Information). Importantly, 
the previously introduced 𝛾–chiral stereocenter is 
unaffected in all transformations. 

In conclusion, an efficient method for the synthesis of 
novel chiral enamides scaffolds with a 𝛾-stereogenic tri-
fluoromethyl-group has been established in high yields, 
outstanding enantiomeric excesses and excellent control 
of the E/Z geometry. Furthermore, this method tolerates a 
wide variety of electronic substituents and functional 
groups as demonstrated by the broad and diverse scope. 
This method is also applicable on a gram-scale and access 
to both enantiomers is possible. Additionally, a wide va-
riety of new chiral, complex scaffolds were synthesized 
and a novel protocol for the E/Z isomerization of en-
amides has been established. 
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