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Abstract

Degradation is a technical and market hurdle in the development
of novel photovoltaics and other energy devices. Understanding and
addressing degradation requires complex, time-consuming measurements
on multiple samples. To address this challenge, we present DeepDeg,
a machine learning model that combines deep learning, explainable
machine learning, and physical modeling to: 1) forecast hundreds of hours
of degradation, and 2) explain degradation in novel photovoltaics. Using
a large and diverse dataset of over 785 stability tests of organic solar cells,
totaling 230,000 measurement hours, DeepDeg is able to accurately pre-
dict degradation dynamics and explain the physiochemical factors driving
them using few initial hours of degradation. We use cross-validation and
a held-out dataset of over 9,000 hours of degradation of PCE10:OIDTBR
to evaluate our model. We demonstrate that by using DeepDeg, degra-
dation characterization and screening can be accelerated by 5-20x.
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One major bottleneck for novel energy devices, such as photovoltaics (PV) or
batteries, is degradation. Energy devices must operate under stringent envi-
ronmental conditions during many years to be competitive technologies. For
example, commercial PV modules have very low degradation rates around
0.5% to 2.0% per year [1, 2], and novel PV requires similarly low degradation
rates. Nevertheless, the degradation rates of novel PV such as perovskites and
organic photovoltaics (OPV) are significantly higher [3, 4]. The photoactive
materials in these devices are sensitive to environmental conditions, and their
interaction with other parts of the device introduces additional degradation
pathways [3, 5, 6]. Traditionally, controlled experiments have been used to
identify and mitigate degradation. This approach is limited in novel PV by a
slow learning rate and reduced generalizable insights. Novel batteries and fuel
cell technologies share similar challenges [7–9]: all have stringent long-term per-
formance requirements, require complex and time-consuming characterization,
and present hard-to-identify degradation dynamics.

Recent advances in machine learning (ML) have allowed accelerated mea-
surement and mitigation of degradation [10, 11]. In PV, ML has been used
to forecast the degradation of figures of merit of solar cells, such as power
conversion efficiency, mainly in crystalline silicon solar cells and modules
[12, 13], along with some discrete instances of novel PV technologies [14–17].
These approaches rely either on modelling a single figure of merit and having
adequate understanding of degradation pathways [6, 17–19], supplementary
characterization [19–22], or a large quantity of experimental data [18, 23, 24].
In the case of batteries, substantial work has occurred in forecasting degra-
dation of commercial technologies with similar practical constraints as PV
[25–27]. Previous works in batteries have used a variety of statistical and ML
methodologies: from analytic or physically-motivated models [17, 25, 28] to
deep learning methods [29]. There is an inherent trade-off between the perfor-
mance of these models and their human explainability [17, 30, 31], i.e. models
that predict degradation as the parametric exponential decay will be more
interpretable (and useful for experimentalists) than deep learning models, but
might be less accurate.

Contributions: In this work we propose DeepDeg, a flexible ML frame-
work that satisfies these requirements by decoupling the forecasting and
explainability problems. The DeepDeg framework consists of: a) a deep learn-
ing model to accurately forecast degradation in novel PV using the initial hours
of degradation of multivariate device characteristics (in this work, the current-
voltage (JV ) [32]), and b) an ML explainability framework to attribute and
predict the impact of various physical factors during degradation on a given
figure of merit. For this, we curate a large dataset of JV degradation in OPV.
We successfully demonstrate accurate forecasts of the degradation trends and
explanation of driving factors of degradation with as little of 5% to 15% of
the total degradation time, speeding up degradation characterization by an
approximate factor of 5 to 20 times.



1 Main text

Model overview: We propose DeepDeg, an ML model for forecasting and
explaining device degradation. Our approach combines high-throughput device
stability tests, deep learning and explainable ML based on physical or chemical
models. The model is developed to (1) forecast the degraded JV characteris-
tics of solar cells based simply on the initial hours of measured degradation, and
(2) explain and predict the impact of physical or chemical factors, referred in
this work as ”driving factors” of degradation, on the change of any arbitrary
figure of merit.

Fig. 1 Overview of DeepDeg: a) The initial hours of degradation of a PV device are
represented as a multivariate time series of current density-voltage characteristics J(V, t).
b) A forecasting model consisting of a neural network, trained on degradation data from
other solar cells, is used to predict future degradation dynamics in a single shot. c) Time-
regularized physical inference is used to fit the degradation dynamics to the dynamics of
various physical parameters in time according to a device model. A surrogate explanation
model and SHAP values are used to quantify the effect of each physical parameter on a
figure of merit, such as power loss at the maximum power point ∆PMPP.

DeepDeg is summarized in Fig. 1. For a given solar cell sample, the model
uses the initial hours of JV degradation under controlled illumination and
humidity conditions (Fig. 1a). Based on this initial degradation data and the
complete degradation dynamics of other samples, a deep learning model (the
”Forecasting model”, Fig. 1b) is trained to predict the complex evolution of
the multivariate JV characteristics. The multivariate JV data is represented
as a multivariate time series of current at distinct voltages, i.e. J(V, t), where
J is the current density of the solar cell at voltage V and measurement time
t. For clear visualization, we include only the forward bias JV in figures, but
the DeepDeg model is trained and tested including reverse bias as well. The
deep learning architecture of the forecasting model is inspired by sequence to
sequence models [33–35], combining a linear auto-regressive component with a
non-linear convolutional neural network architecture (Fig. 2a), as described in
Methods. In contrast to classical degradation forecasting, which predicts one or
a few figures of merit based on data from independent time series [36], DeepDeg



forecasts the complete JV degradation trend in a single shot. This provides a
more informative picture of the degradation dynamics without accumulating
auto-regressive forecasting errors, and it also elucidates expected trade-offs
between multiple figures of merit. DeepDeg demonstrates good generalization
across varied active layers and device architectures.

Although the forecasting model excels at predicting complex dynamics
without any hard assumptions of degradation mechanisms, an experimentalist
may struggle to correlate these dynamics to hypothesized degradation pro-
cesses or driving factors. To address this limitation, we developed an auxiliary
model (the ”Explanation model”, Fig. 1c) which provides explanations of the
solar cell degradation with respect to any physical or physicochemical device
model, agnostic to the model definition. To avoid model overfitting across OPV
degradation dynamics [37], we demonstrate our approach using an analytical
one-diode equivalent circuit model (ECM) [38], as defined in Eq. 1 in Methods
and Fig. 2b. The DeepDeg explanation model attributes the time-dependent
degradation trend J(V, t) and any relevant figures of merit to the change of
physical model parameters. For example, rapid change in the energy conversion
efficiency of a particular sample might be attributed to the observed change in
time of shunt resistance Rsh. Such explanation may inform the design or man-
ufacturing process or may lead to hypotheses or follow-up experiments. The
DeepDeg Explanation model is summarized in Fig. 2b. The model consists of
an initial ”physical inference stage” that fits a device model to time-varying
JV characteristics (J(V, t)) to extract time series of interpretable parameters.
Since most device models, including ECM, are not time dependent, we mini-
mize a time-regularized loss function to estimate the time series of the model
parameters in a consistent manner, as explained in Methods. Then, in a sec-
ond explanation stage, the evolution of these physical parameters is correlated
to the dynamics of any particular figure of merit. This explanation surro-
gate model can be an analytical function derived form the original model or
an estimated ML model. For simplicity, in this work we model ∆PMPP, the
power loss at the maximum power point [38] as function of the one-diode ECM
parameters in time. This explanation surrogate model can be used to extract
driving factors of degradation using any feature attribution technique from
the explainable ML or, potentially, the causal ML literature. In our case, we
choose KernelSHAP attribution [39] due to its model-agnostic characteristics.
Using KernelSHAP, we are able to estimate the impact of any device parame-
ter on any relevant figure of merit. This approach is more robust to non-linear
feature interactions than traditional sensitivity analysis [39]. Fig. 2b presents
an example of the power loss in time according to SHAP attributions.

DeepDeg has fundamental advantages compared to previous methods for
novel PV and batteries [17, 19, 28, 36]: a) DeepDeg decouples the fore-
casting and explanation problems, avoiding the common mispecification of
physical or chemical device models that leads to poor predictions or incorrect
explanations as model assumptions break in time or across devices, b) Deep-
Deg improves forecasting by using multivariate degradation characteristics



across samples, allowing scalable learning across different devices and degra-
dation dynamics, c) DeepDeg facilitates the explanation of degradation by
using time-regularized inference and by making possible the use of any device
model or figure of merit, and, finally, d) when the forecasting and explana-
tions models are run in parallel, DeepDeg is able to directly predict the future
driving factors of degradation.

Fig. 2 DeepDeg Forecasting and Explanation Models: a) The forecasting model
consists of a linear component (left branch) and a non-linear component (right branch).
More information of network architecture and hyperparameters is included in SI. b) The
explanation model consists of a physical inference stage based on a device model. In this
case, the device model is a one-diode equivalent circuit model. Time-regularized inference
is used to extract the dynamics of the physical parameters, such as J0(t), Rs(t), etc. These
dynamics are correlated to a figure of merit through a surrogate model. SHAP values are
computed to decouple the contribution of each physical parameter to the figure of merit in
time.

OPV degradation and PCE10:OIDTBR held-out datasets We
develop DeepDeg using a large database of OPV degradation consisting of 789
samples of OPV solar cells fabricated and evaluated at i-MEET in the 2017-
2019 period. This database includes normal and inverted architectures, more
than a dozen different active layer materials (including IDTBR, ITIC, PCBM,
among others as acceptors as well as various polymer donors) and various
charge transport layers. In total, the dataset cover 23 different device configura-
tions, summarized in Fig. S1 and Table S1. We use the JV degradation data of
the samples agnostic of their detailed fabrication parameters and architecture
to learn general trends in OPV stability. The dataset has over 230,000 hours
of JV degradation under controlled conditions described in Methods. To the
best of our knowledge, this dataset is the largest and broadest public dataset of
degradation of novel PV. Each sample is subjected to 295 hours of controlled
degradation and its JV characteristics are measured in logarithmic time inter-
vals, which account for the approximately exponential nature of degradation



in non-packaged solar cells. Figure 1a presents an illustrative example of the
JV degradation trend of a novel solar cell. For validation, we fabricated and
measured a held-out test set with a known degradation mechanism, consisting
of 31 PCE10:OIDTBR solar cells with cell architecture summarized in 5a and
over 9,000 hours of measurement. ZnO interface degradation is a well-known
effect in organic solar cells [5, 40]. In order to test DeepDeg’s capabilities to
forecast and explain degradation dynamics, the ZnO charge-transport layer
was annealed at two different conditions (80°C as well as 200°C) in the test set.
The first annealing condition causes faster and more severe degradation due
to higher defect density and charge build-up in the ZnO/active layer interface
[40]. Given that the PCE-10:O-IDTBR active layer is not present the training
dataset, this represents a challenging and realistic validation system for our
model.

Forecasting cross-validation We perform grouped 5-fold cross valida-
tion across the OPV degradation dataset. Often 4-6 similar but independent
solar cell samples are fabricated on a shared substrate. To avoid data leakage,
we group the training and test splits so the samples on a given substrate are
only present in one of the splits. For an initial fraction of the JV degradation
measurement up to a cutoff time τ , we train the DeepDeg and other machine
learning models to forecast the future JV dynamics after time t = τ . At infer-
ence time, we make predictions using exclusively the initial JV measurements
up to time t = τ of a given sample. Fig. 3a illustrates the ground-truth and
DeepDeg-predicted trends for a test sample based on τ = 30 hours of mea-
sured degradation. We observe that the model correctly captures dynamics in
the JV characteristics. In contrast, Fig. 3b presents a poor forecast by Deep-
Deg. In this case, the degradation trend is incorrect in terms of magnitude, JV
covariance and degradation rate. For model comparison, we consider two met-
rics at the sample level: a) Whole Trend RMSE : the root mean squared error
(RMSE) between ground truth and predicted J(V, t) characteristics across all
predicted times (Eq. 7), b) Last Time RMSE : the RMSE between ground
truth and predicted J(V, T ) at the final degraded time T (Eq. 6). Fig. 3c com-
pares both test metrics, averaged across all samples and folds, for the DeepDeg
and other models. The baseline model is a naive model of degradation that
repeats the last known measurement at time τ for all future times, while the
other models are described in Table S2. Using both the initial 5% and 20%
of the degradation measurement, DeepDeg outperforms all benchmark mod-
els for both whole trend and last time RMSEs. The combination of a linear
term and non-linear convolutional term in DeepDeg forecasting model seems
effective and sufficient to capture the degradation dynamics. More complex
models (such as those developed for non-stationary multivariate time series,
TCN (also known as Wave-Net) [41] and an adaption of LSTNet [34]) per-
form worse in this case. Fig. 3d evaluates the effect of different τ cutoff times
on both mean RMSE test metrics. In general, the RMSE decreases sharply as
the initial times of degradation are considered until it plateaus. This trend is
explained by degradation dynamics: change occurs rapidly during the initial



Fig. 3 Forecasting cross-validation: a) High-accuracy degradation prediction
(RMSELast = 0.67 mA/cm2), b) Low-accuracy prediction (RMSELast = 2.46 mA/cm2). For
both a) and b), the predicted trends including reverse bias are presented in Fig S4. c) Mean
RMSE across cross-validation test folds for various models, as detailed in the SI. DeepDeg
has consistently the lowest error for predicting the whole degradation trend and the last
degraded time. d) Mean RMSE across cross-validation test folds for DeepDeg and the Base-
line (no prediction) model as a function of the % of measurement time used for prediction.
Error bars in bot c) and d) correspond to training initialization on 10 random seeds. e)-f)
Test RMSEs for each sample in the dataset, according to grouped cross-validation splits,
as a function of the measurement time used for prediction. The color scale is defined by
inspecting the JV predictions and ranking them in ranges according to expert judgment:
good predictions are consider such under 1.5 mA/cm2 and acceptable predictions under 2.0
mA/cm2.

degradation hours and eventually stabilizes. As expected, DeepDeg outper-
forms the naive baseline for all times, except after a substantial fraction of
all the degradation has occurred. Figs. 3e-f presents the test RMSE for each
sample (row) as a function of the measurement time used for prediction. Most
samples are predicted correctly using only the initial hours of measurement.
We observe a limited number of samples (less than 5% of all test samples) are
predicted incorrectly by the model for all times, which likely have very unique
degradation dynamics.

Explanation cross-validation For the explanation model, we are inter-
ested in correctly identifying and forecasting the driving factors of degradation
in each test sample. As a demonstration, we use the one diode ECM to infer the



Fig. 4 Explanation cross-validation: a) Inferred parameters based on the ground truth
degradation trend and the DeepDeg forecast. ECM physical parameters are normalized to
their value at time t = 0 in the figure. RMSE is the root mean squared error of fitting
JV characteristics with the one-diode ECM model. b) Explanation of driving factors of
degradation on the power loss at the MPP (∆PMPP). c) Mean of Top@1 metric for whole
trend and last time according to % of the measurement time used for prediction. d) Mean
of Top@3 driving factors for the whole trend and the last time. e) Top@1 for the whole
trend for all samples in the test folds. Figure S7 presents the Top@2 and Top@3 metrics as
function of measurement time used for prediction. f) Top@1 for the last time for all samples
in the test folds. Figure S6 presents the Top@3 metrics across samples.

physical parameters that determine JV characteristics at each time point dur-
ing measured and predicted degradation. Then, we apply DeepDeg to attribute
the impact of the physical factor dynamics on the power loss at the maximum
power point, ∆PMPP. Using the JV forecast in combination with the expla-
nation model, we rank each physical parameter in the ECM according to its
predicted impact and compare it to the ground truth factors. Fig. 4a illus-
trates the inferred dynamics of the parameters of the ECM model and the
mean RMSE for each JV fitted by the ECM model, using the same sample of
Fig. 3a. Using 10% of the measurement time, DeepDeg correctly predicts the
dynamics of model parameters with low fitting RMSE’s. The ground truth and
predicted dynamics for the ECM model are used to attribute the impact on
the power loss at each point in time, as presented in Fig. 4b. With a limited
measurement time, DeepDeg correctly predicts the main degradation driving



factors and their contributions to the power loss at the MPP during the com-
plete degradation process. To assess explanation performance, we compute the
Top@K metric across test samples, which correspond to the fraction of sam-
ples for which the predicted driving factor was correctly identified in the K
ordered ranking, i.e. Top@3 corresponds to the fraction of samples for which
the top three driving factors were identified in correct order. We evaluate two
metrics at the sample level: a) Whole Trend : the mean Top@K across all pre-
dicted times (Eq. 9 in Methods), b) Last Time: the Top@K metric at the final
degraded time T (Eq. 8). Figs. 4c-d present the Top@1 and Top@3 for the
whole trend and last time. DeepDeg performs very well in both cases, surpass-
ing the naive baseline, particularly for the last time scenario. We observe the
prediction of the top driving factor (K=1) is more accurate than the top 3
ranked factors (K=3), mostly due to top driving factors ranked in incorrect
order (see Fig. S7 for K=2). Figs. 4e-f summarize the Top@1 metrics across all
samples in the dataset, as a function of the measurement time. DeepDeg pre-
dicts correctly the top 1 driving factors of power loss at the MPP for the whole
degradation trend and for the last time (Fig. S6) for most samples, using as
little as 5% of the initial data. The performance for some samples seems to be
hampered by increasing the measurement time available for prediction. This is
explained by the Top@1 whole trend metric averaging over less prediction times
as we increase measurement time, which makes explanation errors at later
times more significant. Although the vast majority of samples are correctly
forecast and explained, we observe that the DeepDeg is sensible to changes in
the data used for prediction: at a given time the explanation is correct for a
sample, but more measurement data may not necessarily improve the Top@K
metrics as the degradation dynamics of ∆PMPP may change substantially in
time.

Test on PCE10-OIDTBR held-out dataset
As discussed, the PCE10-OIDTBR devices constitute a challenging valida-

tion dataset for our model. In this case, we designed the dataset to reproduce
a known degradation pathway in OPV devices: a low annealing tempera-
ture (80◦C) in the ZnO charge transport layer causes excessive recombination
and charge build-up leading to fast interface degradation. A higher annealing
temperature (200◦C) limits this degradation pathway. Fig. 5b presents two rep-
resentative samples with both annealing conditions (80◦C and 200◦C). In both
cases, we make predictions using 15% of the total measurement time as input
to the DeepDep model trained on exclusively on the legacy dataset. We observe
the degradation forecast tracks closely the ground truth degradation. Fig. 5c
compares the inferred ECM model parameters for both annealing conditions.
We observe that the 80◦C condition is dominated by substantial increase in
increase in J0 and n, indicating higher bulk or interface recombination com-
pared to the 200◦C condition. We expect DeepDeg to forecast and identify
this trend. Fig. 5d compares the ∆PMPP ground truth and DeepDeg-predicted
trend at both conditions. For 80◦C annealing, we observe the dominant power



loss is indeed predicted correctly, with Jo and n being the dominant driving fac-
tors. In contrast, the 200◦C annealing conditions, present substantially lower
power loss ∆PMPP, and it is mostly explained by the Jph and Rsh parameters.
We observe that although the magnitude of ∆PMPP is underestimated in the
high temperature annealing condition, the relative driving factor attribution
is the same, confirming the robustness of DeepDeg explanations to forecasting
error. In this case, the forecasting error is likely caused by limited degrada-
tion during the initial hours of measurement which might confound potential
degradation dynamics. Interestingly, in addition to correct physical trends, we
observe the light-soaking step at around 25 hours for both conditions, which
is evidenced as a sudden recovery in the power loss. We observe in Fig. 5e that
the final JV characteristics of most samples are correctly predicted after the
15 % threshold, albeit with a higher variance than in the cross-validation test
sets. Fig. 5f presents the Top@1 metric for the whole time series, which is cor-
rectly predicted for a substantial fraction of the test. The RMSE and Top@1
last time metrics are presented in Fig S8.

Conclusion

Compared to data-driven approaches in PV and other energy devices, Deep-
Deg decouples the multivariate forecasting and explanation problems. This
facilitates the use of flexible physical or chemical models to explain degrada-
tion combined with scalable learning of degradation dynamics. For training,
we curate the largest, to our knowledge, dataset of novel PV degradation, and
DeepDeg demonstrates noteworthy performance for predicting and explain-
ing long term degradation and good extrapolation capabilities to diverse solar
cell materials and architectures. We acknowledge several limitations of the
model: (1) novel degradation dynamics (out-of-distribution) might not be pre-
dicted accurately, (2) although mitigated by our contributions, the quality of
degradation explanation relies on correct device model specification, (3) model
predictions are limited to accelerated degradation tests under controlled condi-
tions, underestimating the stressing effect of environmental conditions such as
combined high humidity and high heat. As larger datasets and high-throughput
experimental setups become accessible, we expect these limitations to be mit-
igated. We expect limitation (1) to be addressed by increased available data
and fast model calibration from high-throughput experiments. Limitation (2)
can be mitigated by improved physicochemical models, learning interpretable
statistical models, or inclusion of fast secondary characterization. Finally,
to address limitation (3) the DeepDeg framework can be extended to non-
constant environmental conditions or potentially make use of causal inference
approaches to better decouple environmental interactions. We envision Deep-
Deg being useful for fast experimental screening of novel energy devices and
architectures. Given its potential to accelerate experiments, DeepDeg can be
useful for closed-loop learning and optimization of complete device architec-
tures. In future work, DeepDeg can be extended to other energy devices, such



Fig. 5 Held-out PCE10:O-IDTBR test set: a) Molecular structure of PCE-10 and
O-IDTBR, along with the device architecture. b) Comparison between the ground truth
and DeepDeg forecast for the two ZnO annealing conditions. c) Inferred ECM parameters
and fitting RMSE for the ground truth degradation trends of two annealing conditions. d)
Comparison of ∆PMPP explanations for two annealing conditions. Cells are the same as
sub-figures b and c. e) RMSE for DeepDeg forecast for all samples in the dataset. f) Top@1
metrics across all samples in the dataset. No sample in the held-out test set was used during
model training. Figure S8 presents the last time RMSE and Top@1 metrics.

as batteries and fuel cells, for which multivariate characteristics are adequate
descriptors of degradation (e.g. discharge-voltage measurements [25] in bat-
teries) or when physical or chemical models are used to pinpoint degradation
issues.



Methods

Degradation measurements and data pre-processing All degrada-
tion measurements are performed in a custom-built degradation chamber
under controlled nitrogen atmosphere (< 1 ppm O2) at 1∼sun constant
illumination intensity under white light LED lamps (3000∼K, CMA3090-0000-
000Q0H0A30G). The temperature is actively controlled with air flow around
the chamber ensuring that the temperature of the active layer is 35°C +/- 5.
The JV characteristics are measured in steady intervals (0.5 h - 1 h), re-sampled
to be the same for all samples, during at least 295∼hours. We curate the
dataset by dropping samples that present measurement error, including poor or
non- rectifying behaviour at the start of accelerated degradation test (shunts,
S-shape), sudden loss of electrical contact not explained by degradation and
substantial time measurement gaps. The SI contains an overview of the 24
solar cell types and configurations in the dataset (Fig. S1, Table S1)

PCE10:O-IDTBR sample preparation Fabrication of photovoltaic
devices: Pre-structured indium tin oxide substrates were cleaned with deter-
gent followed by two 10 min ultrasonification steps in acetone and iso-
propanol. ZnO (N10 bought from Avantama) was ultrsonicated for 10mins
and then filtered with a 0.2 µm PTFE-filter. The 30 nm thick layer of
ZnO was spin-coated at 3000 rpm in air and annealed at 80 °C or 200 °C
for 5min. PCE10 (batchMY7118CH) and O-IDTBR (batchYY13033B) was
bought from 1-Material. The PCE10:OIDTBR solution was produced with a
1:2 D:A-Ratio and a concentration of 24mg/ml. The active layer was spin-
coated from a 60 °C hot solution at 2000 rpm on the substrate. To complete
device fabrication 12 nm of MoOx and 100 nm of Al/Ag were thermally evapo-
rated through a mask (active area of 10.4mm2) in vacuum of ∼10-6 mbar. The
devices were not encapsulated but were loaded into sealed degradation boxes
in the glovebox. A light-soaking step was applied at 3 and 23 hours to improve
device properties, evidenced by a sudden improvement of JV characteristics.
To increase diversity across samples in the held-out test set, we use two dif-
ferent electrodes, Ag and Al, along with UV treatment in the ZnO in certain
devices at the 80 °C condition. The ZnO annealing conditions produce similar
effects for all electrodes and the UV-treated cells (Figs. S2 and S3).

DeepDeg forecasting model The time-resolved JV characteristics can
be seen as a multivariate time series J(V, t), where J correspond to the current
at the measurement voltage V and time t. For convenience, we define the JV
characteristics at each time t as a vector JV,t and frame the forecasting problem
as a sequence to sequence prediction problem. Based on the initial degradation
trend up to time t = tτ , we are interested in predicting the degradation to the
final degraded or measurement time t = tT . Thus, the DeepDeg forecasting
model is defined as a sequence to sequence model such that:

JV,tτ+1
, JV,tτ+2

, . . . , JV,tT = f(JV,t0 , JV,t1 , . . . , JV,tτ ) (1)



In the case of the DeepDeg forecasting model, f is composed of a linear
auto-regressive component f ′ of order 3, i.e. applied only to the last three times
in the sequence, combined to a neural network component f ′′ that considers
the complete sequence:

f = f ′(JV,tτ−2 , JV,tτ−1 , . . . , JV,tτ ) + f ′′(JV,t0 , JV,t1 , . . . , JV,tτ ) (2)

The order of f ′ was determined by hyperparameter sweep on a 10% ran-
dom sample of the training data in the range of 1 to 8. f ′′ in this case is a
neural network composed of 1D convolutional layer, a dense layer with ReLu
activation and Dropout, and Reshape linear layer. We compare DeepDeg to
common compact sequence to sequence models defined in the SI.

DeepDeg explanation model The explanation model is composed of two
stages: i) inference and ii) explanation. In the inference stage, we determine
the physical or chemical parameters, defined by vector α, that fits the J(V, t)
characteristics. At a given time t, this is given according to a physical or
physicochemical device model g, such that JV,ti = g(αti). In the inference
step, we are interested in determining the αti for each time ti. Most device
models do not consider time dynamics as assumptions tend to break with
complex degradation processes, so we are forced to learn αti from each JV,t
characteristics at a given time. Naturally, the parameters αti−1) and αti are not
independent of each other ( i.e. P(αt−1 ∩ αt) ̸= P(αt−1)P(αt) ). A priori, this
dependency is generally unknown, except for two considerations. First, there is
certain degree of smoothness in the transition between small time steps, which
reflects the occurrence of steady physical processes. Second, certain parameters
exhibit on average monotonic tendencies, which can be embedded into the
inference procedure. In consequence, the inference step can be formulated as
minimizing the time-regularized loss function of the JV characteristics:

α∗
ti = argmin

α
| g(V, αti)− J(V, ti) |2 +λ | αti − αti−1 |2 (3)

All αi components are normalized in the loss function. The first term con-
trols how well the model approximates the J(V, ti) characteristics, and the λ
term how consistent the parameters are with respect to the previous infer-
ence time. We choose λ = 5e − 06 by hyperparameter sweep in the range of
[1e − 03, 1e − 06]. Notice that g(V, αti) can be any device model: an analyti-
cal equivalent circuit model, a numerical PDE (Partial Differential Equation)
model or an empirical statistical model. The inference step is repeated to
determine the time dynamics of model parameters α(t). The explanation step
is performed to relate the inferred α(t) dynamics to the change in a figure of
merit of interest during degradation. As device models g are non-linear, the
impact of a physical parameter αk changes according to time, the model sen-
sitivity and the relative value of other model parameters. In consequence, to



rank the driving factors of degradation we quantify the impact of a given αk(t)
on the output metric of interest Θ, such as power conversion efficiency, fill fac-
tor, etc. Traditionally, this impact is measured by varying a single parameter
independently and observing the model’s output [42]. This approach is correct
for degradation studies that contain only a few discrete samples and linear
device models. Instead, we frame this problem as a ML feature attribution
problem, providing greater flexibility and accuracy. We construct an auxiliary
explanation model based on the change in time of the inferred device param-
eters, Θ = h(∆α(t)). For the purpose of this work, we choose Θ = ∆PMPP,
where ∆ is the total change from t = 0 to tτ , and PMPP is the maximum power
extracted from the solar cell by maximizing the J×V product. Thus, the expla-
nation model considers the maximum power loss with respect to the initial
time as a function of the change of device parameters. In our ECM demon-
stration, for simplicity we derive h analytically, but we note it may correspond
to any numerical or statistical model. Once the explanation model is defined,
we attribute the impact of each factor using a model-agnostic approach, Ker-
nelSHAP (Kernel Shapley Additive Explanations) [39]. According to it, the
contribution of each feature to the model output is approximated by a local
linear attribution model:

q(z) = ϕ0 +

M∑
j=1

ϕjzj (4)

where q is the local linear model, z ∈ {0, 1}M are the simplified features, M
is the maximum number of input features, and ϕj ∈ R is the feature attribution
coefficient for feature j. For an specific data point, the simplified features z take
a value of 0 if a feature is ”absent” (i.e. represented by a random value) and a
value of z if the feature is ”present” (represented by the actual feature value).
According to game theory, ϕj is a SHAP value [39], or a weighted average of
a feature’s marginal contributions over all possible feature combinations. To
generate feature attributions, KernelSHAP minimizes the loss L of the local
linear model to matched the output of the actual model [39]. In this work, we
compute the impact of each k feature change in time ∆αk(t) on ∆PMPP(t)
with the SHAP value ϕk, and then plot this value as a fraction of the total
power loss ∆PMPP(t), exploiting the additive nature of SHAP values.

One-diode equivalent circuit model (ECM) We choose a one-diode
model equivalent circuit model as a device model of current density for a
particular time and voltage JVi,ti = g(αti , Vi). According to it:

J = −Jph + J0

{
exp

[
V − JRs

nVT

]
− 1

}
+

V − JRs

Rsh
(5)

where J is the current, V is the voltage, and the vector of parameters α
is composed of Jph, the photo-generated current of the solar cell, Jo a reverse
diode saturation current with diode ideality factor n, a series resistance Rs

and a shunt (parallel) resistance Rsh. Although PDE models may offer deeper



physical insights [43, 44], their inherent assumptions may break during degra-
dation. In the case of the OPV dataset, we find the one-diode ECM to be
sufficient to provide reasonable explanations for a broad range of degrada-
tion trends, which is consistent with literature [37]. This model can be easily
updated within the DeepDeg explanation framework to account for physical
or chemical parameters of interest, along with particular figures of merit.

Evaluation metrics The forecasting performance is assessed by root mean
squared error of the last predicted JV in time or the whole trend of pre-
dicted JV characteristics. The last time metric is defined at time t = τ for n
measurement voltages as:

RMSE Last =

√√√√ 1

n

n∑
i

(JVi,tτ − ˆJVi,tτ )
2 (6)

where ˆJV,tτ are the predicted JV characteristics at time τ and JV,tτ is
the ground truth degraded measurement. In the same way, the RMSE for the
predicted trend with m elements (times) is given by:

RMSE Whole =

√√√√ 1

m+ n

m∑
i

n∑
j

(JVj ,ti − ˆJVj ,ti)
2 (7)

The explanation metrics Top@K metrics are based on the kth magnitude-
ranked SHAP value of a given physical parameter as defined by ϕk,t at
time t up to order of interest K. For a DeepDeg explanation at time t, the
indicator function I(ϕk,t, ϕk+1,t, . . . , ϕK,t) equals 1 if the set of parameters
ϕk,t, ϕk+1,t, ..., ϕK,t ordered according to decreasing SHAP value is equal the
ground-truth degradation driving factors, and 0 elsewhere. Then, at time T ,
Top@KLast is either 0 or 1 defined by this indicator function:

Top@KLast = I(ϕk,t, ϕk+1,t, . . . , ϕK,t) (8)

Similarly, the Top@KWhole metric will be the mean of Top@K metrics
across time:

Top@KWhole =
1

m

m∑
i

I(ϕk,ti , ϕk+1,ti , . . . , ϕK,ti) (9)

Model development The forecasting model development procedure along
with hyperparameter search and ablation study is presented in Section S.3
and Fig S5. For the explanation model, we considered also a complex charge
generation and transport PDE model for O-PV whose assumptions broke down
in time, leading to poor fitting of JV dynamics. Thus, we decided to use a
more flexible 1-diode ECM model. We explored other possibilities for the ECM
model, including 2-diode and 3-diode ECM models, available in the DeepDeg
code. We select the 1-diode ECM model due to its good performance for O-PV
devices with no S-shapes in JV characteristics at time 0 and limited number
of parameters to analyze.
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