
1 

 

An Explicit-Implicit Hybrid Solvent Model for Grand 1 

Canonical Simulations of the Electrochemical Environment  2 
 3 

Duy Le1,2 4 

1 Department of Physics, University of Central Florida, Orlando, FL  32826 5 

2 Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 6 

Orlando, FL  32826 7 

Email: duy.le@ucf.edu 8 

 9 

Abstract:  The development of ab initio methods for atomistic simulations of the electrochemical 10 

environment is essential for obtaining a mechanistic understanding of the fundamental reactions. 11 

We propose here an explicit-implicit solvent model, SOLHYBRID, that enables grand-canonical 12 

ensemble simulations of the electrochemical environment with the popular Vienna Ab initio 13 

Simulation Package (VASP), extending its capabilities beyond the commonly used the implicit 14 

solvent model VASPSol. We further present a subroutine, TPOT, that allows control of the 15 

electrode potential, thereby enabling simulations at constant electrode potential to mimic the 16 

experimental electrochemical cell. We demonstrate the key points of our approach for the case of 17 

CO2 adsorption on Au(110) in the presence of K+ cation. 18 

1 INTRODUCTION 19 

Because of the rising demand for clean energy and CO2 recycling, electrochemical reduction of 20 

CO2 under ambient conditions (room temperature and atmospheric pressure) has emerged as a 21 

promising route for hydrogen-free sustainable fuel production, as it is compatible with the 22 
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intermittency of renewable energy sources and enables utilization of renewable electricity without 23 

the need for expansion of transmission capacity. With the development of an efficient 24 

electrochemical process for CO2 recycling, such clean energy technology can ultimately close the 25 

carbon cycle for the utilization of carbon-based fuels and reduce carbon emissions to significantly 26 

mitigate the anticipated climate and environmental damage. While great progress has been made 27 

in recent times, as so well-articulated in a collection of Road Maps,1 a number of challenges need 28 

to be overcome before controlled electrocatalytic conversion of gases such as CO2 becomes an 29 

industrial reality.  30 

Electrochemical reactions occur inside an environment that is complex because of the presence of 31 

multiple interfaces involving the liquid solvent, ions, gaseous reactants, and solid electrodes. To 32 

add to the complexity, the potential applied to the electrode makes the electrocatalysis process 33 

potential-dependent. Because of these heterogeneous interfaces, an atomistic understanding of the 34 

electrocatalysis process is still unclear partially because of the lack of an adequate theoretical 35 

method that incorporates the above complexities in a realistic manner. 36 

As noted in several excellent reviews, significant advances have been made in theoretical and 37 

computational modeling of electrocatalysis.2-4 In a nutshell, with reliance on ab initio techniques 38 

based on density functional theory (DFT), simulations of the electrochemical system may proceed 39 

along several strategies. The most computationally efficient approach is the implicit solvent 40 

model5-9 in which a continuum description is applied to the electrolyte and the ions. Next are the 41 

explicit solvent models, which treat water and ions atomistically.10 Then there is the H-shuttling 42 

method,11-13 in which a water molecule shuttles protons to and from the electrode surface. It may 43 

also be possible to include the effect of the electrode potential in the calculations through the so-44 

called capacitor model,14 but such an approach fails to account accurately for the response of the 45 
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charge on the electrode to the dynamical evolution of the adsorbate, electrolyte, and the catalyst 46 

surface to keep the electrode potential constant. Fortunately, such dynamical effects are naturally 47 

included in the self-consistent grand canonical DFT (GC-DFT)15, 16 method, but its implementation 48 

has been hampered by high computational cost.  Efforts17, 18 have also been devoted to the develop 49 

the grand-canonical AIMD (or constant potential) simulations, but so far these methods have not 50 

been widely applied. 51 

Explicit inclusion of all components of the electrolyte, that is all water molecules, the cations, and 52 

anions, could faithfully describe the electrochemical environment. However, such a simulation 53 

with ab initio methods would be computationally prohibitive. In our opinion, an implicit-explicit 54 

hybrid model, in which the region near the electrode is modeled explicitly while an implicit solvent 55 

model is used elsewhere, would provide insights into electrochemical processes while keeping the 56 

computational cost manageable. In addition, such a simulation could be performed at a constant 57 

electrode potential to reflect the conditions of the “real” world electrochemical reactions.19 58 

VASPSol5, 6 is a popular implicit solvent model used for simulations of the chemistry in 59 

electrochemical environments. It treats the solvation effect via a continuum model. Intuitionally, 60 

one would think that the hybrid model mentioned above could be attained by simply adding 61 

additional explicit water molecules and ions to the simulations. Could we possibly use the implicit 62 

solvent model VASPSol as the basis for creating a hybrid solvent model? 63 

The answer to this question is YES and NO because of the definition of the shape function,5, 6 64 

which is used to distinguish the solute and electrolyte in a simulation cell in VASPSol. As we 65 

explain in detail below, the shape function defines the electrolyte region through its low electron 66 

density. If the explicit solvent and ionic regions extending to a couple of angstroms from the 67 

electrode surface are pasted in VASPSol, there are regions inside the explicit electrolyte with low 68 
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or no electron density because the solvent molecules and ion do not bond to each other via covalent 69 

bonds. In VASPSol these regions will be filled with the implicit electrolyte, which would be a 70 

problem. 71 

In this work, we propose our SOLHYBRID model which utilizes a padding charge for the explicit 72 

solvent region and an economical algorithm (TPOT) for performing simulation at a constant 73 

potential. We will also use the proposed methods to perform the ab initio molecular dynamics 74 

(AIMD) simulation of the adsorption of CO2 on Au(110) surface in the presence of potassium 75 

cation (K+) to demonstrate the viability of our proposed SOLHYBRID model and TPOT 76 

algorithm.  77 

2 COMPUTATIONAL DETAILS 78 

We perform density functional theory (DFT) based calculations using the VASP package20, 21 with 79 

the implicit solvent model VASPSol,5, 6 employing the plane-wave supercell and the projector 80 

augmented-wave methods.22, 23 We used the generalized gradient approximation (GGA) in the 81 

form of Perdew-Burke-Ernzerhof (PBE)24, 25 functional and the DFT-D3 van der Walls 82 

correction26 for evaluating exchange-correlation of electrons. We set the cutoff energy for plane-83 

wave expansion at 500 eV. We chose a Debye length of 3.04 Å, which corresponds to a bulk 84 

electrolyte concentration of 1 M, and a relative permittivity of the solvent of 78.4 (for water at the 85 

ambient condition) for all calculations with the implicit solvent model VASPSol. Our simulation 86 

supercell consists of a 5-layer, 2×3 Au(110) slab as the modeled electrode,  26 H2O molecules, 87 

one K+, a CO2 molecule, and a vacuum of 15 Å to separate the periodical images along the normal 88 

direction of the electrode. We refer to this supercell as CO2-K+/Au(110) in what follows. We 89 
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sampled the Brillouin zone with a 3×3×1 grid and used Gaussian Smearing with 𝜎𝜎 = 0.1 eV for 90 

integration over the Brillouin zone. The threshold for convergence of electronic step is 10-6 eV. 91 

AIMD simulations were performed at 298.15 K in the NVT ensemble with the Nosé-Hover 92 

thermostat.27 During the simulations, the bottom three layers of the Au electrode are held fixed. 93 

Note that the initial supercell was prepared in a way that binds CO2 on the Au(110) surface with 94 

Au-C bond length of 2.15 Å, CO2 bending angle (OCO�) of 128.5o, above which there is a K atom 95 

with a distance of 3.58 Å to an O atom of CO2, and 27 H2O molecules. We performed AIMD 96 

simulations for 2 ps with low accuracy, i.e., 300 eV energy cutoff, 10-5 eV threshold for electronic 97 

convergence, Gamma point sampling for Brillouin zone, fixing all Au, C, and K atoms. After this 98 

step, we observed that one H2O molecule was above all other H2O molecules. We remove this 99 

molecule and continue the AIMD simulation for 2.5 ps. The resulting structure, after releasing the 100 

C and K atoms and atoms in the top two layers of the Au(110) slab, was the initial configuration 101 

of this work. 102 

3 MODEL AND IMPLEMENTATION 103 

In this section, we will introduce our hybrid solvent model, SOLHYBRID, that mitigates the issues 104 

with VASPSol in simulating the explicit solvent as discussed in the Introduction. In addition, we 105 

will present our TPOT algorithm which allows simulations at a target potential at an economical 106 

computational cost. The results of the simulations of CO2-K+/Au(110) system demonstrate the 107 

novelty and effectiveness of our proposed methodology. 108 
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3.1 Explicit-implicit hybrid solvent model SOLHYBRID 109 

 110 

Figure 1. Evolution of shape function (VASPSol) during AIMD simulations of CO2-K+/Au(110). The planar 111 

average of the shape function is shown as blue lines. The shaded area indicates the range of value of the 112 

shape function. Orange, green, and red vertical lines indicate the position of the lowest Au atom, the highest 113 

Au atom, and the highest atoms of the explicit solvent molecules, respectively. The ball-stick models of the 114 

atomic configurations at 0 fs and 1250 fs are shown at the top and bottom of the figures, respectively. 115 
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Yellow, black, red, and purple balls represent Au, C, O, and K atoms. The H2O molecules are shown by the 116 

pink-while ball-stick molecules. 117 

In VASPSol, the spatially dependent shape function is defined as: 118 

𝜁𝜁(𝑟𝑟) = 1
2

erfc �log[𝑛𝑛 (𝑟𝑟) 𝑛𝑛𝑐𝑐⁄ ] 
𝜎𝜎√2

�; 119 

where 𝑛𝑛 (𝑟𝑟) is the pseudo electron density calculated as the sum of core electron density6 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) 120 

and valence electron density 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟), at coordinate 𝑟𝑟; 𝑛𝑛𝑐𝑐 is the cutoff electron density; 𝜎𝜎 is the 121 

width of the diffuse cavity or interface region. The shape function is used to identify the region 122 

that is treated purely by DFT (𝜁𝜁(𝑟𝑟) = 0) or by implicit model (𝜁𝜁(𝑟𝑟) > 0). 123 

With this definition, the value of shape function in the region with electron density smaller than a 124 

few 𝑛𝑛𝑐𝑐 will be not zero and this region will be filled with explicit solvent molecules and explicit 125 

ions. Figure 1a shows the shape function for a hybrid solvent model, i.e., explicit H2O and cation 126 

near the Au(110) electrode and implicit solvent elsewhere. Because of the low-density region 127 

between H2O molecules, the value of shape function in the explicit region, between the vertical 128 

green and red lines in Figure 1, is not always zero. VASPsol will fill the region with implicit water 129 

molecules and ions. Since technically, the explicit water molecules and ions do not have a 130 

preference to be in either explicit or implicit regions, the explicit H2O and ions will eventually be 131 

separated by implicit solvent. Figure 1a-f shows the evolution of the shape function and the 132 

structure of CO2-K+/Au(110) system for about 1.25 ps AIMD simulations. The range (shaded area 133 

in Figure 1a-f) of the shape function keeps growing and the explicit solvent layers continue to 134 

expand to fill the vacuum region. This picture is not fundamentally correct because the implicit 135 

solvent should be expelled away from the explicit region. 136 
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To mitigate the above problem, we propose our SOLHYBRID model by introducing a padding 137 

density 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) to the pseudo electron density to ensure that the implicit solvent does not fill the 138 

explicit region. We have tried three strategies. In the first strategy, we recycled the part of the 139 

VASPSol code that calculates Gaussian core electron density 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) to calculate 𝑛𝑛𝑝𝑝𝑝𝑝𝑑𝑑(𝑟𝑟) as the 140 

sum of Gaussian charge centered at atoms of the system, similar to the calculation of 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) but 141 

with the number of valence electrons instead of the number of core electrons and a large gaussian 142 

width. We found that strategy is not an ideal choice as the majority of the padding charge localizes 143 

at the center of each atom and that an appropriate gaussian width must be chosen to ensure that the 144 

padding charge extends to cover the space between molecules. The latter is not always satisfied 145 

because of unforeseen movements of molecules during simulations. We thus decided to remove 146 

this strategy from our implementation. The other two strategies are summarized as the two 147 

Schemes below. 148 

Scheme 1: 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) is the planar average of valence electron 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟) which is smoothened with a 149 

Gaussian filter with a width 𝜎𝜎𝑆𝑆𝑆𝑆 and the pseudo electron density is defined as:  150 

𝑛𝑛 (𝑟𝑟) = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) + (1 − 𝛼𝛼𝑆𝑆𝑆𝑆)𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟) + 𝛼𝛼𝑆𝑆𝑆𝑆𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟);  151 

where 𝛼𝛼𝑆𝑆𝑆𝑆 is a parameter that controls the percentage of valence density is replaced by padding 152 

density; 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) is the planar average of 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟). The optimizations of 𝛼𝛼𝑆𝑆𝑆𝑆 and 𝜎𝜎𝑆𝑆𝑆𝑆 are necessary 153 

for building a suitable SOLHYBRID model for a specific system. In our opinion, this Scheme is 154 

the ideal one as it is calculated from the electron density of the system and has been tested to be 155 

stable during simulations. 156 

Scheme 2: 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) is a uniform density in the region of solute and explicit solvent and decays to 157 

zero at the interface with the implicit region and the pseudo density is defined as: 158 
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 𝑛𝑛 (𝑟𝑟) = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) + 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟) + 𝛼𝛼𝑆𝑆𝑆𝑆𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟);  159 

where padding charge density𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) is defined as 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) = erfc �𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧
𝜎𝜎𝑆𝑆𝑆𝑆√2

� − erfc �𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧
𝜎𝜎𝑆𝑆𝑆𝑆√2

�; 160 

where 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 are the 𝑧𝑧 coordinates of the lowest and highest points of the region where 161 

the padding charge is needed (to define the explicit solvent region). 𝛼𝛼𝑆𝑆𝑆𝑆 and 𝜎𝜎𝑆𝑆𝑆𝑆 are parameters 162 

that control the amount of padding charge density to be added to pseudo density and the steepness 163 

of padding density near  𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚. Our tests show that Scheme 2 generally works well but 164 

the choice does not reflect the electron density of a physical system. While we have implemented 165 

Scheme 2 as an option, we focused mainly on Scheme (1) and used it to produce the data presented 166 

here as our proof of concept. 167 

 168 

Figure 2. The dependence of the shape function in SOLHYBRID model on 𝛼𝛼𝑆𝑆𝑆𝑆 (a1-a6) with 𝜎𝜎𝑆𝑆𝑆𝑆 = 1 Å. 169 

Corresponding implicit ion density (𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖) and bound charge density (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) for each value of 𝛼𝛼𝑆𝑆𝑆𝑆 are 170 

shown in (b1-b6) and (c1-c6), respectively. See Figure 1’s caption for more descriptions of lines and 171 

shaded areas. 172 
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Figure 2(a1-a6) shows the shape function in SOLHYBRID model with 𝜎𝜎𝑆𝑆𝑆𝑆 = 1 Å and 𝛼𝛼𝑆𝑆𝑆𝑆 =173 

0, 2, 4, 6, 8, 10% of the same structure, CO2-K+/Au(111), that was used to calculate the shape 174 

function shown in Figure 1a. In the case of 𝛼𝛼𝑆𝑆𝑆𝑆 = 0, the new shape function is identical to the 175 

original one, as expected. With increasing 𝛼𝛼𝑆𝑆𝑆𝑆, the value of the shape function in the explicit region 176 

reduces (the shaded area diminished).  We can achieve zero value in the explicit region with 𝛼𝛼𝑆𝑆𝑆𝑆 =177 

4%. However, our goal is not only to achieve that but also to repel implicit ion5 and implicit bound 178 

charge5, 28, 29 from the explicit region. We found that the implicit ion density in the explicit region 179 

approaches zero with 𝛼𝛼𝑆𝑆𝑆𝑆 = 6% (Figure 2b1-b6) and that we can only get rid of the bound charge 180 

in explicit region with 𝛼𝛼𝑆𝑆𝑆𝑆 = 10% (Figure 2c1-c6). 181 

 182 
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Figure 3. Evolution of shape function with SOLHYBRID model during AIMD simulations of CO2-183 

K+/Au(110). The ball-stick model of the atomic configuration at 1250 fs is shown at the bottom of the figure. 184 

See Figure 1’s caption for more descriptions of lines, shaded areas, and color codes for atoms. 185 

We used the SOLHYBRID model with 𝜎𝜎𝑆𝑆𝑆𝑆 = 1 Å and 𝛼𝛼𝑆𝑆𝑆𝑆 = 10% to perform AIMD simulations 186 

for the CO2-K+/Au(110) system, with the same starting configuration of the AIMD with original 187 

VASPSol (shown in Figure 1). Figure 3 summarizes the evolution of the shape function and the 188 

structure. Unlike the continuing expansion of the explicit solvent during the simulation shown in 189 

Figure 1, the system expands at the beginning, which is normal, and stops expanding at around 190 

750 fs into the simulation. More importantly, values of shape function in the explicit region 191 

consistently remain zero, effectively expelling implicit solvent out of this region.  192 

It is important to emphasize that while we discussed only the implementation of SOLHYBRID 193 

model into VASPSol, the approach, i.e., using a padding density, could also be applied to other 194 

implicit solvent models that use electron density to define the regions of solute or electrolyte, such 195 

as those implemented in ENVIRON,8, 30-32 those originated from joint DFT framework,33-35 SaLSA 196 

solvation model,36 CANDLE solvation model,7 to make them work for simulations of explicit-197 

implicit solvents. 198 

3.2 Controlling the electrode potential with TPOT 199 

TPOT, Target POTential, is a routine that runs in conjunction with the VASP code and VASPSol 200 

to control the number of electrons during a simulation required to reach a target electrode potential. 201 

The electrode potential is defined as Φ = (Φ𝑉𝑉𝑉𝑉𝑉𝑉 − μ𝑒𝑒) e⁄ ; where Φ𝑉𝑉𝑉𝑉𝑉𝑉 is energy level at the point 202 

far away from the electrode, i.e., vacuum level, μ𝑒𝑒 is the chemical potential of electrons, and e is 203 

the elementary charge. 204 



12 

 

In principle, the numbers of electrons can be optimized during the self-consistent field (SCF) 205 

cycles to obtain a target potential at the end of each ionic iteration.15, 37, 38 Even though we 206 

implemented this approach in TPOT, we found that it requires substantial number of iterations and 207 

increases the computational cost.  208 

 209 

Figure 4. Flowchart of TPOT. 𝑅𝑅𝑜𝑜 and 𝑛𝑛𝑜𝑜 are initial guesses of the rate of change of electrode potential 210 

with respect to the change of number of electrons and the initial number of electrons, respectively. 𝛷𝛷𝑖𝑖, 211 

𝛷𝛷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝛿𝛿𝛿𝛿 are electrode potential at ionic iteration 𝑖𝑖, target potential, and the error threshold of 212 

electrode potential. 𝑅𝑅𝑖𝑖 and 𝑛𝑛𝑖𝑖 are the rate of change of electrode potential and number of electrons at ionic 213 

iteration 𝑖𝑖. 214 

We also found that the optimization of number of electron during SCF cycle is not necessary 215 

because, during ionic relaxations or molecular dynamics simulations, the atomic structures in two 216 

consecutive steps are not substantially different, pointing to no substantial change in the electrode 217 
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potential. We, thus, propose not to optimize the number of electrons during SCF cycles but after 218 

each ionic iteration. The flowchart in Figure 4 shows that TPOT needs to optimize the number of 219 

electrons only if the resulting electrode potential (Φ) differs from the target potential by an amount 220 

that is larger than a predetermined threshold 𝛿𝛿Φ (in practice, we set 𝛿𝛿Φ = 0.001 V). This approach 221 

sets TPOT apart from other approaches that have been proposed15, 37, 38 for performing constant 222 

potential calculations. It saves computational time as it requires virtually no additional cost as 223 

compared to the constant charge calculation as implemented in VASPSol.5, 6 While, in principles,  224 

advanced methods for optimizing the number of electrons can be developed and implemented, we 225 

use a simple approach to update the number of electrons at iteration 𝑖𝑖 using the following algorithm 226 

𝑛𝑛𝑖𝑖+1 = 𝑛𝑛𝑖𝑖 + �Φ𝑖𝑖 − Φ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 𝑅𝑅𝑖𝑖⁄  only if �Φ𝑖𝑖 − Φ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� > 𝛿𝛿Φ, where 𝑅𝑅 = 𝜕𝜕Φ 𝜕𝜕n⁄  is the rate of 227 

the change of electrode potential with the change in number of electrons. The rate is updated at the 228 

last time that the number of electrons is updated. 𝑅𝑅𝑖𝑖 is calculated as (Φ𝑖𝑖 − Φ𝑖𝑖−1) (ni − ni−1)⁄  or 229 

is provided as input (𝑅𝑅𝑜𝑜) in first iteration. 230 

3.3 Additional notes 231 

During the implementation of the SOLHYBRID and TPOT, we noticed two important issues 232 

related to VASPSol that should be mentioned. The first issue is about the calculation of core 233 

electron density 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟). VASPSol uses gaussian type core electrons to repel implicit solvents 234 

from the core of atoms.6 The default value, set by VASPSol, of the number of core electrons is 0 235 

for atoms with atomic number that is smaller than 10 and 1 otherwise. If the default values are 236 

used, some atoms will have empty cores that may be filled with the implicit solvent by VASPSol. 237 

With our SOLHYBRID model, this is not an issue as the padding charges will fill these core 238 

spaces. Nevertheless, in our modified version of VASPSol, the values of core electrons for all 239 
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species, as well as all parameters used in the model, are printed out in the main output file (i.e., 240 

OUTCAR) for alerting users. We also suggest explicitly specifying core electrons in input (i.e., 241 

INCAR) to avoid unintended outcomes.  242 

The second issue is the calculation of the vacuum level (Φ𝑉𝑉𝑉𝑉𝑉𝑉). VASPSol calculated a correction 243 

for aligning the vacuum level to zero (i.e., FERMI_SHIFT).5 This value is regarded as −Φ𝑉𝑉𝑉𝑉𝑉𝑉.5, 14 244 

However, we tested and found that for charged systems, there is a small difference between 245 

FERMI_SHIFT and −Φ𝑉𝑉𝑉𝑉𝑉𝑉. Thus, in our implementation, we calculated Φ𝑉𝑉𝑉𝑉𝑉𝑉 from the 246 

electrostatic potential of the system. TPOT offers two options for defining electrode potential Φ =247 

(Φ𝑉𝑉𝑉𝑉𝑉𝑉 − μ𝑒𝑒) e⁄  and Φ = − (μ𝑒𝑒 + FERMI_SHIFT) e⁄ . 248 

In addition, when we first realized the issue with VASPSol in simulating the explicit-implicit 249 

model, we implemented a penalty potential to prevent the explicit solvent molecules from 250 

desorbing from the explicit region. The penalty potential applied to atom I takes the form of a 251 

softplus function as 𝐸𝐸𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 = ℎ𝑃𝑃𝑃𝑃𝑃𝑃 log{1 + exp[(𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑜𝑜) 𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃⁄ ]}; where 𝑧𝑧𝑖𝑖 is the z coordinate of 252 

atom i, 𝑧𝑧𝑜𝑜 is the center of the softplus function, ℎ𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃 define the high and width of the 253 

penalty potential. We later realized that this is not a solution as it does not fix the root cause of 254 

VASPSol, i.e., the implicit solvent can fill the explicit region causing it to expand and apply stress 255 

to the electrode. We keep this implementation for rare instances in which explicit solvent 256 

molecules may desorb from the explicit region into the implicit one because in principles it should 257 

have no preference to be in either region. Note that none of the simulations presented in this paper 258 

were produced with the penalty potential described above. 259 
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4 DEMONSTRATION OF GRAND CANONICAL AIMD 260 

In this section, we demonstrate the use of the SOLHYBRID model and TPOT for grand canonical 261 

(GC) AIMD simulations. We consider the case of CO2 adsorption on the Au(110) electrode with 262 

the presence of one potassium cation K+ as our toy model. We choose this particular system 263 

because it has been shown that with one K+ the CO2 does not stay adsorbed on the Au(110) surface 264 

during AIMD simulation with pure DFT calculations.39 265 

To prepare the starting point for AIMD simulation, we first performed GC-AIMD for about 9 ps 266 

at -1 V vs RHE with the starting configuration described in Computational Details section to obtain 267 

a configuration in which CO2 chemisorbed on the electrode, i.e., bonded to Au surface atom with  268 

OCO�  bending angle that is significantly smaller than 180o, with a K+ nearby.  269 

 270 

Figure 5. Evolution of (a) Temperature, (b) distance  from Au and C atom of CO2 molecule (𝑑𝑑𝐴𝐴𝐴𝐴−𝐶𝐶), 271 

distance from K+ to two O atoms of CO2 molecule (𝑑𝑑𝑂𝑂1−𝐾𝐾+ and 𝑑𝑑𝑂𝑂2−𝐾𝐾+), (c) bending angle of the CO2 272 

molecule (𝑂𝑂𝑂𝑂𝑂𝑂�) during the AIMD simulation of CO2-K+/Au(111) with standard DFT. Snapshots of the 273 
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simulations are shown in (d-f). Quantities shown in (b-c) are illustrated in (g), where all water molecules 274 

and Au atoms that are not the binding site for CO2 were omitted for clarity. See Figure 1’s caption for the 275 

descriptions of color codes for atoms. The hydrogen bonding network is shown with green dot lines. 276 

Figure 5 shows the results of AIMD simulation of the system with standard DFT (PBE functional, 277 

neutral charge supercell). The movie of this simulation is provided in Supplementary Video 278 

Movie_K+CO2_DFT.mp4. A few snapshots of the movies are shown in Figure 5d-f. We found 279 

that the CO2 chemisorbed configuration is stable on the surface for about 4 ps, after which point, 280 

the CO2 desorbs from the surface, which is evidenced by the increase Au-C bond length from ~ 281 

2.1 Å to > 3.0 Å (Figure 5b) and by the increase of OCO�  angle from around or below 140o to near 282 

180o (Figure 5c). The result that the CO2 desorbs from the Au surface after a short simulation agrees with 283 

a similar simulation reported by Qin et al.39 284 

 285 

Figure 6. Evolution of (a) distance  from Au and C atom of CO2 molecule (𝑑𝑑𝐴𝐴𝐴𝐴−𝐶𝐶), distance from K+ to two 286 

O atoms of CO2 molecule (𝑑𝑑𝑂𝑂1−𝐾𝐾+ and 𝑑𝑑𝑂𝑂2−𝐾𝐾+), (b) bending angle of the CO2 molecule (𝑂𝑂𝑂𝑂𝑂𝑂�), (c) potential 287 

of Au(110) electrode (𝛷𝛷) during the AIMD simulation of CO2-K+/Au(111) with SOLHYBRID model. 288 
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Snapshots of the simulations are shown in (d-g).  See Figure 1’s caption for the descriptions of color codes 289 

for atoms. The hydrogen bonding network is shown with green dot lines. 290 

We next performed a similar AIMD simulation but with SOLHYBRYD model with a neutral 291 

charge supercell. The results are summarized in Figure 6. The movie of this simulation is provided 292 

in Supplementary Video Movie_K+CO2_SOLHYBRID.mp4. A few snapshots of the movies are 293 

shown in Figure 6d-g. Once again, we see that the CO2 molecule starts to desorb from the Au(110) 294 

electrode at around 4 ps second into the simulation as evidenced by the increased Au-C distance 295 

(Figure 6a) and  OCO�  angle (Figure 6b) in a way that is similar to AIMD simulation with standard DFT 296 

shown in Figure 5. The agreement between the two simulations validates our SOLHYBRID model which 297 

aims to simulate explicit solvent near the electrode surface. Thanks to our new implementation, we can 298 

calculate the electrode potential on-the-fly, as shown in Figure 6c. It is worth noting that the potential of 299 

the Au electrode at the beginning of the simulation is around 2 V vs RHE and decreases during the 300 

simulation to approach 0 V vs RHE at 10 ps. This variation of electrode potential is understandable because 301 

CO2 requires electrons to be donated to its antibonding π* orbital to form a bent configuration and to bind 302 

on the Au surface. The donated electrons are from the Au(110) surface thus increasing its electrode 303 

potential. Upon CO2 desorption, it returns those electrons to the electrode thereby reducing its electrode 304 

potential. This behavior, i.e., variation of electrode potential, should not happen in a grand-canonical 305 

environment in which the electrode is supplied with electrons from an electron source (reservoir) during 306 

electrochemical reactions, i.e., the electrons donated to CO2 are then replenished with electrons from the 307 

reservoir.  308 
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 309 

Figure 7. Evolution of (a) distance  from Au and C atom of CO2 molecule (𝑑𝑑𝐴𝐴𝐴𝐴−𝐶𝐶), distance from K+ to two 310 

O atoms of CO2 molecule (𝑑𝑑𝑂𝑂1−𝐾𝐾+ and 𝑑𝑑𝑂𝑂2−𝐾𝐾+), (b) bending angle of the CO2 molecule (𝑂𝑂𝑂𝑂𝑂𝑂�), (c) potential 311 

of Au(110) electrode (𝛷𝛷), and (d) charge in the supercell (q) during the GC-AIMD simulation of CO2-312 

K+/Au(111) with SOLHYBRID model at 0 V vs RHE. Snapshots of the simulations are shown in I-h).  See 313 

Figure 1’s caption for the descriptions of color codes for atoms. The hydrogen bonding network is shown 314 

with green dot lines. 315 

We next performed GC-AIMD simulation at 0 V vs RHE. The results are summarized in Figure 316 

7. The movie of this simulation is provided in Supplementary Video 317 

Movie_K+CO2_0.0VvsRHE.mp4. A few snapshots of the movies are shown in Figure 7e-h. We 318 

found that the CO2 does not desorb from the surface during the simulation. The Au-C bond length 319 

is measured to be 2.13 ± 0.06 Å (Figure 7a) and the OCO�  bent angle is measured to be 129o ± 4o 320 
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(Figure 7b). We also observed a large variation in the distance between K+ cation and the two 321 

oxygen atoms of the CO2 molecule. More importantly, we showed that we are able to maintain the 322 

potential of the Au electrode at 0 V vs RHE with an error of 0.04 V (Figure 7c). This target 323 

potential is achieved by controlling the number of electrons in the system with TPOT (Figure 7d). 324 

 325 

Figure 8. Evolution of (a) distance  from Au and C atom of CO2 molecule (𝑑𝑑𝐴𝐴𝐴𝐴−𝐶𝐶), distance from K+ to two 326 

O atoms of CO2 molecule (𝑑𝑑𝑂𝑂1−𝐾𝐾+ and 𝑑𝑑𝑂𝑂2−𝐾𝐾+), (b) bending angle of the CO2 molecule (𝑂𝑂𝑂𝑂𝑂𝑂�), (c) potential 327 

of Au(110) electrode (𝛷𝛷), and (d) charge in the supercell (q) during the GC-AIMD simulation of CO2-328 

K+/Au(111) with SOLHYBRID model at -1.0 V vs RHE. Snapshots of the simulations are shown iI(e-h).  See 329 

Figure 1’s caption for the descriptions of color codes for atoms. The hydrogen bonding network is shown 330 

with green dot lines. 331 
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Finally, we performed GC-AIMD simulation at -1.0 V vs RHE. The results are summarized in 332 

Figure 8. The movie of this simulation is provided in Supplementary Video Movie_K+CO2_-333 

1.0VvsRHE.mp4. A few snapshots of the movies are shown in Figure 8e-h. We found that the 334 

CO2 does stay adsorbed on the surface during the simulation. The Au-C bond length is measured 335 

to be 2.11 ± 0.06 Å (Figure 8a) and the OCO�  bending angle is measured to be 127o ± 3o (Figure 8b). 336 

We also observed the variations in the distance between K+ cation and the two oxygen atoms of 337 

the CO2 molecule are not as large as those in the simulation at 0 V vs RHE (Figure 7a). These 338 

results, i.e., shorter Au-C bond length, smaller OCO�  angle, and smaller variations of distance from K+ 339 

to oxygen atoms of CO2 than those in 0 V vs RHE case, indicate that the CO2 binds stronger on the Au(110) 340 

electrode and that the configuration and stability of the CO2 adsorption depends on the potential of the 341 

electrode. Once again, we show that we are able to maintain the potential of the Au electrode at the 342 

target potential (-1.0 V vs RHE) with a small error of 0.04 V (Figure 8c). This target potential is 343 

achieved by the variation of the number of electrons in the system that is done by our TPOT 344 

algorithm (Figure 8d). 345 

5  CONCLUSIONS AND OUTLOOK 346 

In this work, we have proposed to modify the popular implicit solvent model VASPSol by using 347 

a padding charge to enable its capability to perform simulations with the explicit-implicit hybrid 348 

solvent models (SOLHYBRID) and we have introduced an economical scheme to control the 349 

electrode potential (TPOT) that optimizes the number of electrons in the system during simulation 350 

to keep the electrode at a predetermined target potential. We have also demonstrated our methods 351 

by performing (GC-)AIMD for CO2 adsorption on Au(110) in the presence of the potassium cation. 352 
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Our approach not only allows the simulation of a hybrid explicit-implicit solvent but also facilitates 353 

the control of electrode potential with minimal error. 354 

While we have demonstrated that the simulations (of hybrid solvent model and constant electrode 355 

potential) are feasible with the popular plane-wave DFT package, i.e., VASP, such simulations are 356 

computationally demanding mainly because of the cost associated with solving linearized Poisson-357 

Boltzmann equation.5 In order to use this method for realistically large length scale and long time 358 

scale simulations, it is necessary to either improve the speed of solving linearized Poisson-359 

Boltzmann equation5 or to use data generated from these methods to develop machine learning 360 

interaction potentials (MLIP) that are electrode-potential dependent.  361 
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