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Summary

Data-driven models are being developed to predict battery lifetime because of their ability
to capture complex aging phenomena. In this perspective, we demonstrate that it is critical to
consider the use cases when developing prediction models. Specifically, model features need to be
classified to differentiate whether or not they encode cycling conditions, which are sometimes used
to artificially increase the diversity in battery lifetime. Many use cases require the prediction of cell-
to-cell variability between identically cycled cells, such as production quality control. Developing
models for such prediction tasks thus requires features that are blind to cycling conditions. Using
the dataset published by Severson et al. in 2019 as an example, we show that features encoding
cycling conditions boost model accuracy because they predict the protocol-to-protocol variability.
However, models based on these features are less transferable when deployed on identically cycled
cells. Our analysis underscores the concept of using the right features for the right prediction
task. We encourage researchers to consider the usage scenarios they are developing models for,
and whether or not to blind their model from information on cycling conditions in order to avoid
information leakage. Equally important, benchmarking model performance should be carried out
between models developed for the same use case.
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Context & Scale

Machine learning plays a critical role in accelerating materials research and optimizing battery
performance. In recent years, scientists and engineers have developed accurate data-driven models
to predict the lifetime of Li-ion batteries. The versatility of such models and their ability to shorten
battery testing have drawn substantial attention from industry and academia. Feature engineering
has been instrumental in achieving promising model performance. In this perspective paper, we
encourage researchers to determine whether they should blind their model from features that encode
cycling conditions, depending on their use case.

In model training datasets, battery cell aging is related to both intrinsic variability between cells
and induced variability between cycling conditions. We demonstrate that for certain applications,
such as production quality control, models should only use features that capture cell-to-cell vari-
ability. In these cases, features that encode information on cycling conditions should be avoided.
Through several analyses, we show that when this constraint is not upheld, model performance is
artificially inflated. Using the right features for the right task is essential to building data-driven
models suitable for real use cases.

Introduction

Optimizing rechargeable batteries is a challenging and necessary task as energy storage is de-
ployed to decarbonize transportation and the electricity grid. The battery design space is large,
spanning chemistry, architecture, manufacturing processes, and usage conditions. Besides, battery
lifetime is long and its evaluation is time- and resource-consuming, generally lasting several months
to years, even under accelerated testing conditions. Over the past few decades, there have been
substantial efforts to shorten battery lifetime evaluation, such as developing accelerated testing
protocols (typically under elevated temperatures)[1, 2] and electrochemical methods (such as high-
precision coulometry)[3]. Physics-based models[4, 5, 6, 7] and semi-empirical models[8, 9] have also
been widely used to capture battery degradation trajectories. More recently, substantial progress
has been made in data-driven approaches for battery lifetime prediction, typically involving machine
learning (ML) methods on large datasets[10, 11].

There are many use cases for battery lifetime prediction ML models, and the model development
is specific to each use case. In Figure 1, we provide an overview of several typical use cases and
classify them based on whether the cycling conditions are varied when carrying out the cycling
experiments. For example, a battery engineer who aims to optimize the cell design will cycle
batteries identically for a fair comparison (Figure 1 scenario a)[12, 13]. Alternatively, a model
sorting short-lasting batteries out of a production line needs to rely on minimal testing as batteries
cannot be cycled more than a few times (Figure 1 scenario b)[14]. In another scenario, a battery
engineer aims to determine the impact of usage conditions, such as the depth of discharge and
the charging current, on battery lifetime[l, 15, 16]. For such a use case, an experiment with
intentionally varied aging conditions is needed to build a prognosis model (Figure 1 scenario c).



Such a model could be further integrated into more complex architectures to optimize over a large
protocol parameter space (Figure 1 scenario d)[17, 18]. In another use case, an electric vehicle (EV)
engineer aims to integrate a prediction model in the battery management system (BMS) to estimate
the battery state-of-health (SOH)[10, 19, 20]. Contrary to the previous scenario, cells are cycled
variably during driving and the BMS can access historical data for predictions (Figure 1 scenario
e). Lastly, for battery repurposing, models do not have access to historical cycling data (Figure 1
scenario f)[21]. These use cases are diverse and involve cycling conditions which are either constant
or variable.
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Figure 1: Machine learning algorithms for battery research can be deployed for various use cases. This flowchart
illustrates the correspondence between available data and use cases.

Varying the cycling conditions is an artificial yet convenient way to enhance the diversity of the
dataset and decrease the number of cells that need to be tested. This approach of diversifying the
dataset via variable cycling conditions is analogous to accelerating aging via elevated temperature
cycling, with the goal being to decrease the resources (number of cells and time) required.

In 2019, Severson et al.[11] demonstrated that ML, combined with a large dataset, is effective
for predicting battery lifetime by employing data-driven feature engineering. The authors achieved
accurate early lifetime predictions for 124 commercial lithium iron phosphate (LFP)/graphite cells
using observations from the first 100 aging cycles. The cells were charged under different fast
charging protocols, but the discharge protocol was identical for all cells. Thus, the charging data
explicitly encoded the cycling conditions, while the discharging data (for a given cycle) did not.
Following this work, several battery datasets have been published[22, 23, 24, 25, 26]. Features
inspired by Severson’s work have been used to create models that can be transferred to different
datasets[27, 28, 29] or different chemistries[30]. Other feature engineering methods[31, 32] and more
complex ML algorithms such as neural networks have also been deployed for lifetime and SOH



estimation[20, 33, 34, 35]. These complex architectures can be used to improve lifetime prediction
accuracy[36] or to enable predictions with fewer aging cycles[37]. Both of these objectives have
been used as metrics to benchmark model performance. While ML approaches for battery lifetime
predictions are powerful, they also have pitfalls[38]. Among them are “nonlegitimate features”[39],
which are those linked or correlated with the outcome.

In this perspective, we analyze the Severson dataset to demonstrate that the community needs to
pay attention to which features to use, depending on the usage scenario. Using features developed by
Greenbank and Howey[32] extracted on (1) the charging data, (2) the discharging data, and (3) the
entire charge-discharge data, we show that models relying on features based on the charging data
have substantially better prediction accuracies than models using features from the discharging
data. This is because these former models directly capture protocol-to-protocol variations. In
fact, we show that models using no aging data at all and only the cycling conditions give good
performance. However, when deployed on identically cycled cells, models based on the charging
data do not maintain the same level of prediction accuracy. More generally, we show that feeding
information about the aging conditions into a lifetime prediction ML model will bias the model to
learn the protocol-to-protocol variations instead of learning the cell-to-cell variations. Thus, for use
cases aiming to detect cell-to-cell variability, models need to be blinded from cycling conditions to
avoid information leakage.

Experimental Procedures

In the Severson dataset, the authors artificially amplified the cell-to-cell variability by changing
the charging protocols (two constant current (CC) steps varied across cells, followed by a constant
current, constant voltage (CCCV) step). As a result, the cycle life (defined as the cycle number
when the capacity reaches 80% of nominal value) varied between 148 and 2,237 cycles. The discharge
conditions, on the other hand, were kept constant for all cells, providing a common diagnostic across
cycling conditions. In Figure 2, we define a feature classification scheme, specific to this dataset,
reflecting how these features are derived:

e “Class 0” features: cycling protocol parameters (no battery aging data)

e “Class 1”7 features: derived from the charging data during aging, which encode charging
protocols

e “Class 27 features: derived from the discharging data during aging

This classification scheme is generalizable to other battery datasets. Specifically, “Class 1”
features are those that encode aging conditions either through cycling or through calendar aging[16].
“Class 2”7 features rely solely on regions of the cycling curves that are kept constant across all cells.
This can be a diagnostic or check-up cycle, performed at regularly spaced intervals, to probe the
state of degradation[16, 26, 40]. Including a reset cycle at the start of such check-up cycles is
essential to erase any explicit information about aging conditions. In the Severson dataset, there
is no reset cycle between the charge and the discharge, but the CCCV at the end of charge is kept
constant across all cells and prevents any explicit information leakage to the discharge data.

The purpose of this perspective is to assess the importance of the feature classes for lifetime
predictions. Thus, we need features which are derived equivalently across charging and discharging
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Figure 2: Voltage and current versus time profiles from one full charge and discharge cycle in the Severson dataset.
Marked are the temporal regions from which “Class 1”7 and “Class 2” features are generated.

curves (e.g., using the same feature extraction routine). For this reason, we employ features de-
veloped by Greenbank and Howey[32]. Briefly, these features quantify the fraction of time a given
time series of interest (voltage, current, etc.) spends in a given window (e.g., 3.5V to 3.6V) during
a given time interval (10-cycle window in our study). See SI for a complete explanation of the
featurization. For simplicity, models using features based on the charging data, the discharging
data, or the full cycling data are referred to as “charge” (Class 1), “discharge” (Class 2) or “full”
(Class 1) model, respectively. Finally, we derive the features at different points in the early cycles
of the cells. This allows us to study how the information carried by such features evolves during
the early aging of the cells.

The ML task is to predict the battery lifetime, and to compare the impact of incorporating
features encoding cycling conditions directly or indirectly (“Class 0” and “Class 17). We employed
a regularized linear model (elastic net) and an ensemble model (random forest regressor), the latter
being able to capture nonlinear correlations. Most of the discussion is based on the results from the
random forest model, which provides better accuracy. To prevent overfitting and to optimize model
hyperparameters, a 10-fold cross-validation was carried out systematically using the GridSearchCV
class from Python package SKlearn[41] (see SI for details). An 80-20 train-test split was used.
Because we observe that the prediction accuracy depends on train-test splits, all of the analyses
conducted here are repeated over 10 random train-test splits. To evaluate the usefulness of an ML
approach, we employed a “dummy regressor” from the SKlearn library[41] as a baseline, which
always predicts the same output value (mean of the training set) regardless of the inputs.



Results and Discussion

“Class 0” model is a decent baseline model, without the need for any aging data.

Using solely the cycling protocols and no battery aging data (e.g., only “Class 0” features), we
show good but artificially inflated “early-prediction” model performance, compared to the dummy
regressor. We stress that this is not an early prediction model, but a model that predicts cycle life
as a function of cycling conditions. Table 1 reports the mean absolute percentage error (MAPE) for
both the linear model and the random forest model. These results show that by solely using cycling
conditions and no aging data, lifetime can be predicted with 26.4% error, a significant improvement
over the 41.2% error of the “dummy model”. Importantly, this confirms that cycling conditions are
predictive, even without aging data, as should be expected[15, 42].

Model Train error Test error
ode MAPE  (std) MAPE  (std)
“Dummy model” 40.4%  (1.3%) 41.2%  (7.4%)
“Class 0”7 (elastic net) 29.6%  (1.2%) 29.7%  (4.4%)
“Class 0” (random forest) 16.9%  (1.5%) 26.4%  (4.3%)

Table 1: Train and test mean absolute percentage errors (MAPE) for the baseline models. The mean MAPE and
standard deviation (std) are calculated across 10 train-test splits.

“Class 17 features carry more information than “Class 2”7 features.

Next, we compare ML performance using “Class 1”7 and “Class 2” features (Figure 3) as a
function of the number of early cycles used as inputs. The errors of the “charge” and “full”
models are equivalent, and substantially better than the “discharge” model. Importantly, the
“charge” models work equally well using only features from cycle 1 vs. features from cycle 150.
The low prediction errors of these models are explained by the fact that the “charge” features encode
both the protocol-to-protocol and the cell-to-cell variability. This makes the “charge” models even
more accurate than the “Class 0” model. In contrast, the “discharge” models are blinded from
cycling information. Thus, their predictive power is limited if only the first tens of cycles are
employed for the featurization, as shown in Figure 3. However, their accuracy improves steadily
with increasing early aging data, approaching the other two models’ accuracy after over 100 cycles,
consistent with Severson et al.[11]. Additionally, SI Figure S4 demonstrates that all models’ errors
are approximately equivalent if cycling information is manually included into the features. These
results confirm that a model not blinded from features that encode the intentionally varied cycling
conditions will have an artificially inflated early prediction accuracy. On the contrary, predicting
lifetime without knowledge of the cycling conditions is a considerably more challenging task.

“Class 2” models are more transferable to identically-cycled cells.

Finally, we compare “charge” and “discharge” models when deployed on a subset of cells from the
dataset that were cycled identically. This special case examines how we can predict the lifetime of
cells in which variation arises purely from intrinsic differences between cells, with one use case being
production quality control. We train and test these two models separately with features from cycles
141-150, and then deploy them on a test set of 6 unseen cells cycled identically. As seen in Table 2,
the “discharge” model outperforms the “charge” model. This trend is opposite to the model trained
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Figure 3: Evolution of the accuracies of random forest models based on how much aging data are included as inputs
to the models. A “Class 0” model relies solely on cycling conditions, thus does not need any aging data. The shaded
areas represent the values within one standard deviation, calculated across the 10 train-test splits results.

on the full dataset, which includes cells from many charging conditions. Thus, “Class 1”7 features
are less capable of capturing intrinsic cell-to-cell variability than “Class 2”7 features, because the
predictive power of the former relies strongly on the charging protocol encoded in the data (which
is not varied in this subset of the data). One limitation of the Severson dataset is that it does
not contain many repeats of the same charging protocol. As a result, as discussed in the SI, the
statistical relevance of the transferability study is limited (Dechent et al.[43] showed that at least 9
repeats are needed to capture the underlying variability of a cell population). This emphasizes the
need to design specific datasets tailored for specific applications.

Model Test error Unseen identically cycled cells
MAPE  (std) MAPE (std)
“Charge” model 13.3% (6.3%) 35.9% (5.5%)
“Discharge” model 18.8%  (4.7%) 25.0% (2.4%)

Table 2: Mean and standard deviation (std) of the MAPE across 10 train-test splits. The test error is obtained after
training and validation on the entire dataset except for the excluded set of cells. A “discharge” model is more able
to maintain the same level of performance on a set of unseen, identically cycled cells compared to a “charge” model.
The excluded set is composed of cells from protocol “5.0C — (67%) — 4.0C” in the Severson dataset.



The analysis and results are reproducible using different sets of features.

For completeness, we repeated our analysis using features originally derived by Severson et
al.[11]. Only 7 of the 20 original features were employed; not all features could be derived identically
on the charge and discharge data because the charging protocol has three steps, while the discharge
protocol has only one. SI Figure S6 shows similar model performance trends as observed in Figure
3 (which uses features developed by Greenbank and Howey[32]). FErrors are noticeably higher
compared to Figure 3 (~ +5% in error for the best performing models), which is expected since
the features are not optimized. This analysis confirms that cycling conditions information can bias
models, independently of the featurization method.

Conclusion & Recommendations

In recent years, the battery research community has deployed data-driven methods to predict
battery lifetime. The dataset published by Severson et al. in 2019[11], among several others, is
widely used for benchmarking model performance. In this dataset, charging conditions are varied
to broaden the distribution of cycle life, while discharging conditions are kept constant across the
cells. We demonstrate that a prediction model using only cycling conditions and no aging data can
achieve decent (26.4% MAPE) predictions (compared to a dummy regressor, 41.2% MAPE) because
cycling conditions strongly influence battery lifetime. More importantly, we show that models with
features encoding the cycling conditions are more accurate than models that do not rely on cycling
conditions. However, these models do not maintain the same level of performance when predicting
intrinsic cell-to-cell variability among subsets of cells cycled identically.

Our results illustrate that ML models for lifetime prediction can be biased to learn the intention-
ally induced protocol-to-protocol variations in a dataset. In some use scenarios, such as prognosis
predictions and cycling protocol optimization, this is advantageous. However, in other scenarios,
such as production quality control and chemistry/cell design optimization, one wants to detect the
intrinsic variability between the cells rather than how cycling conditions determine the lifetime. In
such use cases, battery cells are cycled identically, making the prediction model task harder, as we
show here.

We recommend that researchers carefully consider the use cases when developing lifetime pre-
diction models, and select the right features for the right prediction tasks to avoid information
leakage. Importantly, benchmarking of lifetime prediction models should be carried out for models
designed for the same use cases. Comparing model performance across use cases would be unfair as
some models can rely on richer data encoding the protocol-to-protocol variability as demonstrated
in this perspective.
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