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In this work, the new class of locally range-separated local hybrid (LRSLH) functionals is presented. LRSLH func-
tionals combine the concepts of a local exact-exchange admixture as in local hybrids with a locally range-separated
exact-exchange admixture as in locally range-separated hybrid functionals. The satisfiability of important theoretical
constraints on hybrid functionals by the LRSLH approach is discussed in comparison to existing hybrid functional
classes by proposing a new categorization scheme for hybrid functionals, labeled as hybrid functional ladder. In par-
ticular, this concerns the iso-orbital and asymptotic potential limits as well as the high-density limit with respect to
uniform coordinate scaling and the gradient expansion of the exchange energy density, which in contrast to existing
hybrid schemes can be simultaneously satisfied by LRSLH functionals. Furthermore, this work provides a first ex-
plorative study regarding the performance of the new LRSLH approach. Despite featuring only up to two empirical
parameters, the optimized LRSLH functionals exhibit a similar performance for atomization energies and transition
barrier heights as some of the more recent hybrid functionals. In particular, this highlights the great potential of the
new LRSLH approach.

Keywords: Density Functional Theory, Exchange-Correlation Functionals, Hybrid Functionals, Local Hybrid Function-
als, Local Range Separation

I. INTRODUCTION

Owing to its often excellent ratio between the achievable ac-
curacy and the required computation costs, hybrid function-
als, which have been first developed by Becke in 1993 based
on an adiabatic connection formalism,1 have evolved into
one of the most popular and successful classes of exchange-
correlation (XC) functionals within density functional the-
ory (DFT) thus far.2–6 In particular, by replacing a certain
amount of (semi-)local exchange by Hartree-Fock-like exact
exchange, the self-interaction error (SIE)7 inherent to (semi-
)local exchange functionals is mitigated. While employing
100% exact exchange would fully cancel the SIE, it is known
that (semi-)local exchange implicitly describes non-local cor-
relation effects.8 Conventional hybrid functionals are thus a
compromise between the necessity to accurately describe cor-
relation effects and cancelling the SIE and as such generally
aim to balance out both effects.9 Hence, for a wide range of
different properties, ranging from themochemistry to transi-
tion barrier heights10 to excitation energies,11 hybrid func-
tionals are able to provide higher accuracies than Hartree-
Fock and conventional semi-local XC functionals, while for-
mally exhibiting similar computational costs. The most simple
approach to incorporate an exact-exchange admixture, which
has been proposed in the initial work by Becke,1 is to intro-
duce a simple mixing constant 0 < a ≤ 1, yielding the global
hybrid (GH) exchange energy functional

Egh
x,σ =a · Eex

x,σ + (1− a) · Esl
x,σ , (1)

where Eex
x,σ and Esl

x,σ are the exact-exchange and semi-local
exchange energies, respectively. During the last decades, a
large variety of different global hybrid models have been
developed,12–14 e.g., by employing more sophisticated ap-
proaches for the semi-local exchange energy tuned for be-
ing used in combination with exact exchange.15 While the
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best performing global hybrids are often able to provide
accuracies close to more sophisticated electronic structure
methods,16–18 global hybrids in general still suffer from sev-
eral systematic shortcomings. First of all, the optimal global
mixing constant a has been found to vary significantly for
different properties. While molecular structures are often al-
ready well described with small a,19,20 moderate values of a
around 0.20 to 0.25 as in B3LYP13 and PBE012 generally
perform well for thermochemistry.10,18 However, higher val-
ues are usually needed to accurately describe transition bar-
rier heights10,21,22 as well as core, Rydberg and long-range
charge-transfer excitations calculated with linear-response
time-dependant DFT.11,23–29 In fact, the latter properties are
prominent cases in which conventional global hybrid function-
als with a medium amount of exact exchange are known to
fail systematically. Furthermore, global hybrids, as the un-
derlying semi-local XC functionals and Hartree-Fock, are not
able to describe non-local long-range correlation effects such
as dispersion, thus usually requiring either a dedicated non-
local correlation functional such as VV10,30 local dispersion
models,31,32 a force-field-like correction as in D3 or D433–35

or similar models.36 Similarly, conventional global hybrids
cannot describe strong correlation effects, except dedicated
non-local strong-correlation models are incorporated37–40 or
schemes beyond the usually applied GKS scheme41 are used.42

In range-separated hybrid (RSH) functionals,25,43–50 the
exchange functional is separated into a long- and a short-range
part based on a range-separation of the underlying Coulomb
operator with respect to the inter-electronic distance, usually
by combining either an error or erfgau function51 with a posi-
tive constant range-separation parameter. In its most common
scheme, RSH functionals combine long-range exact exchange
Eex,lr

x,σ with a short-range semi-local exchange functional Esl,sr
x,σ

Ersh
x,σ =Eex,lr

x,σ + Esl,sr
x,σ , (2)

which in contrast to global hybrids with a < 1, is able to pro-
vide the correct asymptotic exchange potential.25 In fact, the
latter has been found to be crucial for the accurate descrip-
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tion of long-range excitations in linear-response TDDFT, such
as many charge-transfer and some Rydberg excitations11,25,52

and thus effectively eliminates one of the systemic shortcom-
ings of global hybrid functionals. On the other hand, RSHs us-
ing exact exchange in the short-range53 have been found to be
generally beneficial for the description of core excitations with
linear-response TDDFT.52 However, as for global hybrids a
reparametrization for elements in different periods is required.
While only a few functionals feature a combination of short-
and long-range exact exchange,52,54,55 most modern RSH ap-
proaches such as the ωB97X family56–58 or CAM-B3LYP59

combine long-range exact exchange with a global-hybrid-like
exact-exchange admixture. Accordingly, these RSHs are of-
ten able to provide accurate CT excitations while to a large
extend retaining the accuracy of global hybrids for many
ground-state properties.

However, as for global hybrid functionals, the constant
range-separation parameter in conventional RSH functionals
has been found to significantly depend on the investigated
system and excitation.60,61 This has led to a number of differ-
ent optimal tuning approaches,62–66 which, despite improving
calculated excitation spectra, violate size consistency by con-
struction and as such are applicable only for specialized prob-
lems. Another more sophisticated approach, that introduces
a system-dependency into RSH functionals while retaining
size-consistency, are locally range-separated hybrid (LRSH)
functionals, which have been introduced by Savin and co-
workers in 2008.67 In particular, the range separation constant
in conventional RSHs is replaced by a real-space-dependent
range-separation function (RSF), thus being able to adapt the
range separation depending on the molecular environment.
Mostly due to recent advancements in semi-numerical inte-
gration techniques, which enable an efficient calculation of
the occuring non-standard exact-exchange integrals,68 LRSH
functionals have gained more attention just recently.69,70 In
particular, this concerns the development of new models for
the RSF. For example, this includes the recent models by
Kümmel and co-workers71,72 as well as a non-empirical scheme
to derive RSFs from satisfying the gradient expansion of the
exchange hole to a certain order.73 However, LRSH function-
als are still in an early development phase compared to the
other hybrid functional approaches, with the satisfiability of
exact constraints such as the high-density limit with respect
to homogeneous coordinate scaling and the iso-orbital con-
straint still being discussed.72,73

In a similar way as in the LRSH approach, the global mix-
ing constant in global hybrid functionals can be replaced by
a real-space-dependent local mixing function (LMF), yield-
ing so-called local hybrid (LH) functionals, introduced twenty
years ago by Jaramillo et al.74 Apart from providing a more
flexible exact-exchange admixture than in global hybrids by
being able to adapt to the molecular environment, introduc-
ing a real-space dependence through the LMF allows the
satisfaction of a number of additional physical constraint
compared to global hybrids, including, e.g., the iso-orbital
limit74 and the high-density limit with respect to uniform
coordinate scaling.75 On the other hand, the LH approach
requires the calculation of non-standard exact-exchange in-
tegrals similar to the LRSH scheme and suffers from the so-
called gauge problem due to the admixture of exchange energy
densities rather than exchange energies.76 In fact, these prob-
lems have been solved effectively by employing efficient semi-

numerical integration schemes19,77–84 and the introduction of
suitable calibration function (CF) models,85–87 respectively.
Accordingly, the development of more physical and accurate
LMF models is in the focus of current local hybrid research.
However, despite several attempts, more sophisticated LMF
approaches75,88–92 did not provide significant improvements
compared to the simple t-LMF,93,94 which is the most suc-
cessful LMF thus far. Nonetheless, recently developed t-LMF-
based LH functionals such as LH20t9 have already shown
great potential in simultaneously describing ground state
thermochemistry and different electronic excitation classes
with high accuracy.23 In fact, local hybrids in general have
been shown to be able to systematically solve the problem of
accurately describing core and Rydberg excitations,23 which
is usually not possible with conventional RSHs. However, lo-
cal hybrids are not able to provide the correct asymptotic
XC potential95 and thus accurate long-range charge-transfer
excitations.23 More recent developments include the combi-
nation of local hybrids with conventional range-separated hy-
brid functionals (range-separate local hybrids, RSLHs)96,97 as
well as efforts to mimic strong correlation effects98,99 similar
to the B05 family of functionals,37,38 which essentially can be
viewed as a special form of local hybrid functionals. A more
comprehensive summary of local hybrids can be found in a
recent review.100

While the more recent hybrid functional approaches indi-
vidually are thus able to solve many of the main issues of con-
ventional global hybrid functionals, currently none of them is
able to do so simultaneously. For example, the iso-orbital limit
and the correct uniform coordinate scaling in the high-density
limit in principle can be satisfied by local hybrid functionals,
while it is not possible to provide the correct asymptotic ex-
change potential. On the other hand, the latter can be easily
implemented using LRSH functionals, while the reasonability
satisfying the former two constraints within the LRSH ap-
proach is still debated. The most straightforward approach
to enable simultaneous satisfaction of all these constraints,
which is presented in this work but has not been investigated
thus far, is the unification of the LH and LRSH approaches
within a common hybrid functional class, which will be called
locally range-separated local hybrid (LRSLH) functionals.

The present work is structured as follows. First, the theo-
retical background of the new LRSLH approach will be de-
scribed in detail in sec. II. Apart from their formal mathemat-
ical description, this includes the embedding of the LRSLH
model into a new general ordering scheme for hybrid func-
tionals similar to the prominent Jacob’s Ladder of XC func-
tional approximations101 as well as a detailed discussion of
satisfiable theoretical constraints within this new ordering
scheme. Following this, the performance and benefits of the
new LRSLH approach will be examined in comparison to the
other hybrid functional classes by optimizing and evaluating
various hybrid functional models with respect to conventional
thermochemical and transition barrier height test sets. While
the investigated functional models and computational details
are described in detail in secs. III and IV, respectively, the
results of this explorative study are discussed in sec. V.
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II. THEORY

A. Locally Range-Separated Local Hybrid Functionals

In the following, the underlying mathematical background
of the new LRSLH model will be described in detail. Here,
µ, ν have been used as general basis function indices and σ, ς ∈
{α, β} as spin indices. For clarity, the space variable r will be
omitted, except in cases in which it is considered essential for
understanding.

Being a combination of LH and LRSH functionals, the
LRSLH exchange energy functional in its spin-resolved form
can be expressed as

Elrslh
x,σ =

∫
gσ · eexx,σ dr +

∫
[1− gσ] ·

[
elrshx,σ +Gσ

]
dr , (3)

where gσ is the local mixing function (LMF) managing
the real-space-dependent admixture of the full-range exact-
exchange energy density

eexx,σ (r) = −1

2
·XTDσAσDσX (4)

to the LRSH exchange energy density elrshx,σ . X denotes the
basis function vector at the position r within the basis {χµ},
Dσ the corresponding spin density matrices and

Aσµν (r) =

∫
χµ (r′)χν (r′)

|r− r′| dr′ . (5)

the associated real-space-dependent two-center integrals over
the Coulomb operator, commonly denoted as A matrix. In
the same way as local hybrids,76,85,86 LRSLH functionals suf-
fer from the so-called gauge problem caused by the local ad-
mixture of exchange energy densities. In particular, exchange
energy densities as eexx,σ and elrshx,σ are only defined up to a func-
tion integrating to a vanishing contribution in the exchange
energy. Hence, adding a so-called calibration function (CF)
Gσ with ∫

Gσ (r) dr = 0 (6)

to either of the two exchange energy densities to consider the
potential mismatch between their gauge origins is necessary.
While introducing a CF has no effect on GH and RSH func-
tionals, a local admixture as in LH and LRSLH functionals
gives the additional non-vanishing energy term∫

gσ ·Gσ (r) dr 6= 0 . (7)

For local hybrids, it is known that neglecting the gauge prob-
lem, i.e., setting Gσ = 0, can cause some issues, e.g., too re-
pulsive dissociation curves of noble gas dimers86 or unreason-
able empirical dispersion corrections.102 Therefore, a number
of different approaches for constructing suitable CF models
have been proposed,86,87 with CFs based on the pig scheme85

being the currently best compromise between computational
costs and effectiveness regarding the mitigation of the men-
tioned issues.

While in principle elrshx,σ can be any locally range-separated
exchange energy density, i.e., featuring short- or long-range
exact exchange as well as combinations of both, the formalism

will be explained here only for the most common case of long-
range exact exchange. In this case,

elrshx,σ = eex,lrx,σ + esl,srx,σ , (8)

with the long- and short-range parts of the underlying
Coulomb operator being given by

1

|r− r′| =
erf (ωσ · |r− r′|)

|r− r′| +
1− erf (ωσ · |r− r′|)

|r− r′| , (9)

where ωσ is the real-space-dependent range separation func-
tion (RSF). While a range-separation based on the erfgau or
a Gaussian function are also possible in principle,51 only the
most common case of an error function will be considered
here. Accordingly, the long-range exact-exchange energy den-
sity is given by

eex,lrx,σ = −1

2
·XTDσAσ,lrDσX (10)

with the long-range A matrix

Aσ,lrµν (r) =

∫
erf
(
ωσ ·

∣∣r− r′
∣∣) · χµ (r′)χν (r′)

|r− r′| dr′ . (11)

On the other hand, an exact formula for the short-range (semi-
)local exchange energy density esl,srx,σ is only known for Slater-
Dirac exchange,103,104 i.e., within the local density approxi-
mation (LDA). For short-range exchange functionals on the
generalized-gradient approximation (GGA) level, different ap-
proximations have been proposed.105,106 One of the most com-
mon ones is the one by Hirao and co-workers,43 which is used
throughout this work, as in contrast to some other approaches
it provides the correct LDA limit. esl,srx,σ is then given by

esl,srx,σ = −3

2

(
3

4π

)1/3

ρ
4/3
σ · [1 + F x

σ ] · [1− fσ] , (12)

where fσ is the long-range separation factor within the Hirao
approach

fσ =
8

3
aσ

[√
π · erf

(
1

2aσ

)
− 3aσ + 4a3σ

+
(
2aσ − 4a3σ

)
· exp

(
− 1

4a2σ

)]
(13)

with the auxiliary quantity

aσ =
1

k
· ωσ
ρ
1/3
σ

·
√

1 + F x
σ , (14)

the electron spin density ρσ, the GGA enhancement factor F x
σ

and k = 2
(
6π2
)1/3 .

Eq. (3) is the common expression of the LRSLH approach
within the exchange picture,73 highlighting the interpretation
of LRSLH exchange as exchange functional. However, as pos-
sible for all hybrid functionals, one can recast eq. (3) in such
a way that LRSLH exchange gives an energy correction to the
exact-exchange energy Eex

x , yielding the LRSLH XC energy
functional

Elrslh
xc = Eex

x + Elrslh
nlc + Esl

c (15)

Elrslh
nlc =

∑
σ

∫
[1− gσ] ·

[
esl,srx,σ − eex,srx,σ +Gσ

]
dr . (16)
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That is, in addition to the semi-local correlation functional
Esl

c , the LRSLH approch provides the additional non-local
correlation term Elrslh

nlc . Since Esl
c usually covers most dynam-

ical correlation effects, Elrslh
nlc is formally often interpreted

as non-dynamical correlation in the context of local hybrid
functionals.100 While this formal ansatz has been successfully
used to mimic non-dynamical correlation effects to some ex-
tent, e.g., in more recent functionals by the Kaupp group98,99

or implicitly in the B05 family of functionals,37,38 KP1639

or the DM21 functional,107 it should be noted that the al-
ternative interpretation as non-local dynamical correlation
functional is equally justified but has not been explicitly em-
ployed thus far. Either way, the reformulation of the LRSLH
approach into the correlation picture provides an additional
angle on the LRSLH model to exploit theoretical constraints
(see sec. II C for details).

As for the underlying LH and LRSH functionals, the occur-
ring non-standard exact-exchange integrals in LRSLH func-
tionals and their Fock matrix elements

Flrslh
xc,σ =

∂Elrslh
xc

∂Dσ , (17)

which are required for a self-consistent implementation, and
higher derivatives cannot be calculated analytically. How-
ever, the occurring non-standard exact-exchange integrals are
identical to the ones in the LH and LRSH approaches. Ex-
plicit expressions for the Fock matrix elements for the lat-
ter two can be found in refs. 100 and 73. Hence, the im-
plementation of LRSLH functionals into quantum chemistry
codes that already feature LH and LRSH functionals, such as
Turbomole108 or Raqet,109 is rather straightforward. In par-
ticular, this enables reusing already existing implementations
of efficient semi-numerical integration schemes such as the
modified COSX method.77 Accordingly, computation costs of
LRSLH functionals are comparable to those of LRSH func-
tionals with a global exact exchange component.

B. Hybrid Functional Ladder

During the last decades a myriad of different approxima-
tions to the XC functional have been developed. The first and
most popular scheme to categorize different approximations
is the so-called Jacob’s Ladder of XC approximations, intro-
duced by Perdew and Schmidt in 2001.101 In particular, their
scheme distinguishes between five different rungs of ascending
complexity, the LDA, the GGA, the meta-GGA, the hyper-
GGA and the generalized random-phase approximation. To
consider functionals featuring just a linear dependence on
the non-local density matrix explicitly, Janesko has extended
the original scheme by rung 3.5 functionals.110 While the for-
mer three rungs, which are often grouped together as (semi-
)local functionals, mainly differ in the employed local ingre-
dients and applicable theoretical constraints, from a technical
and performance point of view they are often rather simi-
lar. On the other hand, all the different hybrid functional
classes are grouped together with other non-local occupied-
orbital-dependent functionals such as UW12111,112 within the
hyper-GGA rung, despite enabling the satisfaction of different
theoretical constraints, featuring different ingredients and re-
quired integration techniques and providing different system-
atic shortcomings for the calculation of various properties. In

fact, since most of the newly developed XC functionals con-
tains a certain amount of exact exchange in one or the other
way, they can be formally identified as hyper-GGA or hybrid
functionals. However, this does not necessarily suffice to fully
characterize the general features of the functional. While dif-
ferent hybrid functional classes have been introduced during
the last decades, a more detailed systematic categorization
scheme for different hybrid functionals would be beneficial.

FIG. 1. Graphical representation of the hybrid functional ladder
up to second order.

In analogy to the Jacob’s Ladder by Perdew and
Schmidt,101 I thus propose a new hybrid functional ladder
for ordering the different known hybrid functional classes with
respect to their complexity and the required computational ef-
forts, including the new LRSLH functionals. A graphic repre-
sentation can be found in fig. 1. In particular, two independent
ordering parameters are considered, the RSF and the mixing
function, as described in detail in sec. II A within the context
of the LRSLH approach. In fact, in the case neither a mixing
function nor an RSF is used, i.e., gσ = 0 and ωσ = 0, one
obtaines a pure semi-local (SL) exchange functional. While
this is no real hybrid functional, it can be interpreted as a
0th order hybrid or as 0th rung, similar to the Hartree world
in the original scheme. Obviously, no exact-exchange integrals
need to be calculated on the 0th rung. Alternative choices for
the RSF and the mixing function are a) a global constant, b)
a local function depending on r and c) a non-local function
depending on the two independent space variables r and r′. A
graphical representation of the amount of exact exchange ad-
mixed in the different classes of the hybrid functional ladder
is given in fig. 2 to highlight their differing complexity.

Hybrid functionals containing at most a non-vanishing
constant for the RSF or the mixing function are catego-
rized as first order functionals. This includes global hybrids
(gσ = const. 6= 0, ωσ = 0) and RSH functionals (gσ = 0,
ωσ = const. 6= 0). In fact, many functionals usually identi-
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FIG. 2. Exact exchange (EXX) admixture depending on the inter-electronic distance |r− r′| and the real-space coordinate r along the
bonding axis of the NO molecule within six different hybrid functional classes. A mixing constant of a = 0.5, an unscaled common t-LMF,
a constant range separation parameter ωσ = 0.3 a−1

0 and an unscaled ge2-RSF have been used for the plots.

fied as range-separated hybrids such as ωB97X-D57 do not
fall in either of both categories. Instead they would be cate-
gorized as range-separated global hybrid (RSGH) functionals
due to the incorporation of a constant amount of exact ex-
change in the short range. Since pure RSHs as LC-BLYP60

often exhibit a significantly different performance than range-
separated global hybrids, this distinction appears to be rea-
sonable. RSGH functionals, which include many of the cur-
rently most accurate hybrid functionals, thus provide the most
complexity of the three subclasses on the first rung of the hy-
brid functional ladder. Regarding the calculation of the exact-
exchange integrals, analytical integration schemes can be em-
ployed (although semi-numerical methods might be advanta-
geous).

On the second rung, the mixing function and the RSF are
allowed to exhibit a real-space dependence. Apart from the al-
ready investigated classes, i.e., LHs (gσ (r), ωσ = 0), LRSHs
(gσ = 0, ωσ (r)) and RSLHs (gσ (r), ωσ = const. 6= 0), this
also includes locally range-separated global hybrid (LRSGH)
functionals (gσ = const. 6= 0, ωσ (r)) and the new class of
LRSLH functionals (gσ (r), ωσ (r)). In fact, the new LRSLH
approach is the most sophisticated of the second-rung hybrid
functional schemes, as it unifies the concepts of all other sub-
classes on the second rung of the hybrid functional ladder. As
such, the introduction of LRSLH functionals closes a miss-

ing gap within this scheme and all other hybrid functional
classes up to the second rung can be viewed as special cases
of LRSLH functionals. In contrast to hybrid functionals on
the first rung, exact-exchange integrals cannot be calculated
analytically but require a semi-numerical integration in one
or the other way.

On the third rung, which is not shown explicitly in
fig. 1, the mixing function and the RSF are allowed to
become non-local themselves, thus formally yielding non-
local hybrid, range-separated non-local hybrid, locally range-
separated non-local hybrid, non-locally range-separated hy-
brid, non-locally range-separated global hybrid, non-locally
range-separated local hybrid and non-locally range-separated
non-local hybrid functionals, with the latter providing the
most flexibility for third-rung hybrid functionals. However, to
my best knowledge none of the current XC functional approx-
imations can be categorized into the third rung. One of the
main reasons for that might be that occurring non-standard
exact-exchange integrals in general would need to be calcu-
lated fully numerically, i.e., employing a double-grid integra-
tion as in VV10. Apart from potential efficiency problems,
the Coulomb cusp might be one concern regarding numeri-
cal stability. Furthermore, a full numerical double-grid inte-
gration would already enable calculations with all kinds of
other hyper-GGA functionals. Hence, the restriction to just
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non-local-hybrid-like functionals is an unnecessary restriction
from a technical point of view. Accordingly, while a third rung
on the hybrid functional ladder can be proposed formally, its
usefulness in practice is questionable.

C. Theoretical Constraints

In the history of XC functional development, theoretical
constraints have played a major role for many new develop-
ments and often were the driving force to improve existing XC
functionals.113,114 Even modern machine-learning approaches
often heavily rely on exact theoretical constraints rather than
just a large number of reference data.107 When ascending the
Jacob’s Ladder of density functional approximations, an addi-
tional set of constraints can be satisfied on each rung. For ex-
ample, GGA functionals can give the correct gradient expan-
sion of the exchange energy density115 and the exchange po-
tential, but cannot do so simultaneously.116,117 On the meta-
GGA level, the SCAN functional and its successors118,119 aim
to satisfy all constraints satisfiable by third-rung functionals.
Similarly, a number theoretical constraints for functionals on
the fourth rung of Jacob’s Ladder are known and are used
across the literature mainly for the construction of hybrid
functionals.75,100

In this work, those theoretical constraints that are directly
related to the exact-exchange admixture will be reviewed
in view of the various hybrid functional classes. Hence, the
considered constraints are just a subset of constraints that
can be considered to be important in the context of hybrid
functionals. In particular, this includes the iso-orbital limit,
the behavior under uniform coordinate scaling, the asymp-
totic XC potential and the homogeneous limit and gradient
expansion of the exchange energy density. Theoretical con-
straints such as the Lieb-Oxford bound,90,120,121 the flat-plane
condition6,107,122 and satisfaction of the IP theorem61 have
been shown to be satisfiable within certain hybrid setups but
provide more indirect information about the exact-exchange
admixture. Theoretical constraints on the exact XC functional
that target strong correlation effects, such as the correct be-
havior upon closed-shell bond-breaking, are intentionally ex-
cluded from the discussion to circumvent necessary assump-
tions regarding the interpretation of the additional non-local
correlation term eq. (16) as non-dynamical correlation, since
this would go beyond the scope of the present work.

In the following, the four mentioned theoretical constraints
will be described in more detail and the satisfiability within
the different hybrid functional classes will be assessed. The
results are summarized in table I. In this respect it should be
noted that Hartree-Fock satisfies all of these constraints by
default. Accordingly, the Hartree-Fock limit is excluded from
the consideration, if it could be constructed within a certain
hybrid functional class, e.g., RSHs with an infinite ω.

1. Iso-Orbital Limit

The iso-orbital limit or iso-orbital constraint concerns re-
gions in real space, which exclusively feature a single occupied
orbital.74,100,123,124 In these iso-orbital regions, the probabil-
ity to find two electrons with same spin at the same position r

TABLE I. Satisfiability of theoretical constraints by the different
hybrid functional classes. −, (+) and + means not satisfiable, sat-
isfiable with restrictions and fully satisfiable, respectively.

Class
Constraint

Iso-Orbital HDLa Asymp. Pot.b Hom. Limitc

SL − − − +

GH − − − +
RSH − − + −
RSGH − − + −
LRSH (+) (+) + +
LRSGH (+) (+) + +
LH + + − +
RSLH + + + −
LRSLH + + + +

a High-density limit with respect to homogeneous coordinate
scaling

b Asymptotic exchange potential.
c Homogeneous limit and gradient expansion of exchange en-

ergy density.

is exactly 0. Accordingly, same-spin correlation contributions
are absent, so the self-interaction error (SIE) of the classical
Coulomb interaction, which is a same-spin contribution, needs
to be cancelled fully by employing 100% exact exchange. A
special case of iso-orbital regions are iso-electron regions.125

In particular, iso-electron regions feature the additional con-
straint that the probability to find two electrons with opposite
spin at the same position r is also exactly 0, while it can be
generally non-zero in iso-orbital regions. That is, opposite-
spin correlation, which in general can occur in iso-orbital re-
gions if the single spatial orbital is doubly occupied, is absent
in iso-electron regions. Imposing 100% exact exchange only in
iso-electron regions, but not in iso-orbital regions in general, is
referred to as iso-electron limit or iso-electron constraint. The
iso-electron limit is automatically satisfied if the iso-orbital
limit is satisfied, but not vice versa, so the iso-orbital limit is
the stronger constraint.

In fact, satisfying the iso-orbital limit by hybrid functionals
has the consequence that the remaining opposite-spin corre-
lation in two-electron iso-orbital systems such as H2 and the
helium atom is required to be fully described by an addi-
tional dedicated correlation functional, since eq. (16) is con-
strained to give a vanishing non-local correlation contribu-
tion. That is, the iso-orbital constraint imposes a vanishing
same-spin correlation contribution from hybrid exchange in
two-electron iso-orbital systems. In contrast, just imposing
the iso-electron limit does not impose any constraints on two-
electron iso-orbital systems. Accordingly, eq. (16) is allowed to
give a non-vanishing correlation contribution for two-electron
iso-orbital systems, i.e., the opposite-spin correlation at least
in parts can be described by the exchange functional. In fact,
the latter is implicitly exploited as part of the systematic error
compensation in most semi-local and hybrid XC functionals.8

In particular, this concerns the balance between the semi-local
correlation hole and the non-local hole stemming from eq. (16)
to approximate the exact correlation hole.4 However, relying
on this systematic error compensation is known to play a ma-
jor role in the zero-sum tradeoff problem of GH functionals
between the performance for different properties and thus is
one of the major aspects limiting the accuracy achievable with
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conventional GH functionals. As pointed out, e.g, by Janesko
on the example of LH functionals,4 one of the main goals of
more sophisticated hybrid functional schemes such as LRSH
and LRSLH functionals is, however, to achieve beyond-zero-
sum accuracies. Intrinsically, this goes along with replacing
the systematic error compensation from GH functionals with
more accurate correlation functionals. In this sense, it appears
more reasonable to require new hybrid functionals to satisfy
the stronger iso-orbital limit instead of the iso-electron con-
straint, since the latter imposes no restrictions needed to pre-
vent the outlined error compensation effects in closed-shell
systems.

While exact iso-orbital regions occur only in a few systems
as those mentioned above, satisfaction of the iso-orbital con-
straint can be important in many more cases, in particular, in
regions that are dominated by just one occupied orbital and
thus can be identified as effective iso-orbital regions. In molec-
ular systems, this concerns mainly two different cases, regions
far away from the molecule, which will be denoted as asymp-
totic regions and should not be confused with the asymp-
totic behavior in inter-electronic space, and regions close to
the nuclei.100 In asymptotic regions, the electron density is
dominated by that occupied orbital with the slowest expo-
nential decay. While the contribution from the other occu-
pied orbitals is not exactly 0, their influence diminishes expo-
nentially when going farther away from the molecule. Hence,
asymptotic regions can be identified as effective iso-orbital
regions. In the context of LH functionals, it has been found
that the intermediate regions between valence and asymp-
totic regions are responsible for the accurate description of
Rydberg excitations,23 so satisfying the iso-orbital constraint
in asymptotic regions is an important limiting case.

Similarly, the respective 1s orbitals dominate the electron
density at the nuclei. While higher angular momentum or-
bitals at the same nucleus exhibit nodes and thus vanish ex-
actly, the contribution from orbitals of other nuclei is negligi-
ble. That is, only s orbitals contribute to the electron density
at a respective nucleus, with the 1s orbital obviously having
by far the largest contribution. While this effect becomes more
pronounced for heavy elements, contributions from higher s
orbitals might still have a significant contribution for light
elements. Hence, nuclei positions can be identified in most
parts as effective iso-orbital regions, in particular, for heavier
elements, while lighter elements might still feature a slight
multi-orbital character. Satisfying the iso-orbital limit at the
nuclei positions is obviously relevant for the accurate descrip-
tion of core excitations using linear-response TDDFT, which
cannot be achieved by just satisfying the iso-electron limit.

Regarding the different hybrid functional classes, the iden-
tification of iso-orbital regions requires a real-space-dependent
exact-exchange admixture. While this is obviously provided
by the LH, RSLH and LRSLH approaches through the LMF,
the RSF in LRSH and LRSGH functionals in principle can
also be used to identify iso-orbital regions. However, satisfy-
ing the iso-orbital limit in the latter two approaches requires
to implement a pole into the RSF,72 which is not compatible
with the constraint to satisfy the second-order gradient expan-
sion with the locally range-separated exchange energy density
(see sec. II C 4 for more details).73 While in the new LRSLH
model the iso-orbital limit in principle could be satisfied either
by a suitable LMF and the RSF, it is thus most reasonable
to assign the iso-orbital limit as an exact constraint to the

LMF to avoid incompatibilities with the gradient expansion
constraint.

2. Uniform Coordinate Scaling

The second considered constraint for hybrid functionals is
their behavior under uniform coordinate scaling, which is a
powerful theoretical concept, in which the scaled space vari-
able r → rλ = λr with the scaling parameter 0 ≤ λ ≤ ∞
is introduced. In the most common approach,126–128 the total
electron number is kept fixed, which results in a scaling of the
electron density of

ρσ (r)→ λ3 · ρσ (rλ) . (18)

While the exact-exchange energy density exhibits a scaling of

eexx,σ (r)→ λ4 · eexx,σ (rλ) , (19)

under this transformation, the more complicated scaling of
the exact correlation functional is related to the adiabatic
connection.126,129 However, in the high-density limit, i.e. λ→
∞, simple constraints are known that can be used for the
construction of new correlation functionals. In hybrid func-
tionals in general and the LRSLH approach in particular, this
concerns the additional non-local correlation term within the
correlation picture (see eq. (16)). In particular, the weak scal-
ing condition73 requires that the exchange contribution dom-
inates over correlation in the high-density limit

lim
λ→∞

Eex
xc

Eex
x

= 1 . (20)

In this case, the exact correlation energy density is thus re-
quired to scale as

eexc (r)→ λn · eexc (rλ) , n < 4 , λ→∞ . (21)

On the other hand, the strong scaling condition73 requires the
correlation energy to approach a constant in the high-density
limit,120,127 which results in a scaling of the exact correlation
energy density of

eexc (r)→ λn · eexc (rλ) , n ≤ 3 , λ→∞ . (22)

Naturally, satisfying the high-density limit is most relevant
in regions approaching high electron densities and thus prop-
erties that sample these regions. In molecular systems, this
mostly concerns core regions and core properties such as core
excitations, in particular of heavy elements. In fact, even most
XC functionals constructed for describing core excitations vi-
olate the high-density limit,24,69,70,130 thus leaving significant
potential for new developments to incorporate the scaling con-
ditions.

In contrast to the iso-orbital limit (see sec. II C 1), coor-
dinate scaling in principle affects real and inter-electronic
spaces. However, the simple range-separation in RSH func-
tionals using just a constant range-separation parameter has
been shown not to be able to give the correct high-density
limit. Hence, also a real-space dependence is required within
the exact-exchange admixture to satisfy either of the two
high-density limit conditions with respect to uniform coor-
dinate scaling. In fact, the scaling condition can be easily im-
plemented into the LMF and thus satisfied by LH, RSLH and
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LRSLH functionals.75 The real-space dependence in LRSH
and LRSGH functionals in principle is also able to give the
correct high-density limit, with the minor limitation that the
additional correlation term in eq. (16) becomes fully local in
the high-density limit.73 In particular, the weak scaling con-
dition has been considered in the recent work by Kümmel and
co-worker.71,72 However, similar to the iso-orbital constraint,
satisfying either of the scaling conditions collides with the
exact satisfaction of the homogeneous limit and the gradient
expansion of the exchange energy density. Hence, the RSF ap-
pears to be less suited to satisfy the scaling conditions with
respect to uniform coordinate scaling.

3. Asymptotic XC Potential

Another exact constraint applicable in the construction of
hybrid functionals is related to the XC potential vxc,σ, which
can be defined in terms of the XC part of the Fock matrix by

∂Exc

∂Dσ =

∫
X · vxc,σ ·XTdr . (23)

While in KS theory the local and multiplicative XC potential
is defined as functional derivative of the XC energy functional
with respect to the electron density

vxc,σ (r) =
δExc

δρσ (r)
, (24)

the XC potential in GKS theory can be non-local and non-
multiplicative, with KS and GKS, however, being equivalent
in the case of LDA and GGA functionals. In particular, the
exact asymptotic behavior of the XC potential, i.e., its behav-
ior for infinite inter-electronic distances,25,95,131,132

vxc,σ (r) −−−−−−−→
|r−r′|→∞

− 1

|r− r′| , (25)

can be used as exact constraint for hybrid functionals. In fact,
most semi-local XC functionals feature an exponential decay
of the XC potential and thus are not able to satisfy this ex-
act constraint. On the other hand, semi-local XC function-
als constructed to reproduce the correct asymptotic decay
of the potential such as CAP116,117 violate the asymptotic
behavior of the XC energy density. The inability to satisfy
both constraints simultaneously is a known shortcoming of
semi-local functionals. On the other hand, Hartree-Fock can
provide both the correct asymptotic XC potential and the
correct asymptotic decay of the XC energy density. Following
the reasoning, e.g., by Schmidt et al.,95 the error of semi-local
XC functionals can be thus interpreted as SIE of an electron
interacting with its own hole upon excitation, which is the
extension of the SIE on the level of the XC energy to the
XC potential. In practice, providing the correct asymptotic
XC potential thus has been found to be essential for the ac-
curate description of long-range excitations in linear-response
TDDFT, which mostly concerns charge-transfer excitations
but in principle can also play a role for higher-lying Rydberg
excitations.11,25,52

In view of the fact that the correct asymptotic behavior
of the XC energy density needs to be sacrificed with semi-
local functionals to achieve the correct asymptotic XC poten-
tial, semi-local XC functionals are considered not to be able

to satisfy the the XC potential constraint. Accordingly, this
is also valid for GH functionals. Schmidt et al. have shown
that the real-space-dependent exact-exchange admixture in
LHs is also not able to provide the correct asymptotic de-
cay of the potential.95 The simplified reasoning is as follows.
While the LMF in local hybrids is a real-space-dependent in-
gredient and thus can be used to impose the iso-orbital limit
and the correct behavior with respect to uniform coordinate
scaling, the exact asymptotic behavior of the XC potential
is affected by the behavior of the functional regarding the
distance between an electron and its hole. Since the LMF
considers just one real-space coordinate, the exact-exchange
admixture in local hybrids is “blind” regarding the inter-
electronic and thus the electron-hole distance. On the other
hand, range-separated hybrids in all variants, including RSH,
RSGH, LRSH, LRSGH, RSLH and LRSLH functionals, ex-
hibit an explicit dependence on the inter-electronic distance
through the range-separation. Hence, the correct asymptotic
potential can be ensured as long as 100% exact exchange is
employed in the long range. Beyond that, the asymptotic po-
tential does not provide further constrictions regarding the
exact-exchange admixture, neither on the RSF nor on the
LMF.

4. Homogeneous Limit and Gradient Expansion

When considering the formulation of LRSLH functionals in
the exchange picture in eq. (3) as most general formulation
for hybrid functionals on the second rung of the hybrid func-
tional ladder, it appears reasonable to require both admixed
exchange energy densities individually satisfy known exact
constraints on the exchange functional. Apart from providing
the correct asymptotic potential by exhibiting 100% exact
exchange in the long range (see sec. II C 3), this also includes
reproducing the homogeneous limit and the proper gradient
expansion of the exchange energy density.133–135 Implicitly,
this also requires both exchange energy densities to scale as
λ4 with respect to uniform coordinate scaling (see eq. (19))
to ensure the correct dimensionality of the admixed energy
densities. While both constraints are satisfied by the exact-
exchange energy density by default, the satisfaction by elrshx,σ

depends on the choice of the RSF and the range-separation
scheme.73 On the other hand, the choice of the LMF has no
influence regarding the satisfaction of both constraints for the
overall functional, since it only manages the local admixture
of both exchange energy densities, so the homogeneous limit
and the gradient expansion of the exchange energy density
need to be satisfied for each point in real space individually.

The case of long-range exact exchange with ωσ = 0 for
elrshx,σ is equivalent to pure semi-local exchange. Although not
all semi-local exchange functionals necessarily satisfy the ho-
mogeneous limit and the gradient expansion of the exchange
energy density, in principle both can be satisfied on this
level.115,120,136 Accordingly, the constraints can be satisfied
by SL, GH and LH functionals. On the other hand, it could
be shown that long-range exact exchange with ωσ = const.,
i.e., employing a conventional range-separated exchange en-
ergy density, gives a non-exchange-like scaling and is not able
to provide the correct gradient expansion of the exchange en-
ergy density without setting ωσ = 0.73 Since the latter corre-
sponds to purely semi-local exchange, RSH, RSGH and RSLH
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functionals are generally considered not to be able to sat-
isfy the combined homogeneous limit and gradient expansion
constraints. In contrast, satisfaction is generally possible with
a locally-range-separated exchange energy density with long-
range exact exchange.73 While the actual form of the RSF de-
pends on the chosen approximation for the range-separation
and the order of the gradient expansion to be satisfied, the
dimensionality of the RSF is basically fixed by the require-
ment to provide an exchange-like scaling. Accordingly, LRSH,
LRSGH and LRSLH functionals are generally able to satisfy
this constraints.

Apart from these general considerations, the applicability
of this constraint requires a few further notes. Despite the rea-
sonable assumption often used in the development of LMFs
in the context of local hybrid functionals, employing 100%
semi-local exchange in bonding regions100 cannot be rational-
ized by satisfying the homogeneous limit, since exact exchange
and semi-local exchange usually both satisfy the homogeneous
limit. Hence, there is no difference regarding this constraint.
In the context of LRSH functionals, satisfying the gradient ex-
pansion of the exchange energy density has been violated by
more recent approaches by introducing an RSF scaling with
λ · ln (λ),71,72 which also leads to a non-exchange-like scal-
ing with respect to uniform coordinate scaling. In this way,
the weak scaling condition with respect to uniform coordi-
nate scaling for the additional non-local correlation energy
term in eq. (16) has been satisfied without the need to in-
troduce a proper scaling by an LMF. However, providing an
exchange-like scaling within the exchange picture and satis-
fying the strong scaling condition in the correlation picture
are two sides of the same coin that in principle need to be
satisfied simultaneously. However, LRSH functionals are only
able to satisfy one of both at the same time, so the necessity
to choose one or the other constraint is an inherent limitation
of the LRSH approach and not a shortcoming of the actual
RSF model. In which cases this theoretical shortcoming poses
actual problems in practice requires further assessment, since
the data basis is still too small. On the other hand, within the
new LRSLH approach satisfying all of the four theoretical con-
straints simultaneously is straightforward. In particular, the
strong scaling and iso-orbital conditions can be satisfied by
choosing a proper LMF model while the RSF can be chosen
to provide an exchange-like-scaling elrshx,σ and 100% long-range
exact exchange ensures the correct asymptotic XC potential.

III. EMPLOYED FUNCTIONAL MODELS

Within the new LRSLH model, there are essentially five
different ingredients, that can be chosen separately, the RSF,
the LMF and the CF as well as the underlying semi-local ex-
change and correlation functionals. However, the numerical
explosion of possible combinations of these ingredients ren-
ders a comprehensive investigation of the LRSLH approach
in this work impossible, in particular in comparison to the
other hybrid functional models. Furthermore, satisfaction of
the mentioned theoretical constraints within the existing hy-
brid functional approaches has not necessarily been achieved
with the available ingredients thus far, even when satisfaction
is possible in principle. For example, incorporating the correct
scaling of the LMF together with the iso-orbital constraint is
still under development. Hence, only a small number of mod-

els have been chosen for the first evaluation of the LRSLH
model. To reduce the problem of over-parametrization and
enabling a more reasonable assessment of the LRSLH model
itself rather than the complexity of the individual ingredients,
models with a small number of parameters were preferred,
even if it is known that a subset of the theoretical constraints
is violated.

A. Range Separation Functions

In RSH, RSGH and RSLH functionals, a constant RSF is
used, i.e.,

ωc
σ = cω · a−1

0 , (26)

with a0 being the Bohr radius to ensure correct units and
cω being the range separation constant. Within the LRSH,
LRSGH and LRSLH approaches, three different RSF models
have been investigated. The ge2-RSF

ωge2
σ = cω ·

√
5

18
· γ

1/2
σσ

ρσ
(27)

has been derived from the second-order gradient expansion
(GE2) of the exchange energy density and thus satisfies the
homogeneous limit and the gradient expansion constraints by
construction if the introduced empirical parameter cω is set
to 1.0 and Slater-Dirac exchange is used. In addition, two
modified variants of the RSF model proposed by Kümmel and
co-workers72 have been employed. In the first variant, denoted
as k-RSF ωk

σ, the additional logarithmic term to satisfy the
weak scaling condition has been removed, since its effect on
atomization energies and barrier heights has been found to be
rather small compared to the leading term, so the additional
parameter would unnecessarily increase the complexity of the
optimization problem. Hence, the k-RSF provides a proper
exchange-like scaling and thus violates the scaling conditions
for the additional non-local correlation term within a pure
LRSH model (see sec. II C 2). In terms of the ge2-RSF, the
k-RSF can be formulated as

ωk
σ = ωge2

σ · 1

1− tσ · ζ2
, (28)

where

tσ =
1

8
· γσσ
ρστσ

(29)

is the common spin-resolved meta-GGA iso-orbital indica-
tor with the Kohn-Sham kinetic energy density τσ and the
squared spin-density gradient

γσς = ∇Tρσ · ∇ρς (30)

and

ζ =
ρα − ρβ
ρα + ρβ

(31)

is the spin polarization. In contrast to the original definition in
the work by Kümmel and co-workers,72 a different definition
of the free parameter cω has been used to enable a direct com-
parison with the ge2-RSF. Furthermore, it should be noted
that, by introducing a pole at tσ · ζ2 = 1, the k-RSF does not
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satisfy the iso-orbital limit but just the iso-electron constraint
and violates the gradient expansion condition for open-shell
systems. Conceptually, the k-RSF is thus still close to its pre-
decessor. Additionally, a modified version of the k-RSF sati-
fying the iso-orbital limit by removing the dependence on the
spin polarization has been investigated, the k0-RSF

ωk0
σ = ωge2

σ · 1

1− tσ
. (32)

Both the k-RSF and the k0-RSF models have been already
proposed in the original work by Brütting et al. for analy-
sis reasons.72 In summary, all three considered RSF models
consist of just one parameter cω. A summary of further RSF
models can be found in ref. 73

B. Local Mixing Functions

Apart from the constant LMF

gcσ = a , (33)

which is equivalent to the global exact-exchange admixture in
GH, RSGH and LRSGH functionals, two further LMF mod-
els have been employed. First, this includes the common t-
LMF93,94

gctσ = a · t (34)

with the common meta-GGA iso-orbital indicator123,124

t =
1

8
· γαα + 2γαβ + γββ

(ρα + ρβ) · (τα + τβ)
. (35)

While further LMF models satisfying more exact constraints
have been proposed during the last two decades (see ref.
100 for a recent review), the common t-LMF is still among
the most successful LMF models thus far, despite featur-
ing only one parameter a. In fact, the common t-LMF vio-
lates the iso-orbital limit for a 6= 1.0 and the scaling con-
straints. However, it provides a qualitatively correct exact-
exchange admixture in the different regions in real-space and
thus has been used in several of the more recently developed
LH functionals.9,97 While the recently proposed LMF model
by Holzer and Franzke90 within their TMHF functional also
violates these two constraints, its behavior in core regions
in contrast to the t-LMF is qualitatively wrong due to al-
most vanishing exact-exchange contributions, despite contain-
ing more empirical parameters. For the sake of simplicity, this
new LMF model thus has not been considered in this work.
In analogy to the employed RSF models, an artificial spin-
polarized variant of the common t-LMF, denoted as common
tz-LMF,

gctzσ = a · t · ζ2 (36)

has been used. In fact, the tz-LMF violates the iso-orbital
limit even with a = 1.0, vanishes for all closed-shell systems
and thus only satisfies the iso-electron limit. Hence, the tz-
LMF is only used for analysis reasons.

C. Semi-Local Exchange and Correlation Functionals

For the construction of the different hybrid functionals,
Slater-Dirac103,104 and B88 exchange115 have been used as
semi-local exchange functionals. While in SL, GH and LH
functionals the conventional full-range functionals have been
employed, short-range semi-local exchange based on the Hi-
rao approach eq. (13) is used in the remaining hybrid func-
tional models. To ensure the correct asymptotic behavior of
the XC potential, 100% exact exchange and thus 0% semi-
local exchange has been used in the long range in all range-
separated hybrid variants. Furthermore, the LH, RSLH and
LRSLH models were constructed without considering a CF.
In fact, CFs would introduce more empirical parameters that
need to be optimized and potentially reduce numerical sta-
bility. Also, range-separated exchange energy densities might
require the adaption of the CF models, since the currently
available pig CFs are derived from full-range semi-local ex-
change.

Regarding the semi-local correlation functional, optimiza-
tion results for five different models will be shown. Apart
from LDA correlation in the PW92 parametrization,137 this
includes the GGA functional LYP138 as well as the B95 meta-
GGA functional.139 In fact, reparametrized B95 has shown to
be able to provide a sufficiently high flexibility to be suc-
cessfully employed as ingredient in LH functional develop-
ment. While this high flexibility would allow a higher de-
gree of error cancellation, it could potentially disguise short-
comings of the hybrid functional model on the other hand.
Hence, only the original B95 parametrization will be applied
in this work, which ensures accurate opposite-spin and same-
spin correlation for the helium and neon atoms, respectively,
already by the semi-local correlation functional. In addition
to these conventional correlation functionals, self-interaction-
corrected variants of PW92 and LYP, denoted as sicPW92
and sicLYP, have been investigated. In particular, the simple
self-correlation correction scheme

Esic
c =

∫ [
1− t (r) · ζ2 (r)

]
· ec (r) dr , (37)

which is used by Kümmel and co-workers in several publi-
cations, is employed.7,71,72,75 For closed-shell molecules, the
self-interaction-corrected correlation and the underlying con-
ventional functionals are equivalent, while erroneous self-
correlation is removed completely in iso-electron regions. In
contrast to the constraint on hybrid exchange (see sec. II C 1),
considering only the iso-electron and not the iso-orbital limit
provides a more reasonable self-interaction reduction in the
correlation functional, since opposite-spin correlation can be
present in iso-orbital regions. In combination with LDA cor-
relation, this simple self-interaction correction has shown sur-
prisingly good results within certain LRSH setups,72 so the
combination with LYP can be expected to provide at least
similarly good results. The additional correlation functionals
PBE120 and sicPBE as well as opposite-spin-only B95 have
been only used in some test calculations on LRSH functionals
but did not provide additional insight regarding the evalua-
tion of the different hybrid functional models and are thus
omitted in the analysis.
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IV. COMPUTATIONAL DETAILS

All calculations in this work have been performed with
a development version of the RAQET program package,109

which has been extended by a self-consistent implementa-
tion of LRSLH functionals and the self-interaction-corrected
semi-local correlation functionals in eq. (37). The former ex-
tension is based on the previously reported LH77 and LRSH
implementations73 in the RAQET program and thus employs
efficient semi-numerical integration based on the modified
chain-of-spheres (mCOSX) method.77 All calculations have
been performed self-consistently using Ahlrichs-type numeri-
cal integration grids140 of size 3 as implemented in RAQET77

together with def2-QZVP basis sets.141 The employed func-
tionals are described in detail in sec. III. No dispersion cor-
rection has been added.

The different investigated hybrid functional models contain
either one (GH, LH, RSH and LRSH functionals) or two em-
pirical parameters (RSGH, RSLH, LRSGH and LRSLH func-
tionals) that need to be optimized, while purely semi-local
functionals are parameter-free. In particular, these empirical
parameters were optimized with respect to the mean abso-
lute error (MAE) regarding the AE6BH6 test set for atom-
ization energies and transition barrier heights,142 using the
newer W4-17143 and W4-08 reference values144 for the AE6
and BH6 subsets, respectively. The actual parameter opti-
mization has been performed with a Nelder-Mead simplex
algorithm,145 which is well suited for the optimization of a
small number of parameters. For comparing the optimized
hybrid functionals with existing XC functionals, the W4-1118

atomization and BH76 transition barrier height test sets22,146

have been used. While the original W4-11 reference values
are used to enable comparison with literature data, updated
reference values from the GMTKN55 set are used for BH76.10

V. RESULTS AND DISCUSSION

Since this work features the first investigation of the
LRSLH model, its main goal is to provide a first assessment
of the benefits of LRSLH functionals in comparison to the
existing hybrid functional approaches rather than optimizing
a multitude of empirical parameters within a highly complex
LRSLH model. While the latter would certainly provide more
potential to benefit from error compensation, it could poten-
tially hide some of the advantages and disadvantages of the re-
spective hybrid models. In contrast, the strategy in this work
is thus to optimize the nine different hybrid functional models
as described in sec. II B in different functional setups (see sec.
III for details), while keeping the complexity of the ingredients
responsible for the exact-exchange admixture and the number
of the parameters deliberately low. Apart from enabling the
investigation of a larger number of different functional setups,
this also facilitates the interpretation of the results regarding
the performance of the individual hybrid models.

A. Assessment of the Range Separation Function

Before turning to the investigation of the different hybrid
functional models, the influence of the RSF in LRSH function-

als will be revisited, since the development of suitable RSF
models has gained more attention recently and the RSF is
also an essential part of LRSLH functionals. As described in
detail in sec. II C, the RSF in LRSH functionals in principle
can satisfy the iso-orbital limit and the uniform coordinate
scaling constraint on the additional non-local correlation en-
ergy but can do so only by violating the gradient expansion
constraint and by giving a non-exchange-like scaling behavior
of the range-separated exchange energy density.

The premise of the RSF proposed by Kümmel and co-
workers72 is to satisfy the weak scaling condition and the
iso-electron limit. While the former is mainly a matter of
choice between different constraints due to the restrictions
of the LRSH model, which is common pratice in XC func-
tional development, choosing the iso-electron limit over the
iso-orbital limit to a large extent has been rationalized on
the basis of empirical findings with LRSH functionals within
a certain functional setup and the freedom of one-electron
self-interaction errors. In fact, the obtained results are re-
markably good, but they are in contrast to the argumen-
tation in sec. II C 1, which strongly suggests the iso-orbital
limit as constraint for hybrid functionals. To contribute to
the discussion on this topic, LRSH functionals within various
setups based on the four considered RSF models, including
the constant range-separation parameter, the ge2-RSF, the
k-RSF satisfying the iso-electron limit and the k0-RSF satis-
fying the iso-orbital limit, have been optimized with respect
to the AE6BH6 test set. The MAEs for the different opti-
mized one-parameter LRSH functionals can be found in table
II.

TABLE II. MAE for the AE6BH6 testset in kcal/mol for differ-
ent optimized LRSH functionals. Functionals have been optimized
with respect to the AE6BH6 test set with different combinations
of short-range semi-local exchange (X), semi-local correlation (C)
and RSFs.

XC RSF

X C ωc
σ ωge2

σ ωk0
σ ωk

σ

S

PW92 6.32 4.02 26.99 27.44
LYP 4.31 4.61 20.95 21.40
B95 6.29 4.74 14.58 15.16
sicPW92 32.20 24.84 22.29 2.42
sicLYP 7.98 2.26 15.08 15.54

B88

PW92 5.03 3.88 26.49 27.34
LYP 3.17 3.71 20.44 21.31
B95 5.24 3.88 14.00 15.03
sicPW92 32.20 25.60 16.80 14.95
sicLYP 6.99 1.60 14.56 15.44

First of all, the remarkably good results found by Brütting
et al.72 for the combination of Slater-Dirac exchange, sicPW92
correlation and the k-RSF could be verified within the cur-
rent setup, so the discrepancy between the argumentation in
sec. II C 1 and the empirical findings requests further expla-
nation. Following the argumentation that the main effect of
the good performance stems from correctly addressing one-
electron SIEs, one should inspect the results for three other
particular combinations. When replacing the k-RSF with the
k0-RSF, worse results are expected, since the stronger iso-
orbital constraint is enforced. This is, in fact, the case. When
replacing sicPW92 correlation with another self-interaction-
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corrected semi-local correlation functional such as sicLYP,
a similar performance could be expected to some extent in
the case that the one-electron SIE is the most important ef-
fect. However, the combination of the k-RSF, Slater-Dirac
exchange and sicLYP exhibits a much higher MAE of 15.54
kcal/mol for AE6BH6. In fact, one could argue that the self-
correlation correction affects LYP in a much different way
than PW92, as LYP does not cover same-spin correlation at
all. Nonetheless, the contradiction is significant.

The third case concerns the replacement of Slater-Dirac
exchange with B88 exchange, which can be expected to be
similar for the different functional setups. However, the LRSH
functional with sicPW92 correlation and the k-RSF is the only
combination that exhibits a major difference between Slater-
Dirac and B88 exchange. Even with a full optimization of the
free parameter, the resulting MAE of 14.95 kcal/mol with B88
is one order of magnitude worse than the 2.42 kcal/mol with
Slater-Dirac exchange, while in many cases the B88 results
are even better, as one might expect. In fact, this suggests
that the good results found in the work by Brütting et al.
might be due to an error compensation between the RSF and
the self-interaction correction just in combination with LDA
exchange and correlation rather than a systematic improve-
ment due to a correct reduction of one-electron SIEs. This
is also supported by that fact that sicPW92 correlation only
works well in this one case. In either case, the present data
hints that further investigation is required to come to a fi-
nal conclusion whether the good performance of the k-RSF in
this setup is or is not just due to error compensation and thus
is subject to the general zero-sum tradeoff problem of hybrid
functionals.4

Irrespective of this special case, results obtained with the
k0-RSF in either setup are consistently one order of magni-
tude worse than those with the best performing setups. This
highlights that implementation of the iso-orbital limit into
the RSF can be problematic, which supports the argument
to consider the iso-orbital constraint by the LMF rather than
the RSF to some extent. Among the investigated LRSH func-
tionals, the combination of the ge2-RSF with sicLYP corre-
lation is able to provide remarkably low errors irrespective of
the chosen exchange functional, which are significantly lower
than for the combination of sicPW92, Slater-Dirac exchange
and the k-RSF. Without further analysis, the best available
explanation for this observation thus far is an apparent for-
tunate error compensation between opposite-spin correlation
described by sicLYP and same-spin correlation through the
LRSH approach. Furthermore, it appears that the LRSH func-
tionals with ge2-RSF usually exhibit a lower MAE than their
conventional RSH counterparts. Mainly LYP seems to be an
exception. Apart from that, the results for the other func-
tional setups are unremarkable.

B. Comparison of Different Hybrid Models

Next, the performance of the different hybrid functional
models will be evaluated, which includes the nine different
classes up to the second rung of the hybrid functional lad-
der (see sec. II B for more details). In view of the findings for
LRSH functionals in sec. V A, two different groups of setups
have been investigated. In the first one, the special combina-
tion of Slater-Dirac exchange and sicPW92 correlation is used.

In fact, this combination is mainly of interest to figure out the
behavior in combination with different LMF models. Hence,
the artificial common tz-LMF has been included in this group
in addition to the common t-LMF. For a similar reason the
k0-RSF has been included in addition to the k-RSF. MAEs
for the optimized hybrid functionals can be found in table III.

TABLE III. MAE for the AE6BH6 testset in kcal/mol for different
optimized hybrid functionals based on Slater-Dirac exchange and
self-interaction-corrected PW92. Functionals have been optimized
with respect to the AE6BH6 test set with different combinations
of LMFs and RSFs.

LMF
RSF

– ωc
σ ωk0

σ ωk
σ

– 87.90 32.20 22.29 2.42
gcσ 32.20 32.20 22.29 2.42
gctσ 18.70 18.70 17.25 2.42
gctzσ 23.08 23.08 22.29 1.57

Similar to LRSH functionals, only hybrid functionals in-
cluding a local range separation based on the k-RSF give
reasonable results in this combination of semi-local exchange
and correlation, while all other functionals with different RSF
models fail to provide reasonably low errors. In particular, it
should be noted that the LRSLH functional constructed us-
ing the k-RSF and the common t-LMF simply reduces to the
LRSH functional with k-RSF. That is, the reasonable local
exact-exchange admixture provided by the t-LMF, which has
been shown to be beneficial in various local hybrid functional
setups, apparently has no effect in combination with the k-
RSF, so the prefactor a is simply optimized to 0.0. On the
other hand, the combination of the artificial common tz-LMF
with the k-RSF improves the observed MAEs. In fact, the
k-RSF and the tz-LMF share the common feature to only ad-
dress the iso-electron limit, so the improvement appears to be
somehow systematic for the investigated properties. On the
other hand, considering the qualitative violation of the iso-
orbital limit by the common tz-LMF, a systematic improve-
ment for other properties such as core excitations is ques-
tionable. However, this mainly supports the conjecture of sec.
V A that the combination of sicPW92 and Slater-Dirac ex-
change exhibits certain systematic errors that are somehow
compensated by an exact-exchange admixture considering the
iso-electron limit. Regarding the performance of the LRSLH
model, a definitive statement is thus not possible.

Hence, hybrid functional models based on the ge2-RSF and
the common t-LMF with the different semi-local exchange and
correlation functionals have been investigated in the second
group. Only sicPW92 is not considered, as results turned out
to be similarly bad as in LRSH functionals. MAEs of the op-
timized functionals for the AE6BH6 test set can be found
in table IV. Without discussing all numbers in detail, a few
trends can be identified. First of all, replacing the global mix-
ing constant by an LMF, i.e., going from GH to LH, RSGH to
RSLH or LRSGH to LRSLH functionals, usually improves re-
sults, except for B88 and the step from GH to LH functionals.
Similarly, using a local range separation is often advantageous
compared to a range separation constant, except for combi-
nations with LYP. Despite these exceptions, either the RSLH
or the LRSLH models are the best performing hybrid func-
tional models for the respective combination of exchange and
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TABLE IV. MAE for the AE6BH6 testset in kcal/mol for differ-
ent optimized hybrid functionals. Functionals have been optimized
with respect to the AE6BH6 test set with different combinations of
semi-local exchange (S and B88), semi-local correlation (C), LMFs
and RSFs. The lowest MAE for each combination of semi-local ex-
change and correlation functionals within a range of 0.1 kcal/mol
is marked by bold type.

C LMF
S B88

– ωc
σ ωge2

σ – ωc
σ ωge2

σ

PW92
– 46.42 6.32 4.02 6.93 5.03 3.88
gcσ 9.08 5.78 4.02 6.93 4.89 3.88
gctσ 1.77 1.48 1.77 6.93 3.17 3.16

LYP
– 50.13 4.31 4.61 7.32 3.17 3.71
gcσ 6.99 3.67 4.36 6.27 2.86 3.54
gctσ 4.12 1.90 3.87 6.74 1.96 3.15

B95
– 56.47 6.29 4.74 9.63 5.24 3.88
gcσ 7.52 5.67 4.43 3.20 3.20 2.95
gctσ 4.44 2.07 3.44 5.06 1.94 2.91

sicLYP
– 56.68 7.98 2.26 9.37 6.99 1.60
gcσ 7.73 5.75 2.10 1.68 1.62 1.60
gctσ 4.17 1.73 1.67 3.47 1.22 1.30

correlation functionals (bold font in table IV). In fact, this
highlights that the wrong scaling behavior of the range sep-
aration constant is apparently negligible for the performance
with respect to the investigated ground-state properties. On
the other hand, RSGH and LRSGH functionals, despite also
featuring two free parameters, were not able to provide sim-
ilarly accurate results, which shows that considering a local
exact-exchange admixture governed by an LMF is an essential
part for constructing more accurate hybrid functionals. When
also taking into account the satisfiability of theoretical con-
straints (cf. sec. II C) and the similar computation costs, the
LRSLH model should be preferred over the RSLH approach.

Regarding the various combinations of semi-local exchange
and correlation functionals, Slater-Dirac exchange with PW92
and B88 with sicLYP have been found to provide the best per-
formance. While the former is known from LH functionals and
is most likely due to benficial error compensation, the latter
combination is rather interesting, as self-interaction-corrected
LYP has not been used in any LH, LRSH or RSLH model
thus far and the incorporation of GGA exchange is generally
preferable. Overall, the actual performance of the different hy-
brid functional models varies significantly depending on the
chosen semi-local exchange and correlation functionals. That
is, while the benefits of the new LRSLH approach are clear
in general, the effect of choosing appropriate semi-local XC
ingredients might be similarly or even more important than
improving the dedicated hybrid functional ingredients such
as the RSF and the LMF. In principle, even fully non-local
correlation would be preferable. In fact, this assessment is in
line with recent LH developments focussing on the balance
between different correlation effects.9

C. Functional Comparison

Last, the performance of the optimized hybrid functional
models shall be compared with existing hybrid XC functionals
from literature. For that purpose, some of the best performing

optimized functionals for each hybrid functional class have
been chosen. In particular, the performance with respect to
the W4-11/BH76 test set is evaluated. Since both are part
of the larger GMTKN55 test set, literature values are easily
accessible for a large number of reference functionals. While
the hybrid functionals in this work have been optimized with
respect to the same properties, i.e., atomization energies and
transition barrier heights, a different test set has been used
for training, thus reducing the bias with respect to a potential
overparametrization. The MAEs, mean signed errors (MSEs)
and the optimized parameters for the chosen optimized hybrid
functional models can be found in table V.

Apart from being optimized for the properties of the em-
ployed test sets, two further aspects need to be kept in
mind. Due to its small size and thus low representativity, the
AE6BH6 test set, despite being suited to compare the perfor-
mance of the different hybrid models, is not necessarily well
suited as training set for actual functional development. Fur-
thermore, the optimized hybrid functionals contain at most
two parameters. This is by far less than in some of the highly
parametrized reference functionals like MN15 and M11.147,148

In general, the shown results should be thus viewed just as
a first impression to highlight the potential of LRSLH func-
tionals.

In fact, the results obtained with the optimized LRSLH
functionals are generally comparable with those of the more
recently developed LH functionals. While the overall MAEs
are generally lower than with the recent TMHF functional
by Holzer and Franzke,90 LH20t9 performs slightly better,
except for the LRSLH using the artificial tz-LMF and the k-
RSF in its only working functional setup. Similarly, the highly
parametrized Minnesota functionals fare slightly better. Only
the recently developed RSLH ωLH22t97 is able to provide a
distinctly lower MAE below 2.0 kcal/mol. Interestingly, most
of the optimized RSLH functionals exhibit significantly larger
errors than the LRSLH models. Furthermore, the two chosen
LRSLH functionals using the common t-LMF in combina-
tion with the ge2-RSF both exhibit remarkably low MSEs
for both individual test sets, which indicates the potential of
the LRSLH model to reduce systematic errors. Overall, the
optimized hybrid models still exhibit a relatively large range
regarding the exact-exchange admixture. In particular, com-
mon t-LMF prefactors range from 0.24 to 0.67 depending on
the individual setup. Something similar can be observed for
the RSF. In fact, there is a significant correlation between
smaller LMF and larger RSF prefactors, which highlights the
interdependence between the exact-exchange admixture pro-
vided by the LMF and the RSF. In general, sicLYP appears
to allow the admixture of a larger amount of exact exchange,
which in the context of LH functionals has been argued to be
beneficial.

In essence, the proposed simple two-parameter LRSLH
functionals are thus able to provide accuracies similar to some
of the more accurate existing hybrid functionals. In view of
the gain that appears to be possible already on the RSLH
level by introducing a larger number of reasonable parameters
and by improving the optimization procedure, e.g., comparing
MAEs of ωLH22t with some of those of the RSLH function-
als optimized in this work, significantly reduced errors can be
expected for more sophisticated LRSLH functionals.
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TABLE V. MAE and MSE for the W4-11 and BH76 testsets in kcal/mol for different optimized hybrid functionals categorized by the
hybrid functional ladder and reference XC functionals. The LMF and RSF models together with their respective parameters a and cω are
only given for the hybrid functionals optimized in this work.

Functional MSE MAE

Type XC LMF a RSF cω W4-11 BH76 avg. W4-11 BH76 avg.

SL
BLYPa – – – – -21.46 1.85 -9.80 21.50 3.50 12.50
SCANa – – – – -0.17 -7.36 -3.77 4.01 7.66 5.83

GH

PBE0a – – – – -1.75 -3.17 -2.46 3.62 4.62 4.12
PW6B95a – – – – -0.82 -2.46 -1.64 2.43 3.81 3.12
MN15a – – – – -0.03 -1.07 -0.55 2.72 1.50 2.11
BsicLYP gcσ 0.30547 – – 0.01 -1.97 -0.98 4.85 2.39 3.62

LH
LH20tb – – – – -0.51 -0.99 -0.75 2.89 2.05 2.47
TMHFc – – – – -0.73 -2.71 -1.72 2.78 2.80 2.79
SPW92 gctσ 0.53867 – – 0.83 -0.68 0.07 2.73 1.56 2.15

RS(G)H
LCωhPBEa – – – – -3.09 0.35 -1.37 4.43 1.61 3.02
M11a – – – – -0.34 -0.67 -0.51 3.44 1.26 2.35
BLYP – – ωc

σ 0.59766 -2.85 2.00 -0.42 7.61 2.70 5.16

LRSH
SsicPW92 – – ωk

σ 1.05213 0.65 -0.34 0.16 3.29 1.80 2.54
BsicLYP – – ωge2

σ 1.33867 -0.46 -1.37 -0.92 3.14 2.01 2.58

RSLH

ωLH22td – – – – -0.68 -0.58 -0.63 2.54 1.28 1.91
SPW92 gctσ 0.48290 ωc

σ 0.19624 0.53 -0.20 0.17 3.37 1.40 2.39
SLYP gctσ 0.37289 ωc

σ 0.44643 -2.52 1.39 -0.57 5.34 2.11 3.73
BLYP gctσ 0.29713 ωc

σ 0.41843 -2.13 0.33 -0.90 4.90 1.81 3.36
SsicLYP gctσ 0.61164 ωc

σ 0.33712 1.51 2.48 2.00 4.58 2.59 3.59
BsicLYP gctσ 0.66611 ωc

σ 0.25791 -0.76 1.69 0.47 4.26 1.98 3.12
SB95 gctσ 0.60635 ωc

σ 0.37191 -1.96 2.58 0.31 4.91 2.83 3.87
BB95 gctσ 0.33799 ωc

σ 0.33799 -1.79 1.81 0.01 3.86 2.18 3.02

LRSLH
SsicPW92 gctzσ 0.25352 ωk

σ 0.96734 -0.69 -1.13 -0.91 2.54 2.10 2.32
SsicLYP gctσ 0.24623 ωge2

σ 1.09187 0.07 -0.59 -0.26 3.39 1.65 2.52
BsicLYP gctσ 0.46732 ωge2

σ 0.91113 -0.37 -0.01 -0.19 3.83 1.39 2.61

a Values taken from ref. 10.
b Values taken from ref. 9.
c Values taken from ref. 90.
d Values taken from ref. 97.

VI. CONCLUSIONS AND OUTLOOK

In this work, I have introduced the new class of LRSLH
functionals, which are a straightforward combination of LH
and LRSH functionals. Apart from the formal introduction of
the LRSLH model, this includes a classification of LRSLHs
in comparison to existing hybrid functional classes. For that
purpose, a new general classification scheme in analogy to the
Jacob’s Ladder of density functional approximations named
as hybrid functional ladder has been proposed. By consider-
ing the dependence of the exact-exchange admixture in real
and inter-electronic space on the space variables through the
mixing function and RSF levels, respectively, this hybrid func-
tional ladder defines four different rungs. While conventional
GH and RSH functional are on the first rung, LH and LRSH
functionals are part of the second rung. Being the most sophis-
ticated rung-two model thus far, LRSLH functionals in princi-
ple include all other existing hybrid functional models as spe-
cial cases. Additionally, four theoretical constraints that are
considered to be most relevant regarding the exact-exchange
admixture have been reviewed in view of LRSLH function-
als, the iso-orbital limit, the high-density limit with respect
to homogeneous coordinate scaling, the asymptotic behavior
of the XC potential and the homogeneous limit together with
the gradient expansion of the exchange energy density. In fact,
the simultaneous satisfaction of these constraints within the

LRSLH model is straightforward by allocating the different
constraints to either the LMF, the RSF or the range separa-
tion scheme. On the other hand, other hybrid functionals even
on the second rung struggle in this respect to a varying degree.
The provided theoretical insights can be used as guideline for
the development of new hybrid functional models.

To evaluate the performance of the new LRSLH approach
in comparison to the other hybrid functionals classes on the
hybrid functional ladder, different combinations of simple
RSF and LMF models as well as semi-local exchange and cor-
relation functionals have been optimized in a standard proce-
dure with respect to atomization energies and transition bar-
rier heights. Here, LRSLH functionals together with RSLHs
have shown to be able to provide the best results of all hybrid
functional models, in particular when combined with a self-
interaction-corrected variant of the LYP functional and B88
exchange. In general, the functional setup has been found to
have a major influence on the performance of the different
hybrid functional classes, which suggests to consider this as-
pect to a larger extent in future studies. When applied for
larger test sets, the simple two-parameter LRSLH models al-
ready provided similar performance as some of the higher-
parametrized existing hybrid functional models. Despite the
confirmed good performance of some functionals consider-
ing the iso-electron limit within the RSF and the LMF, the
present data hints that the reason might be due to a fortu-
nate error compensation within the specific setup based on



LRSLH Functionals 15

LDA exchange and correlation to explain the contradiction
with the violation of theoretical constraints.

While the present work thus provides the theoretical back-
ground as well as a first evaluation of the LRSLH model, no
functional designed for actual applications has been devel-
oped. In future work, this open aspect will be addressed by
considering a more elaborated LMF model, an adequate cali-
bration and a more elaborated optimization scheme as used,
e.g., in the development of state-of-the-art local hybrid func-
tionals. In particular, more attention will be paid to the deli-
cate balance between different correlation effects described by
the different parts of the functional.

SUPPLEMENTARY MATERIAL

The full data set of hybrid functionals optimized in this
work is provided as additional .csv file. In particular, this in-
cludes the functional specifications (semi-local exchange and
correlation functionals, LMF, RSF), the hybrid functional
type (LH, LRSLH, etc.), the optimized LMF parameters a,
the optimized RSF parameters cω (denoted as w in the .csv
file) as well as the MAEs and MSEs in kcal/mol with re-
spect to the AE6, BH6, W4-11 and BH76 test sets. The dif-
ferent LMF models are abbreviated as t (common t-LMF), c
(c-LMF) and tz (common tz-LMF), while the different RSF
models are abbreviated as c (c-RSF), ge2 (ge2-RSF), k (k-
RSF) and k0 (k0-RSF).
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ing energies vis-à-vis accurate ionization potentials from Kohn-
Sham eigenvalues,” J. Chem. Phys. 140, 18A510 (2014).

76K. Burke, F. G. Cruz, and K.-C. Lam, J. Chem. Phys. 109,
8161–8167 (1998).

77T. M. Maier, Y. Ikabata, and H. Nakai, “Efficient semi-numerical
implementation of relativistic exact exchange within the infinite-
order two-component method using a modified chain-of-spheres
method,” J. Chem. Theory Comput. 15, 4745–4763 (2019).

78H. Bahmann and M. Kaupp, “Efficient self-consistent implemen-
tation of local hybrid functionals,” J. Chem. Theory Comput.
11, 1540–1548 (2015).

79F. Neese, F. Wennmohs, A. Jansen, and U. Becker, “Efficient,
approximate and parallel Hartree-Fock and hybrid DFT calcu-
lations. a ‘chain-of-spheres’ algorithm for the Hartree-Fock ex-
change,” Chem. Phys. 356, 98–109 (2009).

80H. Laqua, T. H. Thompson, J. Kussmann, and C. Ochsenfeld,
“Highly efficient, linear-scaling seminumerical exact-exchange
method for graphic processing units,” J. Chem. Theory Com-
put. 16, 1456–1468 (2020).

81P. Plessow and F. Weigend, “Seminumerical calculation of the
hartree–fock exchange matrix: Application to two-component
procedures and efficient evaluation of local hybrid density func-
tionals,” J. Comput. Chem. 33, 810–816 (2012).

82T. M. Maier, H. Bahmann, and M. Kaupp, “Efficient semi-
numerical implementation of global and local hybrid functionals
for time-dependent density functional theory,” J. Chem. Theory
Comput. 11, 4226–4237 (2015).

83R. Grotjahn, F. Furche, and M. Kaupp, “Development and im-
plementation of excited-state gradients for local hybrid function-
als,” J. Chem. Theory Comput. 15, 5508–5522 (2019).

84C. Holzer, “An improved seminumerical coulomb and exchange
algorithm for properties and excited states in modern density
functional theory,” J. Chem. Phys. 153, 184115 (2020).

85T. M. Maier, M. Haasler, A. V. Arbuznikov, and M. Kaupp,
“New approaches for the calibration of exchange-energy densi-
ties in local hybrid functionals,” Phys. Chem. Chem. Phys. 18,
21133–21144 (2016).

86A. V. Arbuznikov and M. Kaupp, “Towards improved local hy-
brid functionals by calibration of exchange-energy densities,” J.
Chem. Phys. 141, 204101 (2014).

87J. Tao, V. N. Staroverov, G. E. Scuseria, and J. P. Perdew,
“Exact-exchange energy density in the gauge of a semilocal
density-functional approximation,” Phys. Rev. A - At. Mol. Opt.
Phys. 77, 1–9 (2008).

88P. de Silva and C. Corminboeuf, “Local hybrid functionals with
orbital-free mixing functions and balanced elimination of self-
interaction error,” J. Chem. Phys. 142, 074112 (2015).

89E. R. Johnson, “Local-hybrid functional based on the correlation
length,” J. Chem. Phys. 141, 124120 (2014).

90C. Holzer and Y. F. Franzke, “A local hybrid exchange func-
tional approximation from first principles,” J. Chem. Phys. 157,
034108 (2022).

91B. G. Janesko and G. E. Scuseria, “Local hybrid functionals
based on density matrix products,” J. Chem. Phys. 127, 164117
(2007).

92B. G. Janesko and G. E. Scuseria, “Parameterized local hybrid
functionals from density-matrix similarity metrics,” J. Chem.
Phys. 128, 084111 (2008).

93H. Bahmann, A. Rodenberg, A. V. Arbuznikov, and M. Kaupp,
“A thermochemically competitive local hybrid functional with-
out gradient corrections,” J. Chem. Phys. 126, 011103 (2007).

94A. V. Arbuznikov and M. Kaupp, “Importance of the correlation
contribution for local hybrid functionals: Range separation and
self-interaction corrections,” J. Chem. Phys. 136, 014111 (2012).

95T. Schmidt, E. Kraisler, L. Kronik, and S. Kümmel, “One-
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