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ABSTRACT: We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A 
range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and 
enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a DyKAT process. A combined experimental 
and theoretical mechanistic study supports an elementary step featuring insertion of a Cu(I)-phosphido into a carbon-carbon double 
bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-
protodemetalation.  

By inventing strategies to forge C–P bonds, chemists provide 
entrance to organophosphorous architectures for versatile 
applications in medicine and catalysis.1 Among these 
architectures, the cyclopropyl phosphine motif garners 
attention because of its distinctive steric and electronic 
attributes. For example, a cyclic analogue of fosmidomycin 
shows enhanced antibiotic activity against E. coli, presumably 
due to restricted rotation.2 In the realm of catalysis, Takasago’s 
cyclopropyl phosphine ligand, cBRIDP outperforms its vBRIDP 
in Suzuki-Miyaura cross coupling.3 Considering ways to 
construct cyclopropyl phosphines, we focused on 
hydrophosphination: the direct addition of a P–H bond across 
a C–C multiple bond.4 Hydrophosphination represents an 
attractive and atom-economical platform5 for controlled 
synthesis of molecules with stereogenic carbon and/or 
phosphorous atoms. While progress has been made,6 
stereoselective methods remain rare beyond use of alkynes,7 
oxa-bicycles,8 and Michael acceptors.9 Driven by strain 
release,10 cyclopropenes show high reactivity,11,12 and the 
hydrofunctionalization of cyclopropenes has enabled a direct 
access to a diverse range of enantiomerically enriched rings.12 

In this report, we disclose enantioselective Cu-catalyzed 
hydrophosphination to access a range of cyclopropyl-
phosphines at ambient temperature. A unique Cu-phosphido 
mechanism is supported by both experimental and theoretical 
studies.  We provide insights into ligand trends for selectivity 
using buried volume analysis.   
  
     Organophosphorous partners bearing P–H bonds with a 
wide range of acidities (pKa 9.0 to 22.4)13 can be activated with 
transition metal catalyts.14 For secondary phosphines, 

coordination followed by deprotonation results in a 
metal-phosphido complex,9a,9f,9i-k with high nucleophilicity, and 
recent studies have revealed impressive versatility of 
catalytically generated Cu-phosphido complexes.9e,9g-h,15 

Glueck elucidated mechanistic and structural details,15d,e while 
both Glueck and Yin demonstrated catalytic transformations 
using Cu-phosphidos (Figure 1B).9g,h Previous strategies using 
cyclopropenes to forge C–P bonds focused on Pd catalysis.  

Figure 1. Inspiration of asymmetric hydrophosphination of cyclopropenes. 
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Both phosphine oxides and phosphites gave ring-opening to 
afford allylic phosphine oxides and allylic phosphonates, 
respectively.16 At the start of our studies, there was only one 
transformation, using phosphine oxides and cyclopropenes  
that provided the ring-retained cyclopropyl phosphine 
product, albeit as a racemic mixture.14l Coinciding with our 
efforts, the Wang group was independently pursuing the 
enantioselective addition of phosphines to cyclopropenes by 
Pd-catalysis; their asymmetric version occurs by Pd-H 
insertion into the cyclopropene.4h  While promising, the scope 
is limited strictly to ester-bearing cyclopropenes and requires 
precious metal. 
 
     While precious metals are practical on industrial scales,17 
earth abundant metals are more sustainable and economical, 
while providing an opportunity to uncover novel and 
complementary reactivity.18 As an alternative to Pd-H 
mechanisms, we imagined a strategy involving Cu-phosphido 
catalysis.  Insertion of a Cu-phosphido into cyclopropenes, 
followed by protodemetalation, would generate chiral 
cyclopropyl phosphines (Figure 1C).15  
 

Table 1. Ligand effects on asymmetric hydrophosphination of 1aa      

 

aReaction conditions: 1a (0.12 mmol), 2a (0.10 mmol), Cu(CH3CN)4PF6 (5.0 
mol%), ligand (7.5 mol%), DBU (10 mol%), toluene (0.40 mL), 3 h. Yield 
determined by GC-FID analysis of the reaction mixture, which was 
referenced to 1,3,5-trimethoxybenzene as internal standard. 
Enantioselectivity determined by chiral SFC. 
 

      In our initial studies, we surveyed phosphine oxides and 
found that it was difficult to achieve high enantioselectivity 
(Table S1). In contrast, diphenyl phosphine (2a) gave promising 
results with Cu. Therefore, we choose diphenyl phosphine (2a) 
and cyclopropene 1a as model substrates. For the convenience 

of handling and analysis, the cyclopropyl phosphine products 
were oxidized with sulfur to generate the corresponding 
phosphine sulfides. In previous studies using copper catalysis, 
Yin’s group demonstrated the superiority of Taniaphos ligands 
for the Cu-catalyzed alkylation of secondary phosphines.9g 

However, Taniaphos ligands were ineffective in this 
cyclopropene hydrophosphination (Table 1, entry 7). Instead, 
we found the DuPhos ligand family most promising (Table 1, 
entry 8,9). Higher selectivity was correlated with larger 
R-substituents on the ligand (92% yield, 98:2 er) (vide infra). 
The addition of base is necessary to promote the formation of 
Cu-phosphido (Table 1, entry 3). With further tuning of the 
reaction stoichiometry, we developed a convenient and 
practical protocol for the asymmetric coupling of phosphines 
and cyclopropenes under Cu catalysis. In parallel, we identified 
a related protocol using Pd catalysis that is complementary to 
Wang’s.  While the Wang group reported that cyclopropene 1a 
does not transform under with their standard conditions (5 
mol% Pd2dba3, 11mol% (R,R)-QuinoxP, 1,4-dioxane, 60 °C),4g 
we found that Pd(OAc)2, in the presence of (R)-SEGPHOS, 
provides cyclopropyl phosphine 3aa in 86 % yield with 97:3 
er.19 With this Pd condition, we also obtained phenyl ester 
cyclopropyl phosphine 3la (84%, 96:4 er, >20:1 dr) and p-chloro 
phenyl ester cyclopropyl phosphine 3ma (68%, 94:6 er, 9:1 dr) 
by desymmetrizing corresponding cyclopropenes (see SI 2B for 
details).  

Table 2. Hydrophosphination of various cyclopropenes.a 

 

aReaction conditions: 1 (0.12 mmol), 2a (0.10 mmol), Cu(CH3CN)4PF6 (5.0 mol%), 
ligand (7.5 mol%), DBU (10 mol%), toluene (0.40 mL), 3 h. Isolated yield of 3. 
Diastereomeric ratios (dr) were determined from 1H NMR analysis of the 
unpurified reaction mixture. Enantioselectivity determined by chiral SFC. 
bReaction time is 24 hours, see SI for details. 
 
      With this Cu catalyzed transformation, we achieved a scope 
of 10 unique cyclopropenes with different functionalities, 

+ H PPh2

Cu(CH3CN)4PF6 (5 mol %)
Ligand (7.5 mol %)

DBU (10 mol %)
Toluene, rt, 3 h

then, CH3COOH and S8

Ph Me
Ph Me

P
Ph2

1a 2a 3aa

PPh2
PPh2

P

P

R

R
R

R

O

O

O

O
(R,R)-DuPhos

R = Me(L3), Et(L4), iPr(L5)R-SEGPHOS (L1)

Fe
PPh2

Me2N

PPh2

Taniaphos (L2)

entry variations yield (%) er

1 — 92 98:2

2

without DBU — —3

no (R,R)-iPr-DuPhos4

6 mol% ((R,R)-iPr-DuPhos

77

91

—

79:215

L3 instead of L5

6

L4 instead of L5

90:10

92:8

without Cu(CH3CN)PF6 — —

8

9

L1 instead of L5 90 85:15

7 L2 instead of L5 64:3682

70

73

S

+ H PPh2

Cu(CH3CN)4PF6 (5 mol %)
L5 (7.5 mol %)

DBU (10 mol %)
Toluene, rt, 3 h

then, CH3COOH and S8

R1 R2
R1 R2

P
Ph2

Me

P
Ph2

R

P
Ph2

1 2a 3

P
Ph2

P
Ph2

OH OMe

P
Ph2

P
Ph2

O

NMe2

O

O

S

S

S

S S

S S

3ka, 65%, 98:2 er
>20:1 dr

3ga, 74%, 94:6 er
>20:1 dr

3ha, 64%, 94:6 er
>20:1 dr

3ia, 67%, 99:1 er
>20:1 dr

3ja, 41%, 5:1 dr

Me

P
Ph2

Et

P
Ph2

S

S

3ea, 81%, 96:4 er
>20:1 dr

3fa, 68%, 98:2 er
>20:1 dr

Me

Me
Me

R = OMe 3ba, 81%, 97:3 er, >20:1 dr
Me 3ca, 93%, 96:4 er, >20:1 dr

3da, 67%, 98:2 er, >20:1 drbCF3



 

electronics and sterics as summarized in Table 2. High yields 
(81-93%) and stereoselectivities (96:4-97:3 er) are observed 
for cyclopropenes bearing electron-rich aromatic rings (3ba, 
3ca). Electron-poor aromatic ring (3da) gives good 
stereoselectivities (>20:1 dr, 98:2 er) and moderate yield 
(67%). Substituents on the cyclopropene can be replaced with 
bulkier naphthyl (3ea) and ethyl groups (3fa). Cyclopropenes 
with alcohol (3ga) and methyl ether (3ha) substituents 
undergo the transformation with moderate yields (64-74%) 
and high stereoselectivities (>20:1 dr, 94:6 er). In addition, 
amide substituted cyclopropene (3ia) undergoes 
hydrophosphination (67% yield, >20:1 dr, 99:1 er), and 
menthol ester cyclopropene (3ja) gave moderate 
diastereoselectivity (5:1 dr). With this transformation, we also 
successfully prepared spirocyclic phosphine 3ka.20,21 
 
Table 3. Hydrophosphination of 1a with various phosphines.a 

 
aReaction conditions: 1 (0.12 mmol), 2a (0.10 mmol), Cu(CH3CN)4PF6 (5.0 mol%), 
ligand (7.5 mol%), DBU (10 mol%), toluene (0.40 mL), 3 h. Isolated yield of 3. 
Diastereomeric ratios (dr) were determined from 1H NMR analysis of the 
unpurified reaction mixture. Enantioselectivity determined by chiral SFC. 
bReaction performed for 12 hours. cReaction performed at 80 °C for 12 hours. 
 
     Our method encompasses a range of phosphine 
nucleophiles as shown in Table 3. Phosphines bearing electron 
donating Me, tBu, and OMe groups at the para position (3ab, 
3ac, 3ad) add to cyclopropenes (74-86%) with high 
enantioselectivities (96:4-98:2 er). Electron poor phosphines 
are well-tolerated (3ae). Even phosphines with ortho 
substituted (3af, 3ag), 3,5-substituted (3ah) and 3,4,5-
substituted aromatic rings (3ai) transform in 65-78% yield and 

high enantioselectvities (93:7-98:2 er). This method tolerates 
heterocyclic phosphines, such as 2-furyl 2j, which gives 3aj 
(49% yield, 96:4 er) at elevated temperature (80 °C, 12 hours). 
 
     Based on literature precedent9g,15d-e and our own 
observations, we propose the general catalytic cycle in Figure 
2A. Initially, Cu(CH3CN)4PF6 binds to (R,R)-iPr-DuPhos to 
generate a mono(chelate) species 4 followed by the mono-
coordination of phosphine (2) and deprotonation to generate 
Cu-phosphido complex 5. The novel step in the cycle involves 
addition of Cu-phosphido intermediate (5) to the cyclopropene 
(1a). We imagined that 5 could undergo either direct 
nucleophilic attack22 or insertion into the cyclopropene 
p-bond.23 Lastly, elimination of the copper catalyst 
regenerates 4 and releases cyclopropyl phosphine 3 to 
complete the catalytic cycle.  

 
Figure 2. Proposed Mechanism and Experimental Studies  

     To investigate our proposed mechanism, we performed a 
series of experiments. These experiments were performed in 
THF which provided a more homogeneous solution as 
compared to toluene. First, we obtained the rate law by 
variable time normalization analysis.24 We observed a first 
order dependance on the DBU concentration and a fractional 
order dependance on the copper catalyst concentration. In 
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Yin’s related study, the addition of a base (e.g., Barton’s base) 
to a mixture of Cu(CH3CN)4PF6, bidentate phosphine ligand,9l 

and secondary phosphine results in a complicated and 
uncharacterizable mixture. In stark contrast, we found that 
addition of various bases (e.g., DBU, tBuOK, and Et3N) to a 
mixture of Cu(CH3CN)4PF6, (R,R)-iPr-DuPhos, and 
diphenylphosphine results in immediate and selective 
formation of a new species on the basis of  31P NMR.  This 
species was isolated and further characterized by 1H NMR, 31P 
NMR and mass spec analysis and determined to be a Cu-
phosphido dimer 7 (Figure 2B). In this dimer, the lone pair of 
the X-type phosphido ligand of 5 acts as an L-type ligand to 
form a η2 bridge to another unit of Cu-DuPhos mono-chelate 4 
via a three-center four-electron bond. We propose this species 
to be the catalyst resting state. In line with this observation, 
our kinetics studies, and similar observations made by Appel 
and coworkers while studying copper hydride catalysis,25 we 
propose the DBU acts as not only a base but also an L-type 
ligand. The DBU undergoes ligand substitution with the 
dimeric resting state 7 to liberate the catalytically active 
monomeric Cu-phosphido 5. This hypothesis is further 
supported by 31P NMR studies which reveal decomposition of 
the dimer 7 with concomitant formation of an unidentified 
species in the presence of large excesses of DBU. Performing 
the transformation with isotopically labelled d-2a revealed 
that the hydrophosphination proceeds via a formal syn-
addition of the P–D bond across the cyclopropene double bond 
(Figure 2C).26 

     With this mechanism in mind, we examined the possibility 
of setting a phosphorus stereocenter via a dynamic kinetic 
asymmetric transformation (DyKAT).27 As outlined in the 
proposed mechanism, pyramidal inversion of the secondary 
phosphine is impractically slow at room temperature while 
epimerization of Cu-phosphido 5 with 5’ occurs rapidly.15c-e,28 
We subjected unsymmetrically substituted phosphine 2k to 
the reaction conditions to test this hypothesis and observed a 
3:1 dr for the cyclopropyl phosphine products and an er of 96:4 
and 88:12 for the major and minor diastereomer, respectively,  
(Scheme 1). Based on our prior results, we assume effective 
desymmetrization of the cyclopropene occurs with relatively 
low control over the configuration of the phosphorus 
stereocenter; these results are in line with a recent report from 
Glueck using a similar catalyst  for asymmetric alkylation of 
secondary phosphines.15d,15e On the basis of 31P NMR studies, 
Glueck and coworkers were able to observe both 
Cu-phosphido diastereomers and measure the relative 
diastereomeric ratio (3:1 dr). They found that this 
Cu-phosphido diastereoselectivity correlates to the observed 
enantioselectivity for the alkylation step (3:1 er).  In our case, 
we observe a single dimeric resting state, which thwarted 
attempts at a similar analysis for the diastereoselectivity of 
Cu-phoshido formation.   
 

 
Scheme 1. Dynamic kinetic asymmetric transformation. 
 
     To support the proposed mechanism and pursue more 
elusive details for the enantioselective hydrophosphination of 
cyclopropenes, we performed a density functional theory 
(DFT) analysis on the title reaction of 3-methyl-3-
phenylcyclopropene (1a) and diphenylphosphine (2a) 
catalyzed by Cu-iPr-Duphos complex (4). DFT computations 
were performed utilizing ωB97XD/def2TZVP PCM(toluene)// 
B97D/def-2SVP level of theory as implemented in Gaussian 
16.29-35 Thermal corrections were computed using Grimme’s 
quasi-rigid rotor harmonic oscillator approximation.36 IRC 
calculations were performed to confirm that transition 
structures (TSs) connected minima along the potential energy 
surface.  A thorough exploration of the catalyst conformational 
space was performed using CREST.  In addition, a detailed 
exploration of TS conformations was performed for the 
selectivity-determining step (see SI page S33 for details) 

     Our computational study sought to identify both the 
turnover-limiting and stereoselectivity-determining steps of 
the catalytic cycle and to explain the origins of experimentally 
observed stereoselectivity.  The potential energy surface for 
the lowest energy pathway resulting from our investigation is 
shown in Figure 3.  The reaction is initiated via the coordination 
of diphenyl phosphine 2a to Cu-Duphos to give the Cu-HPPh2

+ 
complex 5aH+. Deprotonation of this cationic complex 5aH+ by 
DBU is a low barrier step (TSDep,  ∆G‡

 = 4.8 kcal/mol) that leads 
to the reversible formation of Cu-phosphido intermediate 5a 
(chosen as the reference structure in the reaction coordinate). 
Following deprotonation, 5a binds cyclopropene 1a via 𝜋-
coordination transition structure TSCoord (∆G‡ = 15.1 kcal/mol) 
to generate Cu-alkene complex IntCoord. The subsequent 1,2-
migratory insertion into the cyclopropene 𝜋-bond (TSMI) has a 
free energy barrier of 19.2 kcal/mol relative to 5a and 
represents a highly exothermic step in the pathway, which 
results in a stable, significantly lower energy copper 
coordinated cyclopropyl phosphine intermediate 6a – residing 
12.5 kcal/mol below the monomeric resting state 5a. The 
reaction pathway then proceeds through a facile stereo-
retentive protodemetalation (TSPDM, ∆G‡

 = -6.3 kcal/mol 
relative to 5a) – a copper mediated protonation from DBU 
occurs syn to the diphenylphosphine substituent – to 
concomitantly regenerate 4 and afford the syn-
hydrophosphinated cyclopropene product 3aa (transferred 
proton shown in blue).37-39 This protodemetalation step (TSPDM) 
proceeds through a unique three-center, two-electron bond 
transition structure (C–Cu bond-breaking is 2.11 Å and C–H 
bond forming distance is 1.42 Å), consistent with the exclusive 
syn addition observed when the reaction is performed with d-
2a (Figure 4 and Figure2C) (vide supra). 
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Figure 3. Reaction coordinate diagram depicting the relative barriers of deprotonation, alkene coordination, migratory insertion and protodemetalation in 
the hydrophosphination of cyclopropene. Migratory insertion is the stereoselectivity determining step. 

Incidentally, several alternative pathways for proto-
demetalation were also explored computationally (See SI page 
S34).  A syn-protodemetalation TS analogous to TSPDM, 
whereby copper mediates the proton transfer from a 
protonated PPh2 on the adjacent carbon, was found to be 25 
kcal/mol higher in energy than TSPDM.  

 

Figure 4. Three-center, two-electron bond transition structure for the product-
forming syn-protodemetalation of Cu-Duphos from cyclopropene via DBU-H+. 

     Analysis of the potential energy surface indicates that TSMI 
is the enantio- and diastereoselectivity-determining step in the 
hydrophosphination reaction. To investigate catalyst-
substrate interactions that dictate the enantioselectivity in this 
reaction, a conformational search was conducted on TSMI for 
transition structures that lead to the formation of both the 
major and minor enantiomers of 3aa. The lowest energy 
transition structure which leads to the major enantiomer 
(Figure 5A, TSMI-Major) is favored by 2.1 kcal/mol with respect to 
the lowest energy structure for the minor enantiomer (Figure 
5A, TSMI-Minor). At 298 K, a ∆∆G‡ of 2.1 kcal/mol corresponds to 

a predicted er of 97.5:2.5, which is in excellent agreement with 
the experimental er of 98:2 (∆∆G‡ of 2.3 kcal/mol) for the title 
reaction.  

     To further evaluate the origin of enantioselectivity, a 
distortion-interaction analysis was performed on TSMI-Major and 
TSMI-Minor.40-42 Distortion energy describes the energy required 
to distort reactants and catalysts from their respective ground 
states into the necessary transition state conformations. 
Energy decomposition revealed that the major enantiomer 
suffers a greater degree of distortion energy, 2.4 kcal/mol 
(∆∆E‡) more than the minor enantiomer (Figure 5A). The 
majority (1.8 kcal/mol) of this 2.4 kcal/mol difference in 
distortion energy arises from the distortion of the diphenyl 
phosphine and Cu-DuPhos catalyst, while the remaining 0.6 
kcal/mol arises from distortion of the cyclopropene substrate.  
Despite distortion energy favoring the minor enantiomer, 
advantageous interaction energy favors the major enantiomer 
by 5.6 kcal/mol. Interaction energy describes how the 
distorted catalyst and reactant fragments interact with one 
another within the TS, a portion of this can be accounted for 
as dispersion energy. The major enantiomer exhibits favorable 
dispersions in the form of significant CH—𝜋 interactions 
between the diphenylphosphine and the cyclopropene methyl 
group as well as moderate dispersions amongst the Cu-DuPhos 
isopropyl groups and the cyclopropene substrate (Figure 5B). 
A visual comparison of the dispersion interactions in the 
enantioselectivity-determining transition states shows that 
TSMI-major enjoys more stabilizing dispersion interactions than 
TSMI-minor (as evidenced by the greater green areas in the NCI 
plots of the two TSs shown in Figure 5B).43,44 In addition to the 
favorable dispersions imparted by its isopropyl groups in TSMI-
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Major, the Cu-DuPhos catalyst also serves to add steric bulk to 
the catalytic pocket, blocking more than three-fourths of the 
pocket when coordinated to PPh2, forcing the cyclopropene 
substrate to bind in the same location for both enantiomers 
(see SI page S37). 
 

 

 
Figure 5. (A) Lowest energy TSs of the enantioselectivity-determining step with 
experimental and theoretical free energy barriers after Boltzmann weighting. 
Also shown are components of the energy decomposition analysis relative to 
the major enantiomer. ΔDistortion of the catalyst (Cat) and reactants (Rct) 
versus overall ΔInteraction (including ΔDispersion) are highlighted. (B) Non-
covalent interaction (NCI) plots depict dispersive interactions (shown in green) 
between Cu-DuPhos and PPh2 with cyclopropene reactants for each TS leading 
to the major and minor enantiomers of product (Isosurface of 0.009). 
 
     From this analysis, steric interactions have been identified 
to play a key role in controlling stereoselectivity. Using this 
information, we chose to investigate the buried volume and 
steric maps for intermediate 5a with L1, L3, L4 and L5 as 
ligands.45-46 The buried volume analysis reveals that ligand L1 
(Figure 6A) has a slightly smaller available free volume 
compared to the best ligand L5 (Figure 6C). However, L5 is 
more fluctional compared to the rigid biphenyl backbone of L1, 
thereby accommodating the incoming cyclopropene more 
readily. This leads to an overall reduction in the background 
reaction of L5, compared to L1, thus enabling better 
enantioselectivity in L5. Similarly, despite having the same 
backbone as L5 (R=iPr), ligands L3 (R=Me, Figure 6B) and L4 
(R=Et) have more available free volume, leading to overall 
poorer steric control and slightly lower enantioselectivity.47 

 

Figure 6. Steric maps depicting the catalytic pocket prior to coordination of 
cyclopropene when the ligand on copper is (A) R-SEGPHOS (L1), (B) (R,R)-Me-
DuPhos (L3), or (C) (R,R)-iPr-DuPhos (L5). The orientation of the copper-
phosphido complexes in these steric maps is depicted in D. 

     In conclusion, we report asymmetric hydrophosphination of 
cyclopropenes in high enantio- and diastereoselectivities. 
Mechanistic studies reveal an unusual dimeric resting state 
and a surprising rate enhancement effect from DBU, which 
plays an important role in forming the catalytically active 
monomer. Proof of concept for enrichment of phosphorus 
stereocenters is demonstrated through a DyKAT of an 
unsymmetrically substituted secondary phosphine. Both the 
enantio- and diastereoselectivity of the product is determined 
during the migratory insertion step.  An analysis of the relevant 
TSs indicate that selectivity is controlled by a combination of 
dispersion and steric interactions. These insights will guide 
future studies on developing methods to set phosphorus 
stereocenters and design both mono- and bidentate 
phosphine ligands. These studies help advance our 
understanding of copper catalysis, hydrofunctionalization, and 
phosphine synthesis. 
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