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ABSTRACT: Oxide-derived Cu (OD-Cu) catalysts have shown an excellent ability to ensure C-C 

coupling in the electrochemical carbon dioxide reduction reaction (eCO2RR). However, these 

materials extensively rearrange under reaction conditions, thus the nature of the active site remains 

controversial. Here, we studied the reduction process of OD-Cu via large-scale molecular dynamics at 

first-principles accuracy introducing experimental conditions. The oxygen concentration in the most 

stable OD-Cu materials increases with the increase of the pH/potential/specific surface area. In long 

electrochemical experiments, the catalyst would be fully reduced to Cu, but it takes a considerable 

amount of time to remove all the trapped oxygen, and the highly reconstructed Cu surface provides 

various sites to adsorb oxygen under relatively stronger reduction potentials (U = –0.58 VSHE at pH=14, 

0.25 VRHE). This work provides insight into the evolution of OD-Cu catalysts and residual oxygen 

during the reaction conditions and a deep understanding of the nature of active sites.  
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Closing the carbon cycle through electrochemical carbon dioxide reduction (eCO2R) with renewable 

energy has attracted attention for its potential to reach net-zero technologies.1–3 Cu-based catalysts 

were considered the only class of materials able to perform C-C coupling4,5 providing valuable C2+ 

products at high reaction rates.6–11 Cu and particularly oxide-derived Cu (OD-Cu) catalysts exhibit 

significant structure sensitivity,12–15 the later produce C2+ with higher current density and Faradaic 

efficiency (F.E. = 45% to 80%) at reasonable overpotentials (U = –0.40 to –1.00 VRHE).12,16–20 Under 

the experimental conditions these materials show a highly dynamic behavior with profound 

stoichiometric and geometric rearrangements.21–24 

The unique performance of OD-Cu has been attributed to the singularities of its morphology,18–23 

however the real structure under reaction conditions remains controversial15,16,29–36 due to its highly 

dynamic behavior under experimental conditions.31–34 According to XRD and Raman experiments,31,41 

OD-Cu shall be reduced in the bulk according to thermodynamics42,43, but pulse experiments16 show 

that residual oxygen44,45 can be trapped, enhancing the electrocatalytic process.46,47 Monodispersed 

oxide nanoparticles (NPs) reduced under CO2RR conditions were found to morphologically evolve 

very rapidly via an electrochemical scrambling process, with the initial formation of Cu aggregates 

that under air exposure conditions change into Cu2O nanocubes.6 Moreover, the existence of oxygen 

species under reductive conditions were investigated by grazing incident hard X-ray photoelectron 

spectroscopy of OD-Cu prepared by reduction of Cu oxide with H2 without exposing to air thus being 

able to extract the oxygen depth distribution profiles.29 These experiments identify separated Cu2O 

buried in the material, oxygen in the lattice close to the surface replacing Cu atomic positions, and O 

as interstitials in Cu. Computational models have attempted to disentangle such complexity, but have 

faced similarly severe limitations. Models for fully oxygen depleted models have been investigated in 

classical Molecular Dynamics48. Particularly roughened copper surfaces consisting of 106-107 atoms 

created by removing heteroatoms from cuprous oxide, nitride, phosphide, and sulfide48 with classical 

effective medium theory reported four types of sites, indicating that over-coordinated 4-fold hollow 

sites were beneficial to produce C2+ species. Alternatively, OD-Cu models were investigated by Ab 

Initio Molecular Dynamics (AIMD)14 but at fixed oxygen contents, i.e. decoupled of the experimental 

conditions.  

Recent developments of neural network potentials derived from massive DFT simulations hold 

the key for a proper structural and energetic analysis of this long time and extended length OD-Cu 

dynamic phenomena. A first attempt showing the feasibility of the approach49 was carried out for an 
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OD-Cu slab built by removing surface oxygen gradually until no oxygen appears on the surface in 1 

ns. A pure Cu surface with the base of Cu2O was finally formed, and the results show that the planar-

square and convex-square sites are selectivity to ethylene. However, the simulations fail to observe 

the diffusion of oxygen due to the short simulation time and thus did not explain the complete 

reduction of Cu2O to Cu observed in many of the experiments.  

 Both the content and the depth profile of the oxygen distribution is highly contentious since OD-

Cu is easily re-oxidized when it is characterized by ex-situ methods limiting experimental capability 

to assess active and selective ensembles during operation. To gain an insight on the OD-Cu structures 

in eCO2RR we trained an accurate neural network potential to address the highly dynamic nature of 

the catalysts strongly coupled to the history of the sample and to the reaction conditions. Based on the 

OD-Cu structure, the structure under different conditions and distributions of active sites were 

obtained paving the way for their control.  

 

Methodological approach 

The modeling procedure, Figure 1, fits a Neural Network Potential to simulate OD-Cu systems, to 

allow long Molecular Dynamics simulations coupled to an external oxygen reservoir to identify the 

most likely oxygen contents under different experimental conditions. To this end, we have generated 

a Density Functional theory (DFT PBE-D250–53) initial dataset with the most common Cu, CuxO and 

Cu2O models, generated by optimizing bulks and surfaces and AIMD simulations. 

 The Behler-Parrinello high-dimensional neural network potential (HDNNP)54 was constructed 

using the neural network potential package (n2p2)55 on the initial dataset (Figure 1), as described in 

Methods and Section S1. The NNPs were trained via multistream extended Kalman filter algorithm 

using energies and forces, and the dataset was expanded via active learning, Figure 1. In short, two 

NNPs were trained with the initial dataset. And 1%-25% of structures of the dataset were used to 

perform the Neural Network based Molecular Dynamics (NN-MD) simulations using one of the NNPs. 

The NN-MD simulations were performed using LAMMPS56 code with the NNP interface from n2p257. 

Upon running NN-MDs with the two NNPs, around one-thousandth structures were collected as seeds 

for further DFT simulations. These were further selected as follows: (i) one third of structures whose 

symmetry function values are not within the range of the current dataset (i.e. extrapolations)58 (ii) by 

comparison of the two NNPs runs, when the differences between two predictions (energy and forces) 

are larger than threshold (~5-10 × RMSE). The latter strategy allows identifying structures beyond the 
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explored structure space as interpolation. Then the dataset was updated with the DFT values for these 

newly calculated structures. Finally, to ensure the robustness of the potential, NVT simulations for 

models under extreme conditions (at least 1100 K, 1 ns) were performed. These models include: (i) a 

Cu slab with 3240 atoms generated by removing all oxygen from an Cu2O(111) pristine system, (ii) 

for Cu2O, a Cu1415O784 cluster, and (iii) for CuxO, a slab of OD-Cu (Cu444O56) from our previous study14. 

 To ensure representativity and transferability, the dataset was constructed through two stages. First, 

the data for Cu and Cu2O were built via active learning separately. Then the intermediate composition 

structures of CuxO were selected. In total, 443 iterations of the active learning process were conducted, 

in which 8.16×1010 steps were ran from NN-MDs, and 8.30×107 structures were compared using two 

NNPs, and a final dataset with 59491 points was obtained, Table S3. Once trained, the root mean 

squared error (RMSE) of the energy (force) is 4.58 meV/atom (63.61 meV/Å) on the training set and 

4.59 meV/atom (63.48 meV/Å) on test set as shown in Supplementary Section S1.2 and Figure S6. 

The errors are one order of magnitude smaller than the requirement for chemical accuracy (1 kcal/mol, 

i.e. 43 meV/atom), which indicates that the NNP has the same level of chemical accuracy as the 

reference PBE-D2 functional. Similar errors on training and test set indicate no overfitting.  

 

Figure 1. Computational modeling approach for constructing the neural network potential. The 

data was collected in two stages. In stage 1, the structures of Cu and Cu2O were selected via the active 

learning procedure, respectively. Based on the dataset of stage 1, the dataset of CuxO was built. In the 

active learning process, 443 iterations were performed in total, 8.16×1010 steps were ran from NN-

MDs, and 8.30×107 structures were checked for extrapolation and interpolation. In the end, the final 
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dataset consists of 59491 points containing 1,801,491 atomic environments and the NNPs are 

applicable for all three structures.  

 

Results 

Thermodynamics of the OD-Cu reduction 

To address the thermodynamic fraction of oxygen in OD-Cu under different conditions, we started by 

a perfect Cu2O(111) slab to examine the role of pH, electric potential, and specific surface area (S.S.A. 

= surface/volume), see Figure 2. pH and electric potential were introduced through the Computational 

Hydrogen Electrode59. The O-deficient configurations were simulated by the sequential removal of O 

atoms. For each step, the same number of oxygen (1/48 of the total number of oxygen in the perfect 

slab) were random chosen and removed from the previous structure until all oxygen atoms were 

removed after 48 steps. The thermodynamic minima were identified for each case by using a NN-MD 

annealing simulation. 

 Figure 2a shows the free energy of OD-Cu reduction as a function of pH. At low pH, OD-Cu tends 

to be fully reduced to generate pure copper. While at high pH values, which are typical of highly active 

and ethylene selective CO2RR electrolyzers,60 all the steps of the reduction are endergonic, and the 

perfect Cu2O is the most stable state. At intermediate pH, the partially reduced Cu2O system is the 

thermodynamic ground state. In electrochemical media, with KHCO3 buffer as electrolyte (pH 6.8-8) 

about ~15.7 at.% oxygen would remain in a system with a S.S.A. of 0.146 Å-1 at zero potential vs 

SHE. However, the reduction of the first 45.8% (22/48) of oxygen is endergonic, which indicates that 

starting the reduction requires a driving force. As expected, the driving force can be the electric 

potential, as shown in Figure 2b, at more reductive potentials, the reduction to copper is favorable. 

Metallic copper is more favorable than all the partially reduced OD-Cu structures at potential as small 

as –0.20 VSHE (0.28 VRHE). However, the ‘elementary step’ with largest positive reaction energy was 

considered to be the potential limiting step and prevent further reduction. This results in a potential of 

-0.68 VSHE (-0.20 VRHE) to ensure that all steps are exothermic, indicating OD-Cu reduction is 

kinetically limited at weak reduction potentials.  

To understand size effect on the reduction degree of OD-Cu, slabs of different thicknesses 

(equivalent to spherical nanoparticles of a diameters between 17.5 and 4.1nm) were simulated. Figure 

2c shows that the final state differs significantly. Large nanoparticles keep low oxygen quantities if 

any, while the smallest one retains 15% of O-atoms, and the overall reaction energy is slightly 
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endergonic, Table S4. The lower the S.S.A., the larger amount of energy (per atom) is released to reach 

the same reduction level. On the contrary, the higher the S.S.A., the more oxygen is retained in the 

most stable structure. This phenomenon can be explained by the lower surface energy of Cu2O(111) 

(0.665 J/m2) compared to Cu(111) (1.339 J/m2)61, and the reconstruction of Cu2O surface could 

significantly reduce the energy of the system as shown in Section S2.2. This observation is in line with 

a recent experimental study using Atomic-scale STEM and electron energy loss spectroscopy 

techniques in which the small Cu nanoparticles were completely oxidized to Cu2O while the large Cu 

nanoparticles formed Cu@Cu2O structures.6 

Figure 2. The reduction of Cu2O to Cu under different conditions. The system (a) under different 

pH value, at U = 0 VSHE, S.S.A. = 0.146Å-1, (b) under different electric potential vs SHE, at pH = 8, 

S.S.A. = 0.146Å-1, (c) with different specific surface area, at pH = 8, U = 0 VSHE. The reaction energies 

were calculated from mean energy of OD-Cu in last 800 ps equilibrium in annealing simulations, and 
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the overall energy was normalized to per unit of Cu2O. (d) The distribution of oxygen along z axis for 

last frame of OD-Cu (S.S.A. = 0.034Å-1) with different oxygen concentrations. A minor tick interval 

in horizontal axis is 1 atom/Å, (e) The model of Cu2O slab with different S.S.A., oxygen in red, copper 

in brown, (f) The configurations of OD-Cu structures corresponding to (d).  

 

The distribution of oxygen 

After annealing, most of the oxygen would be located close to the surface to form the structure of 

Cu2O(111) if the remaining number of oxygen atoms fits the capacity of the surface. Still, the reason 

could be that Cu2O(111) has lower surface energy than Cu(111), and the formation of Cu2O on the 

surface can reduce the energy of the system. But few oxygen atoms could be trapped inside, Figure 

2d. If the amount of oxygen atoms exceeds the capacity of the surface, the excess oxygen atoms 

aggregate in the bulk to form Cu2O grains, consistent with the experimental results.29 The oxygen 

depth profile shown in Figure 2d for the low specific surface area model (S.S.A. = 0.034 Å-1, Figure 

2e), shows three peaks corresponding to Cu2O, two on the surface and one inside the bulk. The peak 

inside the bulk indicates the formation of a Cu2O layer (4 atoms per 1.08 Å for Cu2O(111)-p(2×2)) 

parallel to the surface as Cu2O has a lower formation energy than CuxO ( x =1, 6, 8, 64)14,61. Therefore, 

oxygen atoms tend to aggregate to form Cu2O to reduce the overall formation energy, and near the 

surface to further reduce the surface energy. Thus, considering a large size OD-Cu catalyst containing 

enough O, the stable static configuration should be that part of oxygen atoms are located on the surface 

to form Cu2O surface. Meanwhile, excess oxygen leads to Cu2O formed inside the bulk segregated 

from the Cu crystal.6,29 The diffusion and aggregation of oxygen were also observed in the NVT 

simulation at 300 K showed upon long-time equilibration (100 ns), Figure 3a. The two peak inside the 

bulk at 10 ns correspond to the two types of oxygen proposed by a recent XPS study29, Figure S7. 

 The Cu-only crystal structure domains formed either on the surface or inside the bulk can suppress 

oxygen diffusion. As shown in Figure 3b, when the top six atomic layer oxygen were removed from 

the initial slab, the remaining Cu atoms collapse immediately, resulting in the formation of a metallic 

shell on the surface with a similar configuration of face-centered cubic copper. At 300 K, no oxygen 

atom diffuses to the surface after 100 ns equilibrium (even after 900 ns at 400 K) as shown in Figure 

3b. This indicated that the diffusion of oxygen is highly restrained by the dense pure metallic shell. 

From equilibrium simulations at different temperatures, until the equilibrium temperature increases to 

600 K, the diffusion of oxygen from inside to the surface was observed in the equilibration time in 
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this work, i.e., 1 ns (the first oxygen appears on the topmost layer in 0.72 ns). Although the formation 

of Cu2O surface is more favorable, the sluggish kinetics of oxygen diffusion could slow down the 

process. 

 

Figure 3. The evolution of oxygen distribution along z axis in OD-Cu during reduction and 

deposition and oxygen diffusion kinetics relation with temperature. (a) evolution of oxygen 
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distribution for OD-Cu (9.43 at.% O, the most stable case at S.S.A. = 0.070 Å-1, pH = 8, U = 0 VSHE, 

Figure 2c) created by removing random oxygen atoms, (b) evolution of oxygen distribution for OD-

Cu (S.S.A. = 0.070 Å-1) created by removing oxygen atoms at top most atomic layers, (c) the relation 

between temperature and oxygen diffusion coefficient in perfect Cu2O bulk, (d) the relation between 

temperature and diffusion time of oxygen from inside to surface in OD-Cu system of (b), (e) the 

evolution of number of added oxygen atoms and deposited oxygen atoms, (f) oxygen distribution 

during the deposition, the dashed indicates the surface at 0 ns. 

 

 Figure 3c shows the diffusion coefficient of oxygen, DO, in pristine Cu2O bulk as obtained from 

the meaningful62 data of mean squared displacement (MSD) at high temperatures (1400 K to 1800 K). 

Using the exponential dependence, the DO at low temperatures were estimated, 4.5×10-3 Å2/ns and 

81.6 Å2/ns at 300 K and 900 K respectively. Considering a one-dimensional diffusion with distance of 

6 Å, the diffusion time is 0.22 ns under 900 K, 0.92 ns under 700 K, 2.72 ns under 600 K, and 4007.96 

ns under 300 K. 

 To further evaluate the diffusion of oxygen in the Cu shell case, the simulations for the model in 

Figure 3b were ran for at least 300 ns for 400-800 K (with 100K intervals). Below 500K, no oxygen 

appears on the surface even after 300ns. Already at 600 K, at most 4 oxygen atoms appear in the run 

and the last oxygen atom first emerges at 235.7 ns (diffusion distance ~ 6Å), while at 900 K this 

happens even below ns scale, Table S5.  

 Additionally, an exponential relation for the diffusion time and temperature was obtained as 

shown in Figure 3d. The estimated times for 4 oxygen atoms appearing on the surface are 2.40×104 

ns, 1.56×107 ns, and 7.72×1011 ns (772 s ≈ 0.2 h) at 500 K, 400 K, and 300 K, respectively. From the 

relation, at 300K, the diffusion time for 3.5 nm is 7.3 h. The diffusion of oxygen is greatly constrained 

in the latter case, thus difficult to be observed in the time scale of simulations but certainly can occur 

on the time scale of the experiment.  

 

The re-oxidation of reduced OD-Cu 

To reproduce exhibition to air or a pulsed potential we have employed the reduced OD-Cu systems in 

the re-oxidation process by depositing oxygen atoms at 300 K on pure Cu reconstructed slab obtained 

in Figure 2f system. The initial model has 384 Cu atoms and to reach the conversion to Cu2O, 192 

oxygen atoms were gradually added to the system at a rate of 1 atom per 3 ps, and initial velocity of 1 
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Å/ps from 3 Å above the surface atom to avoid the high-speed collision. Initially the oxygen atoms 

are adsorbed on the surface, and at about 0.06 ns, all the 20 adatoms are sit on the surface. As the 

content increases, most of the oxygen (103/172) from the deposition source cannot reach the surface 

due to the repulsion with the surface oxygen. However, after a short time (0.1 ns from the start), the 

copper atoms are dragged by the surface oxygen, forming a loose structure that allows to accommodate 

more oxygen atoms, simultaneously some oxygen atoms penetrate deeper into the bulk. After 89 

oxygen atoms oxidize the material, the process stops (Figure 3e). Additional simulation gives the same 

results even adding 300 oxygen atoms into the system (Figure S8). The final thickness of the oxide 

layer is 16.9 Å (Figure 3f, 46.3 Å to 63.2 Å), in which 6.9 Å of oxide copper are below the original 

surface (dashed line in Figure 3f, 53.2 Å), and 10 Å above the original surface, the former indicating 

the diffusion of oxygen to the interior and the latter corresponding to the outward displacement of Cu. 

This agrees with the experimental result that only the near surface layers are oxidic38. Unlike in the 

reduction process, where the oxygen diffusion from inside to surface was not observed under 300 K 

when dense copper formed on the surface, here, in the oxidation simulation the oxygen rapidly diffuses 

from the surface to 6.9 Å inside the surface. The reason may be that copper has enough space to move 

on the surface. Again, when the oxygen diffuses to 6.9 Å under the surface, the dense copper prevents 

the diffusion of oxygen, in conjunction with difficulty of depositing more oxygen to the surface, and 

deep oxidation takes longer.  

In addition, the component of oxide layers (atoms above the deepest oxygen) on the surface is 

Cu79O89 (Cu71O89 for the 300 atoms case), indicating that the surface Cu is mainly Cu(II). After 

annealing, the component changes to Cu112O89 (Cu139O89 for the 300 atoms case) which is Cu(II) and 

Cu(I) and the thickness changes from 17 Å to 21 Å, which is comparable to the experimental findings 

(2∼3 nm)6,29,38.  

 

The active site via graph theory 

Considering typical experimental settings, a Cu2O nanoparticle with the diameter of 20 nm37, at pH 8 

and U = –0.3 VRHE, should be reduced to pure Cu. To simulate the high roughness of the surface, a 

3240 atom Cu slab derived by removing all oxygen from a 30 atomic layers Cu2O(111)-p(9×9) was 

used. After equilibrium, the slab structure (equivalent to 4.4 nm NP) forms a loss configuration with 

average coordination number (with a decay controlled by an error function14) of 9.08. 2861 active sites 

are detected via Delaunay triangulation sampling63 of the last frame of the simulation, and there are 
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16 unique active sites based on the isomorphism analysis64 as shown in Figure 4a. The last 9 unique 

active sites together represent only 0.45% of the number of total active sites, thus they are categorized 

to 1 class (H) for analysis. Therefore, 8 classes of active sites are considered. A, B, and C categories 

account for the most, 13.28%, 49.98%, and 27.19% populations, corresponding to atop, fcc/hcp, and 

bridge sites, respectively, and the Cu atoms in these sites could be under-coordinated. Class F (2.48%) 

also represents three coordinated sites, but unlike the hcp/fcc sites, two of the Cu atoms are not 

interconnected. D(4.89%), E(1.12%), and G(0.59%) categories represent four coordinated sites, where 

E is similar to the hollow site on (100), while the other two categories are connected in different ways. 

The reconstructed surface gives a wide distribution of oxygen desorption energies from –0.51 eV 

to –3.10 eV at pH 0, U = 0 VSHE. At pH 8, U = 0 VSHE, 25.2% of the oxygen desorption is endoergic, 

and all the oxygen would be removed from the surface at reduction potentials more negative than –

0.22 VSHE (0.26 VRHE). Instead, at pH 14, the reduction potential needs to be lower than –0.58 VSHE 

(0.26 VRHE) to completely remove the residual oxygen. Thus, the residual oxygen on the surface can 

exist under certain experimental conditions and the amount of residual oxygen could be finely tuned 

by controlling the reaction conditions. 

 

Figure 4. The active sites determined via graph theory and the distribution of oxygen desorption 
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energy. (a) The graph representation of oxygen (red) and its first neighbor copper atoms(brown), the 

number is a coordinate number, (b) the distribution of oxygen desorption energy for different type of 

active sites at pH 0 and U = 0 VSHE, the solid curves show the Gaussian distribution, and the dashed 

lines are the desorption energies of oxygen on corresponding active sites on Cu(111). 

 

Discussion 

The computational framework employed here provides a systematic approach for understanding the 

material changes from bulk to surface during the operando conditions not only from a thermodynamic 

perspective but also from a kinetic standpoint. The simulations point to an OD-Cu oxygen content at 

zero electric potential vs SHE highly depends on the pH, Cu2O is reduced to Cu under strongly acidic 

conditions, while Cu2O is stable under strongly basic conditions. Under near neutral conditions at zero 

electric potential vs SHE, the Cu2O with specific surface area of 0.146 Å-1 retains 15 at.% oxygen. 

The specific surface area of Cu2O particle affects the reduction degree, the lower the specific surface 

area, the higher reduction degree. Depending on the size distribution of the Cu2O particles, the 

potential window for simultaneous presence of Cu2O and Cu surfaces are different. While a strong 

reduction potential could lead to the complete reduction of Cu2O, the sluggish kinetics of oxygen 

diffusion from inside to surface makes the process complete in long time (depending on the size, from 

minutes to hours) in agreement with experimental observations38. Comparing to the most recent 

experiments, the evidence by grazing incidence XPS can be seen as originated by defect species for 

O close to the surface and for the interstitial ones, and these configurations were also found in our 

simulations.  

 As for the reducing/oxidating processes, our computational result match the experimental values 

even regarding the timescale of the events.6 XAS combined to EELS analysis demonstrate the metallic 

nature of the 7 nm NP after 30 min at –0.8 VRHE. After 1 h the EXAFS of these particles retrieves a 

coordination number for Cu of 8.1 ± 1.6. As EXAFS corresponds to an average of bulk and surface 

atoms, the observation means that under steady-state conditions Cu catalyst contains a large fraction 

of undercoordinated sites. This corresponds to our calculation on the equivalent system for which we 

find the average coordination number is 9.08 and complete oxygen depletion in 7.3 h. In addition, the 

small Cu structures (7nm) fully reoxidize after 5 h of air exposure6 while the larger structures form 

Cu@Cu2O shell structures (2 nm oxide shell). This also agree with our computed reoxidation shell of 

2.1 nm. 
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 EXAFS analysis show that the removal of oxygens ends up with materials that contain a very 

large amount of disorder. Electrocatalytic experiments show that the disordered grains were 

responsible for the undercoordinated sites active in CO2RR. In air exposure experiments these defects 

can react with O2 leading to the spontaneous incorporation of oxygen in the lattice. In our simulations, 

once O2 is split, the penetration of O in these disordered layers is rather fast, with the oxidation layer 

reaching saturation within 0.4 ns. 

In conclusion, the structures of OD-Cu during the reduction process under different conditions 

were systematically studied via large-scale molecular dynamics at first-principles accuracy with a 

neural network potential (error 4.58 meV/atom w.r.t. PBE-D2). The oxygen concentration of the OD-

Cu materials is strongly dependent on the history of the sample and the reaction conditions, the higher 

the pH/potential/specific surface area, the higher the oxygen concentration in the most stable OD-Cu 

configuration. The oxygen atoms tend to aggregate to form Cu2O on the surface and inside the bulk to 

reduce the energy by lowering the formation energy and surface energy instead of being distributed 

uniformly. For long electrochemical experiments OD-Cu materials reduce to Cu but requires a 

considerable time to remove all the trapped oxygen. In addition, the highly reconstructed Cu surface 

leads to a wide distribution of oxygen adsorption energy sites, increasing the probability of stable 

residual oxygen at strong reduction potentials. These results not only reveal the dynamics of the stable 

structure of OD-Cu under different experimental conditions but also give an insight into the formation 

mechanism of the reduction of OD-Cu and the limits for fine-tuning by controlling experimental 

conditions. 

 

Methods 

The DFT simulations were performed using the Vienna Ab Initio Simulation Package (VASP)65,66 with 

Perdew-Burke-Ernzerhof (PBE) functional50 and our refitted DFT-D2 van der Waals parameters51–53. 

For valence electrons, a plane-wave basis set was adopted with an energy cutoff of 450 eV, and the 

ionic cores were described with the projector augmented-wave (PAW) method. The total energy was 

converged to an accuracy of 1×10-6 eV, and a force tolerance of 0.03 eV/Å was used in all structure 

optimization. The NNPs were trained via multistream extended Kalman filter algorithm using energies 

and forces. To improve the quality of the NNPs, an expanded dataset was built via active learning 

using a modified framework based on RuNNerActiveLearn67,68. The active learning procedure was 

stopped when no extrapolation was found in the runs and all energy (force) differences between the 
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two NNPs are lower than 5 (10) times the RMSE of energy (forces). If the potential is not applicable 

to the above three systems, the active learning would be launched again, and the temperature of NN-

MDs would be increased to increase structural diversity. Further tests regarding temperature stability 

and melting point are presented in Section S2. The simulation of Neural Network based Molecular 

Dynamic (NN-MD) were performed using LAMMPS code56 with the NNP interface from n2p255,57, 

For equilibrium, the simulations were run for 1 ns at the indicated temperature. For annealing, the 

simulations were run at 700 K for 1ns, then the systems were cooled to 300K in 1 ns, and finally 

another 1 ns for equilibrium at 300 K. The canonical (NVT) ensemble simulations were modeled with 

the Nose-Hoover thermostat for surface systems, and the Nose-Hoover thermostat and barostat were 

employed for isobaric-isothermic (NPT) ensemble simulations of bulk systems69.  
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