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Abstract 

Glycogen Synthase Kinase-3 beta (GSK-3β) is a validated target-enzyme associated with 

Alzheimer’s Disease (AD). Usage of allosteric inhibitors of this enzyme represents a valid and 

promising therapeutic strategy due to their selective and subtle modulation, with a low 

probability of producing side effects. Nonetheless, only a few GSK-3β allosteric modulators with 

limited binding affinity have been uncovered so far and published in the public domain. Previous 

Virtual Screening (VS) studies have not considered such mechanism of action and did not 

achieve chemical diversity. Therefore, we applied two orthogonal VS workflows by means of 

shape-based similarity, QSAR, docking, and ADMET filters to select new and diverse GSK-3β 

allosteric inhibitors. Obtained hits have shown enhanced structural diversity and preliminary 

results as GSK-3β allosteric inhibitors according to in vitro assays. Furthermore, their GSK-3β 

allosteric inhibition were analyzed by blind docking and pocket coverage studies. These hits can 

be employed as template molecules for the discovery of more potent inhibitors, with the aim to 

expand the chemical space of GSK-3β allosteric modulators as promising agents in AD. 

 

Keywords: Alzheimer’s disease, GSK-3β allosteric modulators, virtual screening, QSAR, 

machine learning, shape similarity, docking, ADMET. 

 

1. Introduction 

Glycogen Synthase Kinase 3-beta (GSK-3β) is a serine/threonine kinase involved in the 

phosphorylation of a variety of substrates and, thus, several processes such as insulin signaling, 

Wnt signaling, neurotransmitter signaling, and microtubule dynamics, among others [1,2]. 

Abnormal regulation of this target is associated with multiple neurodegenerative diseases, e.g. 

Alzheimer’s disease (AD) [3–5]. Its expression tends to increase with age, leading to 

hyperphosphorylation of tau proteins, increased production of β-amyloid, and memory 

impairment [6,7]. Considering this, several GSK-3β inhibitors have been pursued and studied in 
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recent decades within AD therapeutics. Furthermore, compounds that can perform allosteric 

inhibition of GSK-3β can have potential advantages like higher selectivity, mild to high potency, 

and overall minimizing chances of side effects [8,9]. Nevertheless, few chemical classes (or 

structural scaffolds) of GSK-3β allosteric inhibitors have been uncovered so far. 

Computer-Aided Drug Design (CADD) strategies, such as Virtual Screening (VS), have 

shown potential to reduce time-cost within an usual drug development pipeline [10]. However, 

achieving high hit rates and chemical diversity is challenging [11,12]. Expanding the chemical 

diversity of specific inhibitors of a given biological target is particularly difficult - especially 

when this is a newly validated target. Usually, larger chemical/biology libraries increase the hit 

rate in VS campaigns [13,14]. However, many studies have succeeded in identifying hits with 

small libraries [15,16]. This analysis regarding the balance between the database’s size and VS 

goal (diversity/potency/hit rate/cost-benefit) might become subjective, mainly when choosing 

which methodological approaches are intended to be used in prospective campaigns. In this 

context, we propose that application of mixed approaches such as structure- and ligand-based 

(SB and LB) methodologies can be critical for success in VS. We believe that the attempt to 

integrate both of them within a VS workflow seems to be a reasonable way to achieve diversity 

of hits.  

Recently, a study employed docking and molecular dynamics to screen ~ 617k 

compounds against GSK-3β [17]. In another study using machine learning, ruboxistaurin was 

identified as a GSK-3β inhibitor with IC50 = 97.3 nM [4]. Pyrazolo [1,5-a]pyrimidin-7-amine 

derivatives were identified using pharmacophore models, docking, and molecular dynamics from 

~ 530k compound’s database [18]. Nevertheless, none of these studies identified novel scaffolds 

nor targeted allosteric binding sites – other than the orthosteric/active one. 

Continuing our previous work [19], we propose applying SB and LB approaches to 

discover new and diverse GSK-3β allosteric inhibitors. We developed two VS workflows: 1) 3D 

shape-based similarity plus docking, and 2) QSAR modeling using machine learning plus 
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docking. We used several databases with ~ 40 million compounds. Moreover, ADMET 

predictions were employed to select hits with similar properties as Central Nervous System 

(CNS) agents, avoiding toxicity issues. Obtained hits show enhanced structural diversity and 

interesting preliminary results as GSK-3β allosteric inhibitors, according to their in vitro assays. 

In addition, their putative mechanism of GSK-3β allosteric inhibition was analyzed by blind 

docking and pocket coverage studies. These hits may be employed as template molecules in 

future hit-to-lead studies to expand the known chemical space of GSK-3β allosteric modulators 

as promising agents to treat AD. 

 

2. Materials and Methods 

2.1. Collection of known GSK-3β allosteric inhibitors 

We collected a total of 88 compounds with known experimental allosteric modulation of 

GSK-3β [9,20–22], as shown in Table S1. This collection was initially presented in our previous 

publication [19]. Worth noting that, out of these 88 compounds, 40 were retrieved from the same 

publication [9], corresponding to analogs of compound 1 - VP07, N-dodecanoyl-1-ethyl-4-

hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide, with IC50 = 2.8 µM (mostly used as 

reference in our work). In this way, there’s a limited chemical diversity among this 88-compound 

collection. Finally, we emphasize that there is no experimental crystal structure (e.g. PDB 

complex) of any allosteric inhibitor and GSK-3β reported so far. 

2.2. Virtual screening workflows 

In this work, we employed two orthogonal workflows for virtual screening, using 

distinguished sources of databases and varying the emphasis of methodologies employed to 

screen compounds (Figure 1). 
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Figure 1. Virtual screening workflows 1 and 2 were applied to achieve diverse hits as GSK-3β allosteric modulators. 

 

 

 2.2.1. Workflow 1: Shape and Structure-based Screening 

This workflow was mentioned in our previous publication [19], but no experimental 

validation was described there. This workflow was carried out with emphasis on 3D shape 

similarity by means of the ROCS software [23,24]. Seventeen databases were screened: 

ChemBridge CNS [25], ChemBridge CORE Library Stock [25], ChemBridge Diverset CL 

(DIVERSetTM-CL subcollection) [25], ChemBridge Diverset EXP (DIVERSetTM-EXP 

subcollection) [25], ChemBridge EXPRESS-Pick Collection Stock [25], eMolecules [26], IBS 

Bioactive Compounds [27], IBS Natural Compounds [27], IBS Synthetic Compounds [27], 

Kishida [26], MayBridge (screening collection) [28], Molport Natural [29], Molport Screening 

[29], NPASS [30], Princeton [31], ZINC CNS [32], ZINC Druglike [33], e ZINC Naturals 

(natural products collection) [32], reaching more than 39 million molecules.  

These databases were prepared individually with FILTER [34], using default parameters 

and the following additional filter settings: maximum of 2 chiral centers, 5 ring systems, 20 

atoms by ring system, 16 rotational bonds, and 55 rigid bonds. Usage of FILTER allows 

elimination of compounds with undesired drug-like properties, e.g. molecules bearing too many 

rotatable bonds (high flexibility) and/or rings (exceptionally flexible ones) [35]. In sequence, 
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OMEGA [34,36] was employed for conformer generation. We generated up to 300 conformers 

per molecule using the default parameters, except for a strain energy window of up to 9.0 

kcal/mol, and Root Mean Square Deviation (RMSD) for conformer identity adjusted to 0.6 Å 

(thus optimized by our research group [37]). Worth noting that running OMEGA to generate 

conformers is an essential step during the preparation of databases, since both ROCS and EON 

software require several conformers of each molecule to perform overlap-similarity search. 

In ROCS [23,24], we used our predicted bioactive pose of Compound 1 as a query and 

applied it to the seventeen prepared databases. It is worth mentioning that such predicted 

bioactive pose as well as the validation of its use in shape similarity has been previously detailed 

in our earlier paper [19]. Hence, we virtually screened the databases and analyzed the 5,000 top-

ranked molecules according to corresponding ROCS TC (Tanimoto Combo considering 

shape+color features) indices. In sequence, another screening was carried out considering 3D 

electrostatic potential similarity using EON [38] – and the same pose of 1 as a query. We selected 

the 1,000 top-ranked molecules (from each database) considering EON TC indices.  

Lastly, compounds were submitted to pharmacokinetic and toxicological (ADMET) 

predictions using the QikProp and DEREK software, as described in section 2.3. 

The final methodology applied to this workflow consisted of docking approaches. We 

applied our previously developed [19] and reliable docking protocol using the Glide software to 

evaluate the survival compounds’ ability to establish consistent intermolecular interactions 

within the GSK-3 allosteric binding site. Docking simulations are briefly described in section 

2.4. At last, a visual inspection of remaining compounds was narrowly conducted to select the 

most promising and diverse compounds.  

2.2.2. Workflow 2: QSAR Modeling and Structure-based Screening 

In this second screening workflow, emphasis was given to the development and 

application of QSAR models using machine learning. To develop these models, we used the 

dataset of 88 GSK-3β allosteric modulators described in section 2.1. We considered an IC50 
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threshold value of 20 µM to sort them into active/inactive, thus obtaining 37 active compounds 

and 51 inactive ones. Table S1 shows this dataset of 88 GSK-3β allosteric modulators and their 

respective IC50 values. 

As a standard protocol [39,40], chemical data curation was executed by standardizing 

chemical structures and corresponding biological information using KNIME 4.6.0 [41,42] 

integrated with ChemAxon Standardizer v.20.8.0 (ChemAxon, Budapest, Hungary, 

http://www.chemaxon.com). In addition, specific chemotypes, such as aromatic rings and nitro 

groups, were normalized. Counterions, inorganics, metals, organometallic compounds, and 

mixtures were removed. Duplicates were identified, analyzed, and removed. 

QSAR models were developed employing two sets of molecular descriptors: Morgan 

fingerprints [43–45] and RDKit whole-molecule descriptors (http://www.rdkit.org) [46,47]. The 

open-source Morgan fingerprints with 2048 bits and an atom radius of 3 were calculated using 

the RDKit node implemented in KNIME and also in Python 3.6 (https://www.python.org). 

RDKit whole-molecule descriptors calculated in KNIME and Python correspond to 117 

properties, such as SlogP, SMR, LabuteASA, TPSA, and others. Worth noting that these RDKit 

properties were selected using low variance and correlation filters; moreover, each descriptor’s 

importance was calculated after the models’ generation. 

QSAR models were built and rigorously validated, following the best practices for model 

development and validation [39,48,49]. These models were generated using the Random Forest 

(RF) algorithm [50] implemented in scikit-learn (http://scikit-learn.org) [51] in Python, and, in 

KNIME, using the nodes ‘Tree Ensemble Learner’ and ‘Tree Ensemble Predictor’ – where the 

following settings were used: Gini index as a split criterion and 750 decision trees to build each 

forest. 

A 5-fold external cross-validation procedure was followed, randomly dividing the 

complete set of compounds with known experimental activity into five subsets of equal size. One 

of these subsets (20 % of all compounds) is set aside as the external validation set, while the 

http://www.chemaxon.com/
http://www.rdkit.org/
https://www.python.org/
http://scikit-learn.org/
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remaining four groups form the modeling set (80 % of all compounds). This procedure is 

repeated five times, allowing each of the five subsets to be used as an external validation set. 

Models are built using the modeling set only, and it is essential to emphasize that the model 

never sees the external validation set. 

In addition, 20 rounds of Y-randomization were performed for each data set to ensure 

that the model performance was not due to chance correlations. The model's domain of 

applicability (DA) was estimated using the z-cutoff method [52,53]. 

More than 10 million compounds were screened from two databases: Molport Screening 

[29] and Enamine Screening Collection [54], prepared with the same data curation protocol 

described above.  

Afterwards, we applied the QSAR model with the best statistical characteristics to filter 

only compounds predicted as active and within the DA. Such statistical characteristics consisted 

of correct classification rate (CCR), sensitivity, specificity, positive and negative predictive 

values (PPV and NPV). Furthermore, the resulting compounds were sorted in descending order 

according to their confidence/score predictions (i.e., votes of majority of local trees from RF), 

and the top 40,000 were retrieved. 

In sequence, these were submitted to ADMET predictions using QikProp and DEREK 

and filtered considering the same criteria mentioned in section 2.3.  

Finally, remaining compounds were filtered using the same docking protocol using Glide 

(as described in section 2.4), followed by a visual inspection of corresponding intermolecular 

interactions within the allosteric site of GSK-3. 

2.3. ADMET predictions 

In order to predict the physicochemical/pharmacokinetic and toxicological (ADMET) 

properties of compounds, we used QikProp and DEREK, respectively. QikProp criteria to filter 

most promising compounds were established considering CNS drug-likeness reports [55–57], 

adapted by us, as follows: MW ≤ 360, PSA ≤ 90 Å2, QPlogPow = -2.0 - 6.5; QPlogBB > -0,5; 
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heteroatoms ≤ 21; human oral absorption > 80%; QPPCaco > 500 nm/s; QPPMDCK > 500 nm/s. 

DEREK toxicity endpoints (carcinogenicity, genotoxicity, neurotoxicity, cardiotoxicity, 

hepatotoxicity, among others, both for mammals/bacteria) were predicted and rejected when 

respective alerts were fired as ‘plausible’, ‘probable’ or ‘certain’. 

2.4. Molecular docking simulations 

The GSK-3 structure used here (PDB code 1PYX) was imported from the Protein Data 

Bank (PDB, https://www.rcsb.org/) and input into the Protein Preparation Wizard software 

[58,59]. Pre-processing was done by checking the following functions in sequence: assignment 

of bond orders using the CCD (Chemical Component Dictionary) database [60], addition of 

hydrogens, and removal of water molecules, cofactors, metals and the native ligand. We used 

Glide’s extra precision (XP) scoring function, did not allow N inversion, kept the Ser236 residue 

flexible, and used a 10x10x10 Å grid centered at the centroid of GSK-3 allosteric pocket (x = 

11.78, y = 13.15, z = 38.33). Note that the development and validation of this docking protocol 

are further detailed in our previous paper [19]. At last, docking figures were prepared using either 

Maestro [61] or PyMOL [62] software. 

2.5. GSK-3 biological assays 

Biological activity assays were carried out at the International Centre for Kinase 

Profiling, University of Dundee, following the methods described by Davies et al. (2000) [63]. 

In brief, a radiometric filter binding assay using [γ-33P]ATP (concentration of approximately Km, 

five µM), substrate Phospho GS2 YRRAAVPPSPSLSRHSSPHQS*EDEEE (20 µM) was 

considered. Moreover, assays were conducted with the enzyme GSK-3β in 8 mM Mops, pH 7.0, 

containing 0.2 mM EDTA, and a compound concentration of 100 µM. All assays were performed 

in duplicate for 40 min at ambient temperature in 25 µL incubations.  

2.6. Other computational analyses 

https://www.rcsb.org/
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Similarity radar graph showed in Figure 4 was built considering the respective 

calculation of MACCS and Morgan molecular fingerprints, computed by RDKit node 

implemented in KNIME, and expressed in terms of Tanimoto indices. 

Blind docking was performed using the AutoDock software [64,65] implemented on 

PyRx [66]. To reproduce a blind docking previously performed on literature [67] – which closely 

corroborates our cavity detection and surface mapping evaluation [19] – the following 

parameters were adopted: centroid x=26.7110, y=5.9133, z=38.2832, a grid of 193 × 166 × 167 

Å with a spacing of 0.375 Å, and Lamarckian GA (200 number of GA runs, 200 population size, 

2500000 max number of evals). Poses generated for each compound were manually inspected 

and clustered according to their apparent overlap and/or interactions within the orthosteric and 

allosteric sites. The best-scored pose was then retrieved from each cluster of poses in each site. 

The best-scored pose obtained for each compound at the orthosteric and allosteric sites was then 

submitted to pocket coverage (P.C.) evaluation using the DoGSiteScorer software [68,69].  

 

3. Results and Discussion 

3.1. Virtual screening using workflow 1  

Workflow 1 consisted mainly of shape-based screening considering the ROCS 3D shape-

based similarity between the query – well-validated bioactive pose predicted for Compound 1 

[19] – and the prepared VS set. Specifically, we retrieved 5,000 molecules from each one of 17 

databases, i.e., 85,000 molecules out of more than 39 million molecules. 

The 17 databases were selected considering their chemical diversity, including 

commercially available compounds, natural products, and pre-filtered collections of drug-like or 

CNS molecules (see Materials and Methods). Worth noting that some of these databases 

correspond to previous versions and/or preprocessed databases from our lab that have shown to 

be an efficient source of hits on previous works regarding virtual screening ([70–72]). 
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After using ROCS, compounds were filtered using the EON electrostatic potential 

similarity between them and the same query, resulting in 17,000 compounds. This combination 

of methodologies (i.e., shape- and electrostatic-filtering) has also achieved successful results, as 

reported in the literature ([71–73]). 

For ADME predictions, emphasis was given to physicochemical and pharmacokinetic 

properties well-known in the literature to correlate with drugs acting in the CNS [55–57]. Based 

on that, we adapted and derived some rules to filter out compounds that could most likely become 

drug candidates in such a context. Therefore, 1,100 molecules survived after QikProp filtering. 

These were submitted to toxicity prediction using DEREK, and we filtered out those that showed 

at least ‘plausible’ predictions for considered endpoints. 

At this point, 656 survival compounds were submitted to structure-based screening using 

our previously developed Glide docking protocol [19]. This docking protocol was thoroughly 

developed considering that there is no experimentally obtained complex of protein-ligand at the 

allosteric cavity of GSK-3 reported so far; so, we applied in silico studies to reinforce both the 

allosteric cavity as well as the bioactive pose of existing allosteric modulators of this enzyme. 

We briefly mention that this protocol has been compared with three other docking 

software/methodologies after systematically checking the possibilities of grid size, residues 

flexibilities, scoring functions, consensus between docking poses, and corroboration with surface 

maps, cavity detection analyses, and molecular dynamics. Moreover, this protocol has been 

successfully validated by using analysis of the Area Under the Receiver Operating Characteristic 

(AU-ROC) curves built for the classification of actives and inactives/decoys. 

Hence, after applying this docking protocol and careful inspection of interactions 

between survival compounds within the allosteric cavity of GSK-3, together with their 

previously obtained results from ROCS, EON, and ADMET properties, we selected 11 

compounds for experimental validation. 
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3.2. Virtual screening using workflow 2 

When searching for GSK-3 modulators in the literature, one may find that there is a 

considerable amount of ATP competitive (orthosteric) and non-ATP competitive inhibitors. For 

the latter, however, data concerning which other pocket could host such (allosteric) inhibitors 

are rarely found. Therefore, we performed an exhaustive paper-mining to compile the dataset of 

88 GSK-3 inhibitors potentially acting at the concerned allosteric pocket (see Table S1). 

Since this dataset consists of 88 ‘cherry-picked’ compounds, curation was conducted 

without removing duplicates and/or further issues of chemical structure corrections. 

As mentioned in methods, we developed three models using three sets of descriptors, i.e., 

Model 1 using RDKit, Model 2 using Morgan, and Model 3 using RDKit+Morgan. Recall that 

each model consists of 5 consensus models, each generated using Random Forest and a different 

combination of training/test sets from the five-fold cross-validation. Their statistical 

characteristics are summarized in Table 1 and Figure 2. 

In Model 1, the most relevant RDKit properties were selected after filtering out those 

with low variance (< 10 %) and analyzing the correlation between them. A correlation matrix 

heatmap was generated (Fig. S1) considering the 28 properties selected to develop Model 1. 

Properties selected for modeling did not present more than 90 % correlation with each other. 

Furthermore, Fig. S1 also shows each descriptor’s importance calculated after Model 1 

generation. 

All models showed statistical characteristics higher than the usual threshold of 0.6 [74]. 

Nevertheless, the QSAR model built with RDKit descriptors (Model 1) showed the highest 

correct classification rate (CCR) of 0.87, a sensitivity of 0.84, a specificity of 0.90, and positive 

and negative predictive values (PPV and NPV) of 0.86 and 0.88, respectively (see Fig. 2 and 

Table 1). It also showed the best statistics for the Y-randomization validation compared to 

Models 2 and 3 (see Fig. S2). 
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This model was thus employed in a virtual screening campaign using the MolPort 

Screening Compounds and Enamine databases (more than 10 million compounds). The top 

40,000 compounds, predicted as active and within the DA, were sorted according to their QSAR 

confidence/score prediction values, followed by filtration of favorable ADMET properties. This 

resulted in 76 compounds that were docked using a well-established Glide protocol to inspect 

preferential interactions within the allosteric pocket of the enzyme. Finally, 7 compounds were 

selected for purchase. 

Table 1. Statistical characteristics of developed machine learning QSAR models. 

 

Model Algorithm Descriptors CCR Sensitivity PPV Specificity NPV 

1 Random Forest RDKit properties 0.87 0.84 0.86 0.90 0.88 

2 Random Forest Morgan fingerprints 0.83 0.76 0.85 0.90 0.84 

3 Random Forest RDKit+Morgan 0.84 0.78 0.85 0.90 0.85 

 

 

Figure 2. Statistical characteristics of developed machine learning QSAR models. 

 

 

3.3. Analyzing identified hits 

We identified 18 virtual hits from virtual screening workflows 1 and 2 (see Fig. 3). These 

compounds were purchased and experimentally evaluated using the assay methods described 

earlier. Due to resource limitations, we were able to only run preliminary assays to identify their 

GSK-3 percentage of inhibition at 100 µM. It is worth noting that the most active compounds 

used as references in this work have IC50 values near 3 µM, which values of inhibition (in %) 
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would not be too far from those obtained with our hits in similar conditions. Moreover, according 

to Palomo et al. [9], we should not expect a great inhibition value since the allosteric mechanism 

is expected to provide a subtle modulation of GSK-3. Such phenomena should be advantageous 

because of a smaller chance of producing side effects. In addition, considering the challenging 

proposition of this work, i.e., the low amount of data available (few known inhibitors as well as 

no ligand-receptor crystallographic complexes), such hits obtained by virtual screening are 

promising to expand the chemical space of GSK-3 modulation. 

Eventually, 5 hits were confirmed to be active, with % values of GSK-3 inhibition of 

12.44, 18.41, 14.02, 11.59, and 16.77 for compounds LCQFGS03, 04, 06, 12, and 15, 

respectively (highlighted in Table 2). The first three were obtained by screening workflow 1 and 

the remaining by workflow 2. Assuming 10 % of inhibition as a threshold, 3/11 and 2/7 of 

compounds reasonably active were achieved by workflows 1 and 2, respectively, corresponding 

to a hit rate of ~ 28% from our screening workflows. 

Table 2. Compounds obtained by virtual screening and their corresponding percentage of GSK-3β inhibition 

determined by assays and their physicochemical and ADMET properties. 

 

Compound 
GSK-3β 

% inhibition 

VS 

Workflow 

ROCS 

TC 

QSAR 

score 

Glide 

score 
MW PSA QPlogPo/w QPlogBB %HOA 

1 - - - - -6.130 429.25 118.58 5.84 -2.04 94.20 

LCQFGS01 0.10 1 0.884 - -5.919 312.81 48.80 5.14 -0.425 100.00 

LCQFGS02 0.01 1 0.917 - -5.622 269.35 57.19 3.02 -0.357 100.00 

LCQFGS03 12.44 1 0.844 - -6.065 351.17 56.01 4.26 -0.094 100.00 

LCQFGS04 18.41 1 0.938 - -5.407 287.38 41.11 2.83 0.056 100.00 

LCQFGS05 9.98 1 0.947 - -5.045 287.32 71.22 2.82 -0.238 100.00 

LCQFGS06 14.02 1 0.833 - -5.679 308.81 62.67 2.52 -0.100 96.44 

LCQFGS07 0.63 1 0.907 - -4.760 304.40 75.36 2.10 -0.504 90.79 

LCQFGS08 8.20 1 0.866 - -5.355 299.68 35.22 4.4 0.389 100.00 

LCQFGS09 4.32 1 0.813 - -5.171 297.37 41.66 4.19 0.018 100.00 

LCQFGS10 4.04 1 0.852 - -5.005 325.20 73.61 2.67 -0.333 96.01 

LCQFGS11 6.65 1 0.858 - -5.225 276.34 71.36 1.20 -0.248 87.87 

LCQFGS12 11.59 2 - 0.894 -5.131 349.40 75.98 2.84 -0.317 100.00 

LCQFGS13 4.33 2 - 0.839 -6.711 351.40 92.98 3.56 -1.064 100.00 

LCQFGS14 1.88 2 - 0.838 -4.865 320.39 69.97 3.69 -0.279 100.00 

LCQFGS15 16.77 2 - 0.833 -5.041 356.81 81.25 4.26 -0.711 100.00 

LCQFGS16 5.76 2 - 0.831 -5.683 341.41 79.89 3.12 -0.522 100.00 

LCQFGS17 4.26 2 - 0.820 -5.518 312.79 78.40 2.63 -0.413 95.06 

LCQFGS18 7.13 2 - 0.819 -5.716 342.44 60.07 3.06 -0.051 93.46 
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ROCS TanimotoCombo indexes; QSAR confidence/score prediction values; Glide extra precision (XP) docking 

score values in kcal/mol; Molecular weight in g/mol; Polar surface area; Logarithm of partition coefficient in 1-

octanol/water predicted by QikProp; Logarithm of blood-brain barrier predicted by QikProp; Human oral 

absorption in %. 

 

 

Figure 3. Representation of molecular structures of 18 hits (LCQFGS01-18) identified by VS workflows. 

 

 

Table 2 reports ROCS TC values for compounds obtained from workflow 1, QSAR 

scores for compounds obtained from workflow 2, and docking scores for all of them. All hits 

presented medium-to-high values of these three metrics, ranging from 0.813-0.947 for ROCS 

TC, 0.819-0.894 for QSAR, and -4.760 – -6.130 for docking scores. Apparently, there is no 

obvious relationship between the value of these three metrics and their corresponding % of GSK-

3 inhibition. For instance, LCQFGS04 showed the highest GSK-3 inhibition but not the 

highest docking score. Interestingly, compounds LCQFGS01 and 02 were identified as potential 
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virtual hits in our previous work [19], however they did not show reasonable GSK-3 inhibition 

according to the criteria adopted here. 

We also employed ADMET models to analyze pharmacokinetic and safety profiles for 

the top five hits, and compared them to 1 – the known GSK-3 allosteric inhibitor reported in 

the literature [67]. All five compounds analyzed here presented greater predicted values for 

human oral absorption as well as QPlogBB values greater than -0.5 (except for LCQFGS15), 

which is a crucial threshold for compounds designed and intended to act at the CNS. 

Furthermore, their MW and PSA values are within the desired range for AD drugs, as proposed 

in the literature [55–57]. 

Overall, despite their low % values of GSK-3 inhibition, there was a clear improvement 

of their ADMET properties. Such properties are well-suited for drug candidates associated with 

CNS disorders and were planned in advance, during filtering steps for each screening workflow. 

In view of this, we intend to use these hits to propose structural optimizations that shall result in 

more potent compounds, and obtain corresponding IC50 values of GSK-3 inhibition in the 

future.  

3.3.1. Structure-activity relationships and structural diversity 

In order to propose possible interactions that could be responsible for the observed 

inhibition of 5 selected hits, we hypothesized structure-activity relationships based on their 

docking poses. We considered three key interactions of GSK-3 allosteric pocket (previously 

reported on [9,19]): one hydrogen bond with the N-H of the Ser236 backbone; cation-π (or 

electrostatic/hydrophobic) interaction of aliphatic/aromatic group under the Arg209; and 

hydrophobic interactions between aliphatic/aromatic group and hydrophobic region defined by 

Thr330, Pro331, and Arg328. 

In Figure 4, one may observe that LCQFGS04 shows a hydrogen bond interaction 

between its carbonyl C=O and the backbone amide N-H of the residue Ser236. Moreover, it fits 
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the electrostatic potential surface map of the allosteric cavity, posing its (non)aromatic ring under 

the Arg209, an expected hotspot for this type of ring. 

LCQFGS15 showed the same indispensable hydrogen bond and a hydrogen bond 

between its hydroxyl OH and the C=O of His173 (Fig. 4). Worth noting that this hydroxyl 

corresponds to a more favorable specie in the corresponding keto-enol tautomerization. It also 

showed the third interaction between its chloride atom and the NH of Gly210. The latter is 

interesting (and also previously reported) because it also constrains the aromatic ring under the 

Arg209. Figures S3-5 show further details of docking interactions observed for the remaining 

hits. 

 

Figure 4. Docking poses (in stick representations) of compounds making enzyme-inhibitor interactions observed 

on the 3D surface of the GSK-3 allosteric pocket, with respective enzyme key residues detailed in the Ribbons 

representation, as well as 2D diagrams of such interactions, for the two best hits selected as putative allosteric 

inhibitors: LCQFGS04 (a, b, c) and LCQFGS15 (d, e, f). 

 

 

In addition, we constructed a similarity radar graph (Fig. 5) to illustrate the structural 

diversity achieved by the 5 hits, built by comparing their chemical similarities in terms of 

molecular fingerprints (MACCS and Morgan) and corresponding Tanimoto indices. 

Considering MACCS fingerprints, compounds LCQFGS03, 04, 06, 12 and 15 showed 

the respective values of 0.45, 0.46, 0.44, 0.48, and 0.68. Whereas Morgan fingerprints: 0.14, 

0.16, 0.14, 0.10, and 0.38, respectively. Both indicate that all compounds showed small similarity 
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values in comparison to the reference Compound 1 (most representative GSK-3 allosteric 

modulator) and, thus, that there was a reasonable increase in structural diversity of hits found. 

LCQFGS15 was the only compounds with similarity higher than 0.60 (Morgan) due to the fact 

that it bears an almost identical quinolone ring when compared to reference 1. 

 

Figure 5. Radar graph showing similarities between the reference Compound 1 and five LCQFGS hits, depicted 

in terms of the calculation of respective Tanimoto indexes, using two similarity fingerprints (MACCS in red and 

Morgan in green). 

 

 

3.3.2. In silico reinforcement//validation of allosteric modulation 

In order to reinforce the hypothesis that the 5 hits found here might truly interact with 

allosteric pocket of GSK-3, we performed an additional blind docking evaluation. For this, we 

used the AutoDock software, as described in methodologies (section 2.6).  

It is acknowledgeable that the orthosteric pocket possesses a greater volume than the 

allosteric pocket. However, considering that the allosteric pocket was reported by the 

DogSiteScorer software as split into two independent pockets (pocs 2 & 3), the sum of their 

druggability scores exceeds that of the orthosteric pocket (poc 1) (see Figure 6). As calculated 

by DogSiteScorer, the orthosteric pocket (poc 1) has a volume of 930.96 Å3 and a druggability 
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score of 0.764, while the allosteric pocket (constituted by pocs 2 & 3) has a volume of 464.29 

Å3 (286.58 & 177.71 Å3) and a druggability score of 0.772 (0.550 & 0.222). This may suggest 

two things: (i) that the allosteric pocket might present a druggability comparable to the 

orthosteric site (corroborating the previous cavity detection study [19]); (ii) that, proportionally, 

the pocket occupancy (or coverage, in terms of volume) of compounds might represent a good 

measure and indication of compound’s preference to interact with a given pocket. With this in 

mind, we analyzed blind docking results with focus on the ‘pocket coverage’ parameter – along 

with docking scores -, which should indicate a reasonable metric to depict which pocket is most 

likely to host the selected compounds. 

Since we know that Compound 1 is an actual allosteric modulator that binds to the 

concerned allosteric pocket of GSK-3, we used its results as a reference to compare with data 

obtained for our hits. In view of this, both docking score and pocket coverage values for 1 were 

greater for its allosteric pose rather than for the orthosteric (see Figure 6). Furthermore, results 

summarized in Table 3 show that all 5 hits showed greater docking score values for the allosteric 

pocket, except for LCQFGS04 and 15. However, considering their pocket coverage values we 

observe that all of them showed preference towards the allosteric pocket (pocs 2 & 3). 

Table 3. Top-ranked blind-docking poses obtained for each compound, corresponding docking scores as well as 

pocket coverage values at the orthosteric pocket (poc 1) and allosteric pocket (pocs 2 & 3) of the enzyme GSK-3. 

 

Compound 

Orthosteric  

pocket/pose 

Allosteric  

pocket/pose 

Score P.C. (poc 1) Score P.C. (pocs 2 & 3) 

1 -6.91 47.32 -7.24 53.6 & 75.99 

LCQFGS03 -6.98 32.36 -7.17 42.39 & 82.70 

LCQFGS04 -6.59 24.60 -6.30 0.03 & 85.44 

LCQFGS06 -7.19 34.33 -7.31 46.35 & 72.99 

LCQFGS12 -6.13 25.52 -6.36 19.32 & 86.81 

LCQFGS15 -7.62 31.32 -7.47 26.98 & 91.83 

Autodock blind-docking score values, in kcal/mol; P.C. = Pocket coverage values calculated for each corresponding 

pose, at each poc (pocket), predicted by using the DoGSiteScorer software. 
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Figure 6. (a) Othosteric (poc 1; blue spheres) and allosteric (pocs 2 & 3; green spheres) pockets predicted on the 

GSK-3 surface, by using the DoGSiteScorer software. (b) pocket coverage for the best blind-docking pose of 

compound LCQFGS15 (in stick representation) within the GSK-3 allosteric pocket. 

 

 

4. Conclusions 

We have observed that varying the breadth of methodologies in virtual screening studies, 

and looking for a consensus among them could be a promising strategy that should increasingly 

be explored and applied to find and optimize new hits. The studies conducted here demonstrate 

that it is possible to obtain hits with wide structural diversity by mixing LBVS (using shape-

based similarity and QSAR models) and SBVS (docking) methods in different workflows. This 

was possible even with a limited amount of data as starting material for VS workflows and a 

modest number of molecules within screening databases (in comparison to currently available 

billions of molecules). 

Although the GSK-3 inhibition data reported here could benefit from further 

determination of IC50 values, our results already prove valuable in terms of structure-activity 

relationship investigation and structural diversity. In fact, increasing the structural diversity of 

known GSK-3 allosteric inhibitors was a primary goal of this study, which was successfully 

achieved (as demonstrated in section 3.3.1). 

Moreover, compounds were screened for favorable predictions of ADMET properties 

(and suitable values) in the context of CNS drug candidates. In this way, the five hits reported 
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here are attractive for continuation of our studies, including lead optimization proposals, with a 

focus on maintaining favorable physicochemical/pharmacokinetic parameters as well as 

increasing their potencies, i.e., biological activities as GSK-3 allosteric modulators.  
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