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Abstract 

The efficient search for crystals with targeted properties is a significant challenge in materials 

discovery. The rapidly growing field of materials informatics has so far primarily focused on the 

application of AI/ML models to predict the properties of known crystals from their fundamental 

and derived properties as descriptors. In the last few years, deep learning-based approaches have 

spawned a slew of innovative data-driven materials research applications. Materials scientists have 

used these techniques for the reverse engineering of crystal structures for target applications. 

However, one of the challenges has been the representation of the crystal structures in the machine 
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readable format. Proposed representations in the literature lack in generality and scalability. In this 

paper, we train a conditional variational autoencoder with a scalable and invertible representation 

along with the elemental properties of the constituents as descriptors to inverse-design new crystal 

structures with specified attributes. When targeting formation energy, we show that our model 

predicts structures that are not in the complete OQMD database. Finally, we use first-principles 

density functional theory calculations to validate our findings and show that the developed model 

is able to generate novel crystal structures for targeted property, i.e. formation energy in this case. 

 

1. Introduction 

The community of material scientists has long been interested in the hunt for novel crystal 

structures with promising properties. Indeed, solutions to today’s grand challenges hinge on 

innovations in materials: photovoltaics, catalysis, drug delivery, energy storage and more. 

However, the need for new materials exceeds the conventional materials discovery process’s 

ability to produce them. When discovering novel materials with remarkable properties, we rely 

heavily on serendipity.  

Though viewed as the ultimate aim of the materials community, inverse design is still a long way 

off. Solid-state materials design has always been driven by experimental study and scientific 

intuition. The traditional materials discovery process involves “trial-and-error” experimentation, 

which, given the vastness of the materials space, is not feasible if one wants to look for novel 

structures with specific properties rapidly.  

First-principles and high-throughput computational techniques for materials discovery are now 

feasible because of significant advances in computing power. Large data sets of materials, e.g. 

AFLOW library1, Open Quantum Materials Database (OQMD)2, and Materials Project database3, 



 

 

have spawned from running these calculations on millions of possible structures and 

stoichiometries. These databases generally list crystal characteristics and crystal shapes as 

established by density functional theory (DFT). However, the enormous computational overhead 

required to run these calculations on every possible crystal structure suggests a need for more 

efficient methods to traverse the materials space. 

A natural alternative to this approach is making use of existing machine learning techniques, which 

have already seen success in several applications. The goal of ML approaches employed in the 

context of materials is to learn a function that maps a material to the desired attribute. DL 

techniques that can predict the underlying probability distribution of both structure and property 

and connect them are known as deep generative models. These models may extract prominent 

properties that define crystals by making use of trends in large datasets.  

Recently, existing generative models have been adapted to discover previously unknown 

stoichiometries, molecules4, and solid crystals5–7, with the latter still in their nascent stages of 

development. Work done in generating new crystals have either had restricted stoichiometry or 

structures. In contrast to molecules, generative modelling of inorganic solid-state materials has 

been challenging because of the lack of invertible representation and limited availability of 

datasets. Attempts have been made to overcome these obstacles. Some models have alleviated 

these problems and presented a general framework for the generation of crystals. Nevertheless, we 

believe they lack in creating a model, which can be generalized to the vast variety of compositions 

possible out of the periodic table and scalable to generate the inorganic materials with complex 

chemistries. 

In the space of generative modelling of inorganic crystal structures, studies can be differentiated 

primarily based on two aspects: crystal structure representation and learning models used for 



 

 

generating the novel crystal structures. One of the earliest works in this domain was the rediscovery 

of experimentally known VxOy materials when the model was trained without them. In addition to 

this, 20,000 hypothetical compounds were generated as well. The image based representation8 

used in this work was named iMatGen, where the crystal structure was encoded using two images, 

cell (length of the cell edges and angles between them) and basis (atomic position within a unit 

cell). This image based representation was encoded and then decoded to original data using a 

Variational Autoencoder.  

In addition to the use of variational autoencoders, generative adversarial networks (GAN) have 

also been employed for the generation of material crystals. The focus in the work done by Kim et 

al.9 was on the generation of Mg-Mn-O ternary crystals using a point cloud representation which 

was a combination of unit cell parameters and fractional coordinates of the elements present in the 

crystals. These are concatenated to create a 2D matrix.  This is useful as it has less memory 

requirement (by a factor of 400) in comparison to the iMatGen. Data augmentation was used to 

overcome the lack of translational, rotational and supercell invariances. The representation used 

in this work was similar to the one we introduce in the current work. But it differs in the sense that 

it was constrained by the composition of the materials which could be generated, e.g. model 

developed by Kim et al. could be used only for generating different stoichiometries of Mg-Mn-O 

ternary crystals.  

Pathak et al.10 used the one-hot key representation for generating inorganic crystal structures 

using conditional variational auto-encoders (CVAE) and deep neural network to predict three 

properties of the generated materials namely, enthalpy of formation, volume per atom and energy 

per atom. However the representation contained only compositional information without providing 

any 3-d structural information, i.e. the target crystal structure needs to be fixed initially. In a recent 



 

 

study, Turk and coworkers11 used a simplified version of this representation to generate stable 

Elpasolite compositions and compared three generative models; reinforcement learning, VAE and 

GAN. They concluded that although all the three models are capable of creating novel crystal 

structure, VAE and GAN are more reliable in terms of reproducibility. 

Another kind of representation used for a General Adversarial Network is the translation of lattice 

constants and atomic positions into a voxel space, followed by encoding into a 2D crystal graph 

using an autoencoder.  This helps change the heterogenous and discontinuous representation in the 

CIF files to a continuous and homogeneous representation. Long et al.12 used this representation 

to create stable crystal structures of multicomponent systems based on their formation energy. 

Court et al.13 also used voxelized electron density maps to represent the crystal structure. 

Formation energy value was also concatenated along with the electron density maps. They used 

VAE along with GAN to generate crystal structures of different classes of materials. However, 

they needed to use a combination of UNet semantic segmentation network and morphological 

transformations to convert this representation back to a crystal structure.   

We note that the work done by Ren et al.14 is similar to what we discuss in this paper. Their 

representation used the information in the CIF file to create a 2D input matrix. In addition, they 

also include the elemental properties by projecting them to different crystal planes using a discrete 

fourier transform. Similar to us they also use an autoencoder based model for learning the 

underlying distribution of the dataset and generating new crystal structures. The difference lies in 

our generation of crystals with some targeted properties. Their work makes use of local 

perturbation (a sampling technique) to generate crystals similar to the ones already present in the 

dataset. Whereas our model is able to randomly generate crystals with the desired property by 

sampling out from the appropriate dimension in the latent space. Furthermore, we note that our 



 

 

approach allows for greater flexibility for incorporating new sites and elements as the Ren et al.14 

representation is currently limited up to ternary compounds. 

To summarize, while crystal graphs provide higher flexibility in handling input crystal size 

compared to other representations, their inherent non-invertibility15 renders them unsuitable for 

inverse design applications. Alternative representations like voxelized electron density maps are 

currently constrained to handling cubic structures, whereas iMatGen is memory intensive relative 

to 2D representations. In this work, we develop a new representation compatible with a CVAE, 

which puts no restrictions on the type of elements or the crystal structure. We use a CVAE and 

train it on our dataset to create a multidimensional latent space, which also has the values of 

formation energy encoded in one of its dimensions. The use of CVAE helps us generate new 

targeted stable or unstable crystals. We verify the results of CVAE using a neural network, which 

predicts the formation energy of the generated crystal structures. This is done to reduce the 

dependence on computationally expensive DFT calculations. In the end, we also use DFT 

calculations on a subset of our generated crystals to verify our results.  

 

2. Computational Method 

2.1. Dataset 

We used the open-source OQMD database to train our CVAE model. Compounds having a 

maximum of four distinct elements and fewer than six atoms in the unit cell were considered. They 

were also required to have an OQMD Stability of less than 0.1, which allowed us to restrict our 

search to potentially synthesizable materials. Finally, compounds having negative formation 

energy were regarded as stable in conditional generation for formation energy. There are 48707 



 

 

data points in the database, comprising 44474 stable and 4233 unstable structures. The data was 

stratified-split into 37600 and 11007 training and validation data points, respectively. 

2.2. Representation 

The representation employed in generative modelling must be invertible, i.e. the output of the 

neural network model must immediately convert to a unique unit cell. The representation should 

also include the crystal's crystallographic and stoichiometric information as well as the attributes 

of the constituent elements. Keeping in view these points, the representation we used went through 

numerous iterations before we narrowed it down to the final representation based on various 

tradeoffs that are discussed in this section. 

To create the first representation, basic information was taken from the crystallographic 

information file (cif). The length and angle of the three translation vectors were scaled to a 

maximum value of 1 by dividing them by 10 and 180 degrees, respectively, giving us a (2,3) 

matrix. This matrix was padded with zeros to make it a (2,5) matrix.  These make up the first two 

rows of our (7,5) dimensional matrix. The rest of the rows described each atomic site present in 

the unit cell. The first column stores the period of the element, followed by the group. The last 

three columns give us the fractional coordinates of the element. The rows were zero-padded if the 

number of sites is less than 5. We call this simple representation Rep1 and use it as a benchmark. 

Rep1 contained no information about the properties of the elements present in the material. Due to 

this, it was difficult for our model to learn the properties of the compound, which depend on the 

elemental properties, e.g. formation energy, as discussed in section 3.1. Therefore, the properties 

of the elements present at each site were also added to the representation. The elemental properties 

were one-hot encoded. When working with generative models, it is better to have dimensions 



 

 

whose interdependencies are not complex, which is why we believe one hot encoding makes the 

process of learning easier for the encoder.  

For describing the elemental properties at each site, we use two separate property sets. First, we 

use the one-hot encoded elemental properties from the crystal graph convolutional neural network 

(CGCNN)16 to give us a row vector of 138 columns. The properties used are; electronegativity, 

covalent radius, valence electrons, first ionization energy, electron affinity, block and atomic 

volume. As shown in figure 1, the first row contains the unit cell information and the last row of 

the representation signifies whether the structure is stable (1) or not (0). In between the rows 

contain the information of the lattice sites, i.e. the group, period, fractional coordinates and 

elemental properties. Thus, a matrix of (N+2,138) size was created which contains the information 

of the crystal structure as well as the elemental properties. N is the maximum number of sites 

present in a unit cell in the entire dataset. This is referred to as Rep2. 

A second set of  63 elemental properties from the Magpie17 elemental descriptors were used to 

create Rep3. We concatenate these 63 properties of each element present in the crystal to our 

original representation describing the structure to get a 2D matrix representation of size (N+2,68). 

Since the number of elemental properties is much larger in Rep3 in comparison to Rep2, we do 

not bin the data to keep the dimensionality of the input computationally manageable.  It is notable 

that all of the three representations have no constraint on a particular geometry, stoichiometry or 

the number of sites. 



 

 

 

Figure 1. A 2D matrix of BaTiO3 crystal structure with 5 sites. First row consists of cell 

parameters and the last row first column gives the information whether the structure is stable (1) 

or unstable (0).  The size of the resulting representation for a general crystal with N sites will be 

(N+2, i+5) where N is the number of sites and i is the size of the elemental properties vector. 

 

The fractional coordinates of the atomic sites were also one-hot encoded. This is done based on 

the observation that the fractional coordinates present in the already known crystal structures can 

be separated into distinct bins. The combinations of the three fractional sites (x,y,z) can also be 

grouped together based on the frequency of their occurrence. Since the values in our input 

representation of the unit cell exist on a continuous spectrum determined by the scale and units of 

the relevant parameters, we first need to round off the values in order to bin them. However, 



 

 

rounding them off to some arbitrary values would include unwanted errors by misplacing 

commonly found values in our representation. To deal with this, we bin the different parameters 

around the values which frequently appear in the distribution of that parameter in the whole dataset. 

We choose the number of bins equal to the number of peaks in the distribution for a parameter. 

And then, every parameter value is shifted to the value corresponding to the closest peak in the 

frequency distribution. As an example, rounding off to the nearest 0.1 fractional coordinate would 

convert 0.125, a very common coordinate to 0.1 (fig. 2a), which is not common in our system (fig. 

2c). However, our method would keep 0.125 as it is and instead round off nearby sites to that 

number (fig. 2b). The site coordinates of the atoms are one hot-encoded after the rounding-off 

process.  

 

Figure 2. Comparison between fractional coordinates distributions for different round off 

techniques. a) rounding off to the nearest 0.1 fractional, b) rounding off to 11 discrete values based 

on the frequency of occurrence, and c) rounding off to 4 decimal places. 

 

When comparing our final representation with a similar 2D representation proposed by Ren et 

al.14, we emphasize that our approach allows for greater flexibility for incorporating new sites and 

elements, i.e. we just need to add a new row in the 2-D input matrix. The addition of more elements 

is more significant of the two as their representation is currently limited up to ternary compounds. 

Addition of new sites is not straightforward in their representation. 



 

 

 

2.3. Formation Energy Model 

To select the best representation to train our generative model, a formation energy model was built 

and trained on each of the representations and the results were compared. Additionally, the results 

were also compared with the CGCNN model to test the predictive accuracy of the representations. 

The model was also used later for validating the generated stable/unstable crystal structures. 

The formation energy model is a fully connected neural network with residual layers. The model 

consists of 7 blocks of layers with each block consisting of a dense layer followed by a batch 

normalization layer, a LeakyRelu layer and a dropout layer. The seventh block does not have a 

dropout layer and is connected to a single neuron, which outputs the formation energy. The input 

to each block is the output of the previous block combined with the original input. Mean absolute 

error (MAE) was used as the loss metric to assess the performance of the model. Adam optimizer 

was used with default parameters. 

2.4. Conditional Variational Autoencoder 

To generate new crystal structures, we use a Variational Autoencoder (VAE), a generative model.  

VAEs have already shown promise in generating many kinds of complicated data, including 

handwritten digits, faces, physical models of scenes, segmentation, and predicting the future from 

static images. VAEs have also been used previously to generate crystal structures10,11,14. They also 

give us the freedom to use different sampling techniques, which can be of help when trying to 

generate crystals similar to the ones already known14, as the latent space near already encoded 

crystals are bound to have crystals with similar properties. The goal of the current work was 

generation of novel materials with a targeted property (here formation energy) via a purely 

unsupervised design method. To achieve this, we extend the VAE to a Conditional Variational 
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Autoencoder (CVAE) and use our already existing database to label the crystals with formation 

energy greater than 0 and those smaller than 0. 

In order to generate crystals with a specific target property, the latent space of a VAE must be 

structured accordingly. In our approach, we employ a CVAE that segregates the dimensions of our 

crystals based on the target property. This methodology allows us to generate crystals with a high 

probability of possessing the desired property without need for local perturbation, which has the 

drawback of generating structures similar in properties and structure to the crystal perturbed. This 

represents a promising initial step towards materials discovery with minimal user input, as it 

potentially enables us to obtain results through random sampling alone. The generation process 

flowchart utilizing CVAE is depicted in Figure 3. The various components of the CVAE model 

are discussed in the subsequent sections. 

 

Figure 3. Flowchart of the crystal structure generation process using conditional variational 

autoencoder.  



 

 

2.4.1. Encoder 

The encoder encodes the information present in our representation in a lower-dimensional latent 

space. This latent space is structured into different regions for the stable and unstable crystals. We 

use a 1D convolutional neural network (CNN) to reduce the dimensionality of our input and map 

it to a latent space. This approach is followed to capture the spatial dependence of our crystal 

representation.  Similar approaches have been used before for 3D image classification as well as 

in materials space18. Two layers of 1D CNN of kernel size (5,3), strides (1,2), and padding (2,1) 

were used. The number of channels are 16 and 32, respectively. After the convolutional layer, we 

flatten the array to output 1024 neurons. This is further reduced to size 100 to optimize the 

performance, which is the dimensionality of our latent space, before being upscaled back to size 

2208. We use leakyRELU activation layer (parameter = 0.2). Batch Normalization is used between 

the layers. 

2.4.2. Decoder 

The encoded points in the latent space act as an input to our decoder which aims to recreate the 

corresponding crystal structure. The decoded output contains all the information present in the CIF 

file and hence, corresponds to a unique crystal structure. According to our hypothesis, a point 

sampled out from the “stable” region of our latent space should generate a stable compound. Two 

transpose conv1D layers with kernel size (3,4), padding (1,1), stride (2,1) and LeakyRELU (0.2) 

activation layer were used. 

2.4.3. Loss 

The loss function consists of the reconstruction loss, which is modelled by mean squared error and 

the KL-divergence loss. Both these losses are scaled with different parameters. The choice of these 

functions is standard for a VAE. We note that the dice loss can also be used for parts of our matrix 



 

 

given the binary nature of our input. The difference in performance was negligible. MSE is scaled 

by a factor of 28.8 and KLD is scaled by a factor of 1.13. ADAM optimizer was used with an 

initial learning rate of 0.0005 and the inbuilt scheduler ReduceLROnPlateau with patience = 3 was 

also used. We train our model for 200 epochs.  

2.5. Crystal Structure Generation and Filtering 

We use spherical linear interpolation (SLERP19) method to sample points from our latent space in 

order to discover new materials. This is a sound way to interpolate between two n-dimensional 

vectors, 

 

Where, µ is the weight assigned to q2, (1-µ) is the weight for q1 and θ is the angle between q1 and 

q2. 

To test the efficacy of our conditional generation strategy, we sample points from both the 

constructed stable and unstable zones. Crystals that have the same stoichiometry as those in our 

test or train set are referred to as rediscovered. We run the produced structures via the SMACT 

filter described in reference20 to confirm that they follow the electronegativity balancing and 

charge neutrality rules of crystals. We eliminate any stoichiometries currently included in the 

OQMD database because the goal of this study is to create novel crystals not found in existing 

material databases and call this step as the OQMD filtration. Since the sites were rounded off 

before training, some crystals in the dataset lost their symmetry. As a result, we find an inherent 

lack of symmetry in some generated compounds. The symmetry finder in pymatgen was used to 

refine the structures to get the nearest symmetric compounds up to 1 angstrom and 30-degree angle 



 

 

changes. After this process of structure refining, any compounds with two atoms separated by less 

than 1 angstrom were discarded. 

2.6. DFT Calculations 

DFT calculations were performed to verify the discovered novel crystalline materials. We chose 

21 structures at random and optimized them, then calculated their formation energy per atom. The 

calculations were run on Quantum Espresso 6.7 software using the SSSP-Efficiency 

pseudopotential library. All atoms were fully relaxed until the force on every atom converged to 

below 0.001 eV/Å. A 4 × 4 × 4 automatic k-point mesh was used for the calculations. The force 

was converged within 10-3 Ry/Bohr, while the convergence threshold for self-consistency was 

taken to be 10-6 Ry.  

 

3. Results and Discussion 

3.1. Formation Energy Model and Crystal Structure Representation 

Table 1 shows the mean absolute errors of the formation energy models for each representation 

and their comparison with CGCNN. Rep1 has comparably high MAE in comparison to other 

representations, which is understandable as it doesn’t contain any information about the elemental 

properties. Notably, the two representations (Rep2 and Rep3) consisting of elemental properties 

have comparable errors with respect to CGCNN, giving us high confidence in their modeling 

capabilities. Rep3 performs marginally better than Rep2, but it has a significantly higher number 

of properties. Discretization of the large number of columns for the generation model would 

increase the dimensionality of the problem, effectively increasing the computational complexity 

and simultaneously making it harder for the VAE to correctly generate the samples. Rep2 is one-

hot encoded, which makes it more suitable for generative modelling purposes. The decision on the 



 

 

representation used for the generative model is based on the trade-off between the accuracy of the 

formation energy model and the dimensionality of the system. Using a higher-dimensional 

representation might give better results, but would also make it harder to train our generative 

model. Therefore, we choose Rep2 for training the CVAE. 

 

Table 1. Performance of the formation energy models with different crystal structure 

representations. 

Representation Model MAE (eV/atom) 

Crystal graphs CGCNN 0.026 

Rep1 FNN 0.045 

Rep2 FNN 0.028 

Rep3 FNN 0.026 

 

3.2. Latent Space Properties 

As mentioned earlier, latent space created by the encoder should be a well regularized continuous 

space so that a point sampled out of the latent space results in a well-defined crystal structure after 

decoding. Figure 4a shows the kernel density estimate (KDE) plots for all the 100 latent space 

dimensions. KDE plots are essentially probability density plots, which give an idea about the 

distribution of a particular variable. It can be observed that the majority of the latent space 

dimensions are normally distributed, which indicates that the latent space is well regularized and 

it can be used reliably to sample points to generate new crystal structures. 



 

 

 

 

Figure 4. Plots demonstrating the quality of the latent space. (a) KDE plots for 100 latent space 

dimensions, Black plot is standard normal for reference, all others are latent dimensions. (b) t-

SNE encoding of 3000 crystals of the VAE latent space. Black scatter points were sampled out of 

the latent space to show the continuity of the latent space. Crystals with similar chemical 

compositions are grouped together. (c) crystal structure of ThSe and YbSe decoded from the 

scatter points in b (d) 3-dimensional representation of the latent space constructed using CVAE to 

show the grouping of stable (red) and unstable (blue) crystal structures.  

 

Figure 4b shows the t-SNE encoding of the 3000 crystals of the VAE latent space. The scatter 

points marked in black were chosen randomly to demonstrate the continuity of the latent space. 

After decoding these points from the latent space, it resulted into the crystal structures of following 

carbides of heavy metals, HfSe, NbSe, PaSe, TaSe, ThSe, TiSe, VSe, ZrSe, PuSe and SmSe. All 

the points belong to the same crystal structure and are carbides of 3rd, 4th and 5th group metals. 



 

 

Close clustering of crystal structures of similar compounds demonstrates the continuity of the 

latent space. For all the crystals in the structure, only the elements change in the structure shown 

above. The crystals are grouped in the latent space according to chemical composition as well as 

structure. The similarity in structure can be seen in the structures visualized in fig. 4c. 

For the reverse engineering of materials with specific properties, the generative models should also 

be able to cluster compounds based on the target property, i.e. we should be able to generate 

materials on the basis of formation energy in the present case. To demonstrate the clustering of 

latent space according to the formation energy, principal component analysis was used to reduce 

the dimensions of the latent space to 2. To preserve the essence of the latent space in a CVAE, we 

include a third dimension, information on the stability of our crystal (fig 4d). The clustering of the 

latent space based on the formation energy can be clearly observed in fig. 4d. The points marked 

in red are the encodings of stable compounds, whereas the blue markers are the unstable encodings. 

3.3. CVAE model 

Reconstruction accuracy of the CVAE model was calculated to assess its performance. A 

prediction was counted as correct, if it corresponds to the same stoichiometry and the unit cell. 

E.g. HCl should be predicted as HCl. H2Cl1, HCl2, and BaCl are all wrong. As the basis of the unit 

cell is one hot encoded, a perfect prediction corresponds to predicting the correct bin for each 

element’s position along all the three axes. 

The VAE model trained on Rep2 achieved 98.57% accuracy in stoichiometry prediction, 95.57% 

accuracy of the unit cell and 94.3% accuracy for the prediction of both on the validation dataset. 

The corresponding numbers were 98.69% accuracy in stoichiometry prediction, 96.59% accuracy 

of the sites and 95.3% accuracy for the prediction of both on the training dataset. However, 



 

 

considerable error was observed in the prediction of the lattice parameters of the decoded crystals 

(table 2), suggesting a need for the geometry optimization.  

 

Table 2. Mean absolute errors in the lattice cell parameters for the training and validation 

datasets predicted by the CVAE model. 

 Training MAE Validation MAE 

a (Å) 0.38 (8.23%) 0.38 (8.39%) 

b (Å) 0.39 (8.47%) 0.39 (8.56%) 

c (Å) 0.40  (8.20%) 0.40 (8.37%) 

α (°) 11.67  (15.80%) 11.71 (15.83%) 

β (°) 10.73 (14.24%) 10.91 (14.45%) 

γ (°) 10.13 (14.77%) 10.61 (15.65%) 

 

It was found that the model rediscovered around 21% stable and 27 % unstable materials present 

in the training and validation dataset. This rediscovery is encouraging and further verification of 

the validity of our model. The mean absolute percentage errors for the lattice constants of these 

rediscovered crystals was found to be similar to the training and validation dataset MAEs, i.e.~15% 

error in the lattice constants and ~20% MAE for the unit cells angles. 

3.4. Crystal Structure Generation 

So far it has been shown that the latent space is well regularized to sample points from it and 

CVAE decoder has reasonable accuracy to decode the latent space points into a crystal structure 



 

 

with a reasonable accuracy. SLERP method was used to sample points from the latent space to 

generate new crystal structures. Formation energy was used as an input to generate stable or 

unstable compounds. Points were sampled from the stable part of the latent space (fig 4d) to 

generate stable crystal structures and vice versa for the unstable crystal structures. Table 3 shows 

the statistics of the crystal structure generation. Total 11000 and 2250 points were sampled out of 

the latent space to generate the stable and unstable crystal structures, respectively. The number of 

runs were chosen according to the ratio of stable and unstable materials in the original dataset.  

After decoding the points into crystal structures using the CVAE decoder, they were passed 

through the SMACT filter to check for the charge neutrality and electronegativity conditions. 18% 

of the generated stable and 14% of the unstable ones passed through the SMACT filter 

successfully. This success rate in generating the new materials is significantly higher than the ones 

reported in previous works. 21% of the correctly generated stable and 38% of the unstable crystal 

structures were found to be rediscovered, i.e. they already existed in the OQMD database. 

Correctly rediscovered compounds reconfirm the ability of the model to generate new crystal 

structures with target formation energy. Rest of the generated materials are novel materials that 

don’t exist in the literature.  

 

Table 3. Statistics of the crystal structures sampled out of the latent space with the targeted 

formation energy (stable or unstable).  

 Stable Unstable 

Runs 11000 2250 

Post SMACT filtering 1973 (18%) 322 (14%) 



 

 

Rediscovered 423 (3.8%) 89 (3.9%) 

Out Of Dataset 1550 (14%) 233 (10.3%) 

 

To calculate the probability distribution of the elements, first the stable and unstable materials 

were sampled from the respective zones of the latent space. Thereafter, the neural network 

formation energy model was used to predict the formation energy of the valid crystal structures 

after filtering. Figure 5 shows the frequency based elemental distribution of the OQMD dataset, 

generated stable and unstable materials for two different threshold energy values. Crystal 

structures with formation energy within ±0.4 eV from the threshold energy value were used to 

create the frequency based probability maps. It can be observed that the elemental distribution of 

the generated stable materials resembles the distribution of the OQMD dataset as the OQMD 

dataset is heavily dominated by the stable inorganic materials. Relative probability of the elements 

is also in good agreement, e.g. H, Li, Na, transition metals appear quite prominently in both the 

probability plots. Commonly found metals (e.g. Al, Ga, In), semiconductors (Si, Ge) also feature 

significantly in the stable crystal structures. Inert elements (He, Ar etc.) don’t appear at all in both 

the probability plots as they don’t form any solid crystals. Absence of some of the elements in the 

unstable materials is clearly pronounced, e.g. H, Li. Na, which are more frequently found in the 

stable inorganic materials do not appear in the unstable materials. These intuitive findings give us 

confidence in the crystal structures generated through the process. 



 

 

 

Figure 5. Probability distribution of the periodic table elements in (a) OQMD database, (b) 

generated stable crystals, and (c) generated unstable crystals, calculated based on the frequency 

with which the elements appear in the crystal structures within a window of 0.4 units around a 

chosen threshold formation energy.  

 

Figure 6 shows the formation energy distribution for the generated stable, unstable and OQMD 

datasets. It is clear that the distribution for the unstable compounds is very sharply centered around 

zero (fig. 6b), and it also has a tail extending farther to the right than others, while the distribution 

for the stable generated compounds (fig. 6a) extends much farther to the left. Shapes of the 

distributions of the stable and original datasets are also quite similar (fig 6a,c). Primary peak is 

observed at the same formation energy in both the distributions. 



 

 

 

Figure 6. The distribution of formation energies Showing how the CVAE can generate new 

structures with high probability of achieving target property, even in a highly skewed dataset. 

 

3.5. Validation using DFT Calculations 

12 stable and 9 unstable predicted structures were randomly chosen to optimize using DFT 

calculations. We then define a specific set of rules to determine whether a generated structure is 

validated as correct. Only if the change in fractional coordinates of each site is less than 1% is a 

structure regarded accurately predicted. The structure should be accurately predicted, and the 

formation energy should be negative for a correct stable structure. When the formation energy of 

a structure is positive and the structure is properly predicted, it is said to be unstable. 

Overall 4/12 of the predicted stable structures were found to be stable and 3/9 predicted unstable 

structures were found to be unstable giving a total accuracy of 33% in searching for novel 

materials. This result is extremely promising as we are able to find correct novel structures and 

stoichiometries with high accuracy. Our approach improves upon previous studies that have shown 

drastic changes in the atomic coordinates after relaxation. However, we note that the predicted 

structures are still not the lowest energy structures, and some relaxation of lattice parameters is 



 

 

required. This also means that some structures which were generated as unstable might go to form 

structures with stable formation energy after relaxation. Figure 7 shows the crystal structures of 

some of the predicted materials before and after relaxation.   

 

 

Figure 7. Predicted crystal structures before and after optimization. a,b) Correctly predicted 

stable materials TiMoSeO2 and KMnClF2. c) an incorrectly predicted stable structure GaSnIrAu.  

d,e) correctly predicted unstable structures HfScTiSe and BaTaTcW. f) an incorrect unstable 

structure KCaNiRh.  

 

 



 

 

 

4. Conclusion 

In this paper, we have introduced a scalable and generalizable 2D matrix representation for the 

crystal structure of the inorganic materials. The representation contains the crystallographic 

information of the structure as well as the properties of the constituent elements and has no 

limitation in terms of the type of the crystal structure or the stoichiometry. 2D matrix representation 

was used to train a conditional variational autoencoder model, which was then used for the targeted 

generation of the stable or unstable crystal structures based on the value of the formation energy. 

The CVAE model trained on the OQMD database was able to generate the novel crystal structures, 

which are not present in the entire database. The generated crystal structures showed a very high 

accuracy in the prediction of crystallographic sites and the stoichiometry, however the lattice 

constant prediction needs further improvement. DFT calculations were done to calculate the 

formation energy of few discovered structures, which showed that the model was able to generate 

33% compounds with the correct target property. This study also indicates the possibility of 

property-driven generation of crystal structures using generative models, which has been 

demonstrated here for the formation energy. We hypothesize that this can be done for other useful 

properties, provided the representations are able to model the properties sufficiently accurately. 
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