Supporting Information for

Magnetic Coupling Control in Triangulene Dimers

Hongde Yu, Thomas Heine*

*Corresponding author. Email: thomas.heine@tu-dresden.de

This PDF file includes:

Computational details

Figure S1. Molecular structure, spin density distribution and frontier molecular orbital of TRI monomer.
Figure S2. Molecular structure, spin density distribution and frontier molecular orbital of TRI(N) monomer.
Figure S3. Molecular structure, spin density distribution and frontier molecular orbital of TRI(B) monomer.
Figure S4. Molecular structure, spin density distribution and frontier molecular orbital of TAM monomer.
Figure S5. Molecular structure, spin density distribution and frontier molecular orbital of TOT monomer.
Figure S6. Molecular structure, spin density distribution and frontier molecular orbital of PLY monomer.
Figure S7. Comparison of Kekulé and non-Kekulé structures of TAM-TAM and TOT-TOT.
Figure S8. Dihedral angles in the directly-linked dimers.
Figure S9. Spin density distribution and frontier molecular orbital of TRI(N)-TRI(N).
Figure S10. Spin density distribution and frontier molecular orbital of TRI(B)-TRI(B).
Figure S11. Spin density distribution and frontier molecular orbital of TOT-TOT.
Figure S12. Spin density distribution and frontier molecular orbital of PLY-PLY.
Figure S13. Spin density distribution of TRI-CC-TRI, TRI-CCCC-TRI and TRI-Ph-TRI.
Figure S14. Spin density distribution of TRI(N)-CC-TRI(N), TRI(N)-CCCC-TRI(N) and TRI(N)-Ph-TRI(N).
Figure S15. Spin density distribution of TRI(B)-CC-TRI(B), TRI(B)-CCCC-TRI(B) and TRI(B)-Ph-TRI(B).
Figure S16. Spin density distribution of TAM-CC-TAM, TAM-CCCC-TAM and TAM-Ph-TAM.
Figure S17. Spin density distribution of TOT-CC-TOT, TOT-CCCC-TOT and TOT-Ph-TOT.
Figure S18. Spin density distribution of PLY-CC-PLY, PLY-CCCC-PLY and PLY-Ph-PLY.
Figure S19. Relationship between magnetic coupling (J) and dihedral angle (ϕ) in PLY-PLY.
Figure S20. Relationship between magnetic coupling (J) and dihedral angle (ϕ) in TRI(B)-TRI(B).
Figure S21. Relationship between magnetic coupling (J) and dihedral angle (ϕ) in TAM-TAM.
Figure S22. Relationship between magnetic coupling (J) and dihedral angle (ϕ) in TOT-TOT.
Table S1. Comparison of TRI(N) and TRI(B) monomer.
Table S2. Magnetic couplings of planar TRI(N)-TRI(N).
Computational details

The geometries of all the systems have been optimized at the PBE0/def2-TZVP level as implemented in the Gaussian16 program. For closed-shell singlet, we have performed restricted DFT calculations, while using unrestricted DFT calculations for the triplet and quintet. For OSS, the broken-symmetry (BS)-DFT approach has been employed. The stability of the DFT wave function has been optimized and checked with keyword “stable=opt”. In order to avoid the well-known spin contamination in the calculation of OSS, we have adopted the ansatz proposed by Yamaguchi,¹ where the magnetic coupling is defined as $J = -(E_{HS} - E_{OSS})/\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}$, where $\langle S^2 \rangle_{HS}$ and $\langle S^2 \rangle_{LS}$ are the expectation values for the total spin of the high-spin and low-spin states, respectively. The on-site Coulomb repulsion U is estimated by the spin-polarization energy as defined by $U = E_{CSS} - E_{HS}$, where E_{HS} and E_{CSS} represent the energy of high-spin and closed-shell singlet states. To correctly determine the relative energy of the closed-shell singlet and high-spin state in planar TAM dimer, we have utilized the domain-based local pair natural orbital coupled-cluster theory (DLPNO-CCSD(T))² with ORCA 5.0 program.³ This approach is necessary due to the poor description of electron correlation in the PBE0 functional, resulting in an incorrect $U < 0$ value. To expedite the SCF process, we have employed the “RIJCOSX” method, the auxiliary basis set def2-TZVP/C, and Coulomb fitting set def2/J for the correlated calculations.⁴ Additionally, the “TightSCF” option has been applied to tighten the convergence settings. For the TRI-series molecules, we have considered both the closed-shell singlet and quintet states, while for other diradical systems, we have considered the closed-shell singlet and triplet states. To perform a magnetic coupling profile scan of dihedrals, we have applied the "opt=(modredundant, tight)" keyword, which allows to optimize the molecular geometry while constraining only the dihedral angle. The MultiWFN program have been used for the analysis of the overlap integral of SOMO.⁵
Figure S1. Molecular structure, spin density distribution and frontier molecular orbital of TRI monomer.
Figure S2. Molecular structure, spin density distribution and frontier molecular orbital of TRI(N) monomer.
Figure S3. Molecular structure, spin density distribution and frontier molecular orbital of TRI(B) monomer.
Figure S4. Molecular structure, spin density distribution and frontier molecular orbital of TAM monomer.
Figure S5. Molecular structure, spin density distribution and frontier molecular orbital of TOT monomer.
Figure S6. Molecular structure, spin density distribution and frontier molecular orbital of PLY monomer.
Figure S7. Comparasion of Kekulé and non-Kekulé structures of TAM and TOT dimers.

Figure S8. Dihedral angles in the dimers.
Figure S9. Spin density distribution and frontier molecular orbital of TRI(N) dimer.

Figure S10. Spin density distribution and frontier molecular orbital of TRI(B) dimer.
Figure S11. Spin density distribution and frontier molecular orbital of TOT dimer.

Figure S12. Spin density distribution and frontier molecular orbital of PLY dimer.
Figure S13. Spin density distribution of TRI-CC, TRI-CCCC and TRI-Ph.

Figure S14. Spin density distribution of TRI(N)-CC, TRI(N)-CCCC and TRI(N)-Ph.
Figure S15. Spin density distribution of TRI(B)-CC, TRI(B)-CCCC and TRI(B)-Ph.

Figure S16. Spin density distribution of TAM-CC, TAM-CCCC and TAM-Ph.
Figure S17. Spin density distribution of TOT-CC, TOT-CCCC and TOT-Ph.

Figure S18. Spin density distribution of PLY-CC, PLY-CCCC and PLY-Ph.
Figure S19. Relationship between magnetic coupling \((J)\) and dihedral angle \((\varphi)\) in PLY dimer.

Figure S20. Relationship between magnetic coupling \((J)\) and dihedral angle \((\varphi)\) in TRI(B) dimer.
Figure S21. Relationship between magnetic coupling (J) and dihedral angle (φ) in TAM dimer.

Figure S22. Relationship between magnetic coupling (J) and dihedral angle (φ) in TOT dimer.
Table S1. Comparison of TRI(N) and TRI(B) monomer with C2v and D3h symmetry.

<table>
<thead>
<tr>
<th></th>
<th>E (Hartree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI(N)</td>
<td>C2v</td>
</tr>
<tr>
<td></td>
<td>-861.497347902</td>
</tr>
<tr>
<td></td>
<td>D3h</td>
</tr>
<tr>
<td></td>
<td>-861.495203128</td>
</tr>
<tr>
<td>TRI(B)</td>
<td>C2v</td>
</tr>
<tr>
<td></td>
<td>-831.608771830</td>
</tr>
<tr>
<td></td>
<td>D3h</td>
</tr>
<tr>
<td></td>
<td>-831.606646245</td>
</tr>
</tbody>
</table>

Table S2. Magnetic couplings of planar TRI(N) dimer calculated by PBE0, B3LYP, MN15, M06-2X and ωB97XD functionals. “-sp” indicate single point energy at PBE0 optimized geometry and “-opt” means the geometry is also re-optimized by corresponding functionals.

<table>
<thead>
<tr>
<th></th>
<th>J (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE0</td>
<td>1.46</td>
</tr>
<tr>
<td>B3LYP-sp</td>
<td>1.21</td>
</tr>
<tr>
<td>B3LYP-opt</td>
<td>1.02</td>
</tr>
<tr>
<td>MN15-sp</td>
<td>1.64</td>
</tr>
<tr>
<td>MN15-opt</td>
<td>1.74</td>
</tr>
<tr>
<td>M06-2X-sp</td>
<td>0.88</td>
</tr>
<tr>
<td>M06-2X-opt</td>
<td>0.79</td>
</tr>
<tr>
<td>ωB97XD-sp</td>
<td>2.98</td>
</tr>
<tr>
<td>ωB97XD-opt</td>
<td>3.22</td>
</tr>
</tbody>
</table>
References:

