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ABSTRACT:	 A	 facile	 approach	 to	 densely	 functionalized	 cyclopropanes	 is	 described.	 The	 reaction	 proceeds	 under	mild	
conditions	via	 the	directed	nucleopalladation	of	non-conjugated	alkenes	with	readily	available	pronucleophiles	and	gives	
excellent	yields	and	good	anti-selectivity	using	I2	and	TBHP	as	oxidants.	Pronucleophiles	bearing	a	diverse	collection	electron-
withdrawing	groups,	including–CN,	–CO2R,	–COR,	–SO2Ph,	-CONHR	and	–NO2,	are	well	tolerated.	Internal	alkenes,	which	are	
generally	challenging	substrates	in	other	cyclopropanation	methods,	provide	excellent	yields	and	good	diastereoselectivity	
in	this	methodology,	allowing	for	controlled	access	to	cyclopropanes	substituted	at	all	three	C-atoms.	

Cyclopropanes are versatile synthetic intermediates and 
valuable  targets in natural products and pharmaceuticals [1,2]. 
This is due to their unique features, such as conformational 
rigidity, high ring strain, enhanced π-character of bonding 
electrons, and unusually strong C−H bonds [3]. Among the 
most reliable and frequently used synthetic methods to prepare 
cyclopropanes is the [2+1] addition of various carbenoid 
equivalents to alkenes (Figure 1A). In the Simmons–Smith 
reaction, organozinc carbenoids are used to access alkyl-
substituted cyclopropanes,[4] whereas ambiphilic substrates are 
involved in the Michael initiated ring closure (MIRC) where a 
Michael acceptor and a nucleophile bearing a leaving group are 
combined. In the latter case, sulfur, phosphorus, arsenium, and 
telluronium ylides, as well as α-halo carbanions, have all been 
used as effective coupling partners [5]. More recent methods for 
constructing cyclopropane units containing electron-
withdrawing groups involves alkene cyclopropanations with 
diazo compounds [6] or iodonium ylides [7]. However, the 
requirement for hazardous reagents and additional steps to 
prepare the carbenoid precursor generally limit the applicability 
of the methodology [8]. An attractive step- and atom-economic 
strategy to cyclopropanation is the direct coupling of olefins 
with simple methylene compounds (either via direct 
engagement or in situ activation). This would obviate the need 
to prepare and handle carbenoid precursors. However, such 
methodologies remain generally underdeveloped [10].   

 

Figure 1. Background and project summary. 
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operation. However, many of the reported cyclopropanation 
methods are limited in alkene scope, and few methods tolerate 
non-symmetric, 1,2-dialkyl alkenes [9]. In seminal work, 
Charette and coworkers demonstrated an enantioselective 
alcohol-directed Simmons–Smith-type cyclopropanation of 
non-conjugated alkenes providing  high levels of syn-selectivity 
[11] (Figure 1B). Herein, we report an anti-selective 
cyclopropanation method of non-conjugated alkenyl amides 
with common 1,3-dicarbonyls and other related 
pronucleophiles (Figure 1C). An 8-aminoquinoline (AQ) 
auxiliary [12–16] directs carbopalladation, allowing the 
transformation to proceed under mild reaction conditions with 
I2 and TBHP as terminal oxidants. The desired products are 
obtained in excellent yields with good anti-selectivity. Both 
(Z)- and (E)-internal alkenes are well tolerated, giving access to 
cyclopropanes substituted at all three C-atoms in a stereo-
controlled fashion.  

We began optimization with AQ-containing alkenyl amide 
1a as the model alkene and methyl cyanoacetate (2a) as the 
nucleophilic coupling partner (Table 1). Initial control 
experiments revealed that the reaction did not proceed under 
previously reported conditions for metal-free cyclopropanation 
with malononitrile and non-conjugated alkenes (entry 2, see 
Supporting Information for details) [9c–e]. Evaluation of key 
variables led to identification of optimal reaction conditions 
using catalytic Pd(TFA)2 (10 mol%), K2CO3 (1.0 equiv) as the 
base, and I2 (0.8 equiv) with TBHP (0.5 equiv) as the co-
oxidants. The reaction proceeds at room temperature with 
excess coupling partner 2a (3.0 equiv) as the solvent (neat) 
(entry 1). Under these conditions, the desired cyclopropane 3aa 
was formed in 97% yield with 77:23 diastereoselectivity. Using 
I2 as the sole oxidant afforded the product in excellent yield, 
albeit with lower diastereoselectivity (entry 3–4), whereas, 
TBHP or PhI(OAc)2 as the oxidant was insufficient in the 
transformation  (entry 5–6). TBHP likely serves to regenerate I2 
from iodide, thereby maintaining constant I2 concentration 
throughout the course of the reaction. Given that other potential 
coupling partners of interest are solids at room temperature (see 
below), we also performed a brief investigation of compatible 
solvents. With reduced loading of 2a (1.5 equiv) in 1,2-DCE or 
HFIP (1.0 M), the desired product was obtained in 92% yield 
(57:43 dr) and 89% yield (66:34 dr), respectively (entries 7 and 
8). The palladium catalyst and the base are crucial to achieve 
the desired reactivity, as omitting these from the reaction gave 
low conversion (entries 9–10). Finally, we attempted a low-
temperature experiment, and we were delighted to observe full 
conversion even at 0 ºC after 3 days; in this case, 
diastereoselectivity improved to 83:17 dr (entry 11). 

Table 1. Optimization of reaction conditions. 

 

The scope of nucleophilic coupling partners was evaluated 
using the two conditions, method A (3.0 equiv 2, neat) for 
coupling partners that are liquid at room temperature and 
method B (1.5 equiv 2, 1,2-DCE (1.0 M)) for coupling partners 
that are solids at room temperature (Table 2). First, we 
evaluated the cyano-containing methylene compounds as 
nucleophiles. Cyanoacetates were well tolerated, giving 97% 
yield and 77:23 dr and 84% yield and 67:33 dr for methyl (3aa) 
and tert-butyl ester (3ab), respectively. The cyanomethyl-
phosphonate provided an excellent yield (91%) of the desired 
product 3ac as a single diastereomer. An X-ray structure 
established that the larger –P(O)(OEt)2 group was oriented  
opposite to the directing group on the cyclopropane ring. 
Similarly, using the bulky electron-withdrawing group, –SO2Ph, 
funished the cyclopropane product 3ad in excellent yield (99%) 
and high diastereoselectivity (86:14). A furan-containing 
oxopropanenitrile was compatible with the reaction conditions 
providing  3ae in a 93% yield with 70:30 dr, while the cyano-
phenylacetamide coupling partner furnished product 3af with 
lower yield (60%) and dr (55:45). Next, ester-bearing 
methylene nucleophiles were evaluated as coupling partners. 
Both β-diester (3ag) and β-ketoester (3ah) coupling partners 
provided good yields of the corresponding cyclopropane 
products. Phenylsulfonyl ester nucleophilic coupling partner 
gave the cyclopropane as a 74:26 dr mixture in 64% yield (3ai). 
Separation of the two diastereomers and characterization of the 
major product by X-ray crystallography revealed  that the  –
SO2Ph and the directing group are oriented trans to one another. 
A fluorosulfonyl substituted cyclopropane 3aj was obtained in 
82% yield and 54:46 dr. Malononitrile gave 21% yield (3ak). 
Methylene nucleophiles with nitro-group were next 
investigated. Methyl nitroacetate gave the desired product  3al 
in a 58% yield, 83:17 dr, and a dinitromethane afforded 10 % 
yield of dinitrocyclopropane 3am. The monosubstituted 
coupling partner, nitromethane, gave the desired product 3an in 
64% yield with 97:3 dr. We then examined cyclic coupling 
partners. Meldrum's acid, which is a synthetically useful 
building block, furnished product 3ao in 93% yield. Barbituric 
acid reacted efficiently, furnishing 3ap in 89% yield, and finally, 
1,3-indanedione, which does not undergo keto-enol 
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tautomerization as readily as other 1,3-diketones [17,18], was 
well tolerated and gave a 90% yield (3aq). 

Generally, this transformation can be broadly applied, 
however, some limitations still persist. First, trifluoromethyl-
containing compounds 2r–t were incompatible. Second, 
MeNO2 was the only singly activated nucleophile that was 
amenable to the method; similar nucleophiles, such as MeSO2F 
(2u) and EtNO2 (2v), did not lead to the desired products. (For 
a comprehensive list of unsuccessful examples, see the 
Supplementary Information). In these unsuccessful trials, 
unreacted alkene starting material was recovered. Thus, a 
plausible explanations for the lack of reactivity could be that the 
pronucleophiles are not within the appropriate pKa range or are 
too sterically encumbered. 

Table 2. Scope of coupling partners.a,b 

 

Next, the scope of α-substituted β,γ-unsaturated amide 
substrates was investigated (Table 3). To our delight, an α-
methyl-substituent was tolerated, affording the desired 

cyclopropanes as a single diastereomer in good to excellent 
yield of 3bq or 3bp from 1,3-indanedione or Meldrum's acid, 
respectively. An X-ray crystal structure confirmed that the 
cyclopropanation is highly diastereoselective in forming the 
new β-C–C bond trans with respect to the α-methyl. Changing 
the coupling partner to a cyanoacetate, however, led to a 
mixture of all four diastereomers (3ba) in 87% overall yield. By 
With 1,3-indanedione as the nucloephile, a series of larger α-
substitutes were evaluated, gaving excellent yields of a single 
diastereomer (3cq, 3dq, and 3eq). An α,α-gem-dimethyl 
substituted β,γ-unsaturated amide delivered product in 15% 
yield (3fq). To show the chemoselectivity that arises from 
substrate directivity, a diene substrate was tested and underwent 
cyclopropanation exclusively at the β,γ-alkene, leaving the δ,ε-
alkene untouched (3gq). 

Table 3. Scope of α-substituted β,γ-unsaturated amides.a,b 

 

Switching the directing group to a 2-picolinyl amide (PA) 
allowed access to a structurally distrinct class of cyclopropyl 
amine products. The combination of 1,3-indanedione and a PA-
bearing homoallyl amine derivative yielded 3hq in 61% yield 
using 20 mol% Pd(TFA)2. Similarly, an enantioenriched 
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allylglycine derivative provided 4iq in a 25% yield with 85:15 
dr with the preservation of the original stereocenter. 

Table 4. Scope of internal alkenes.a,b 

 

We then turned our attention to internal alkenes (Table 4). 
Among various nucleophiles tested, methyl cyanoacetate (2a) 
was found to perform best with internal alkenes. The catalyst 
loading was increased to 20 mol% Pd(TFA)2 to ensure full 
conversion (for details, see SI). Under these conditions the 
cyclopropanation of (Z)-alkenes proceeded efficiently with 
good diastereoselectivity. Notably, only two diastereomers 
among the four possible were detected. With small groups, such 
as methyl and ethyl, the corresponding products 3ja and 3ka, 
respectively, were isolated in excellent yields. Substrates 
containing more sterically demanding groups (3la, 3ma, and 
3na) or styrenyl alkenes  (3oa), gave slightly diminished yields 
(67–89%). Stereochemical assignments by X-ray 
crystallography and NOESY showed that the major product 
from Z-alkenes is in trans-configuration arising from net anti-
addition of the nucleophile, with the larger ester group oriented 
on the same face as the directing group and opposite to the 
terminal alkyl/aryl group.  

Although (E)-alkenes react slower in the nucleopalladation 
than (Z)-alkenes [19], these substrates still underwent 
cyclopropanation. The product 3ja’ with a methyl group was 
isolated in an 83% yield with 84:16 dr, whereas with an ethyl 
group, a 1:1 mixture of starting material and product was 
observed, leading to only 50% yield of 3ka’ with 87:13 dr. With 
an (E)-alkene bearing a longer aliphatic chain, in this case 
(CH2)5NPhth, the yield drastically decreased to 19% (3pa’). In 
products derived from (E)-alkenes, the directing group and the 

terminal alkyl group are oriented on the same face of the 
cyclopropane, with anti-selectivity confirmed by both X-ray 
cryallography and NOESY. 

 

Figure 2. Scale-up, alternative methods, AQ removal 

The methodology could conveniently be scaled-up without 
exclusion of air or moisture, providing gram quantities of 
cyclopropane 3aq in 86% yield (Figure 2A). Next, to provide 
an alternative to I2, we developed a method that uses KI as the 
iodine source and demonstrated that preparatively useful yields 
could still be obtained (Figure 2B). We found that the 
cyclopropanes prepared from this method are prone to ring 
opening under many commonly used conditions for AQ 
deprotection, including the mild Morimoto–Ohshima 
alcoholysis method [20]. After brief optimization (for details, 
see SI), we identified mild conditions employing catalytic 
DMAP to introduce an N-Boc-activating group in 87% yield 
(Figure 2C). From here, the N-Boc-AQ group could be cleanly 
substituted by a representative amine nucleophile in 93% yield 
[21]. 

 

Figure 3. Potential Pathways. 
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considered six potential pathways for this transformation 
distinguished by their key intermediates and the expected net 
stereochemical outcome, namely (1) a palladium–carbenoid 
mechanism (syn), (2) an iodonium ylide mechanism (syn), (3) 
formation of α-iodinated nucleophile capable of engaging in 
carbopalladation followed by intramolecular Pd(II)/Pd(IV) 
oxidation addition (anti), (4) formation of a 1,2-diiodoalkane 
via diiodination of the alkene, which can then undergo 
successive SN2 additions (anti), (5) generation of a 
alkylpalladium(IV) intermediate formed via carbopalladation 
followed by I2-induced Pd(II)/Pd(IV) oxidation and subsequent 
C–C reductive elimination (anti), and (6) Pd(II)/Pd(IV)-
catalyzed 1,2-carboiodination followed by intramolecular SN2 
cyclization (syn) (Figure 3).  

To distinguish among these possibilities, we performed a series 
of experiments. Treatment of the alkene with a pre-formed 
iodonium ylide did not lead to cyclopropanation under the 
standard reaction conditions in the presence or absence of metal, 
ruling out pathways (1) and (2) (for details, see SI). In situ 
monitoring of the reaction to form product 3ag in toluene  
revealed formation of the α-iodinated nucleophile 2g–I  and 1,2-
carboiodinated adduct 5ag [21], along with expected π-alkene 
complex A (Figure 4A) [22]. Compound 2g-I was generated 
rapidly during the first few minutes of the reaction and then was 
consumed. The fact that the nucleophile is iodinated in 
preference to the alkene rules out pathway (4). For comparison, 
the same experiment was performed in the absence of alkene 1a; 
in this case 2g-I is also formed but is further converted to α,α-
diiondated compound 2g-I2 (see SI). The rate of consumption 
of 2g-I is accelerated in the presence of alkene, consistent with 
its involvement in formation of cyclopropanated product 3ag. 
Independently prepared 2g-I and 5ag both converted into 
product upon subjection to the standard conditions, establishing 
that they are both competent intermediates (Figures 4B and 4C). 
While pathway (5) cannot be rigorously excluded at this time, 
the data in Figure 4 and the stereochemical outcomes can be 
rationalized by a scenario in which mechanism (3) is the major 
pathway and mechanism (5) is a minor pathway. 

 

Figure 4. Mechanistic studies. 

 

In conclusion, we have developed a highly selective and 
versatile Pd(II)/Pd(IV)-catlayzed cyclopropanation of non-
conjugated alkenes with C–H pronucleophiles that proceeds via 
directed nucleopalladation. This method tolerates a diverse 
collection of readily available pronucleophiles containing 
different electron-withdrawing groups and is effective with α-
substituted alkenyl carbonyl substrates as well as challenging 
internal alkenes, granting stereocontrolled access to densely 
functionalized cyclopropane products. 
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