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The molecular-level understanding of intrinsically disordered proteins is challenging due to ex-
perimental characterization di�culties. Computational understanding of IDPs also requires fun-
damental advances, as the leading tools for predicting protein folding (e.g., Alphafold), typically
fail to describe the structural ensembles of IDPs. The focus of this paper is to 1) develop new
representations for intrinsically disordered proteins and 2) pair these representations with classical
machine learning and deep learning models to predict the radius of gyration and scaling exponent of
IDPs. Here, we build a new physically-motivated feature called the bag-of-amino-acid-interactions,
which encodes pairwise interactions explicitly into the representation. This feature essentially counts
and weights all possible non-bonded interactions in a sequence and thus is, in principle, compati-
ble with arbitrary sequence lengths. To see how well this new feature performs, both categorical
and physically-motivated featurization techniques are tested on a computational dataset containing
10,000 sequences simulated at the coarse-grained level. The results indicate that this new feature
outperforms the others and possesses solid extrapolation capabilities. For future use, this feature
can potentially provide physical insights into amino acid interactions including their temperature-
dependence, and be applied to other protein spaces.

I. INTRODUCTION

Many intrinsically disordered proteins (IDPs) are bi-
ologically active even though they do not possess well-
defined folded structures.1,2 IDPs are characterized by a
free energy landscape with multiple local minima, leading
to an ensemble of configurations as opposed to a global
minimum seen in the case of proteins with stable folded
structures.3,4 Characterizing the structure of these highly
dynamic and flexible proteins is challenging, both exper-
imentally and through simulations, due to the low free
energy barriers5,6 and numerous relevant conformations.3

These challenges have led to an approach of connecting
measurable ensemble average properties, such as radius
of gyration (Rg), to ensembles through polymer physics
theory.7–13 However, the prediction of such conforma-
tional properties directly from primary sequences for such
disordered proteins remains highly challenging, relying
on combinations of experimental, theoretical, and simu-
lation methods.14–17

Machine learning methods have emerged as a valuable
tool in uncovering the relationship between primary se-
quences of proteins, as well as nucleic acids, and their
properties.18–22 The goal of these models is to encode
the sequence (using categorical features) and correlate
these features with the relevant physical observables.
With these low-cost models, the goal is to design new
sequences or materials with a desired output at a much
lower cost than experimental or physics-based modeling
approaches (Fig. 1a). In the context of proteins, machine
learning has been applied extensively to the prediction
of the higher-order structure based on only the primary
structure of the protein.23–27 Such approaches are able
to predict regions of proteins that would remain disor-
dered. Additional machine learning e↵orts have focused

on generalized coarse-grained polymer models. Machine
learning models which take in physically motivated fea-
tures that are analogous to color mapping have been
built based on parameters from coarse-grained models
and have been demonstrated to e↵ectively predict the
average properties of these polymers.28 A limitation of
these methods is that the dimensions of input features
scales with the protein length, leading to potential dif-
ficulties in training, and requiring foreknowledge of the
maximum length sequence that a model will need to con-
sider.

In this work, we introduce a new feature named the
“bag of amino acid interactions” representation (BAA),
which accounts for the pairwise non-bonded interactions
of amino acids present in the sequence. The dimensions
of this feature remain constant at 400 (20⇥20 amino
acids), irrespective of the length of the protein being in-
vestigated. Additionally, by considering the importance
of order in a sequence, the bag of amino acid interactions
feature can di↵erentiate between sequences of the same
amino acid composition, but with di↵erent sequencing of
residues.

To compare the performance of this representation in
relation to others, we considered a data set of coarse-
grained simulations of randomly generated sequences (re-
ferred to as the IDP-10260 dataset in this work)29 using
an implicit solvent, one-bead-per-residue model that has
been previously shown to accurately predict the average
radius of gyration (Rg) of IDPs.30 We use these simula-
tion results as the prediction targets to train models with
categorical22,31 and physically-motivated features. We
test the performance of these features for both classical
machine learning models and artificial neural networks,
where appropriate, for each feature. For the dataset
considered in this work, we find that the bag of amino
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acid features marginally outperforms other features while
maintaining computational e�ciency and introducing de-
sirable characteristics of future use cases. In addition,
we present a set of extrapolation tests that provide some
insights into the degree that these model-feature combi-
nations can be tested outside of their training domains,
which we consider to be an important test due to the
potential use of machine learning models in design tasks.

This paper is organized as follows. First, we describe
the computational methods to used to generate the train-
ing and test data. We then discuss the featurization
strategies considered in this work, including categorical
features and physically-motivated features, and the ma-
chine learning models these features are combined with.
Then, we present our results and discussion, including a
test of the extrapolation ability of BAA representation
and the integration of the feature with various tempera-
ture data.

II. THEORETICAL AND COMPUTATIONAL
METHODS

A. Simulation details for polypeptide training and
testing data

All of the simulations on the IDP-10260 dataset were
conducted using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS).32 The initial con-
figuration of the polypeptides is a linear chain positioned
in the middle of a cubic box which has a side length
of 1500 angstroms. For each sequence, seven simula-
tions are performed under di↵erent temperatures in an
NVT ensemble for 500 nanoseconds with a time step of
10 femtoseconds. The radius of gyration is calculated
from snapshots between 100 to 500 ns. More simulation
details and example simulation snapshots are provided in
the supporting information (Section S6).

B. Featurization

1. Categorical Features

Categorical features are the dominant features19,33–35

used in data-driven protein models. This featurization
strategy is employed in both supervised and unsuper-
vised learning. Prior work has shown that categorical fea-
tures can be used for accurate property or classification
models when enough data (7000 points) is fed into the
model.36 For proteins, these sequences can be expressed
using letters, which are then transformed into a vector.
With categorical features, we focus on two traits: 1) if
the features are size-explicit or size-implicit and 2) if the
features are order-dependent or order-independent. Re-
cent work has shown that size-implicit features perform
similarly to size-explicit features.31 Considering impor-
tant di↵erences that may arise due to the size and order

information explicit or implicit in an encoding, we used
three categorical features in this work (key traits, sum-
marized in Fig. 1b): 1) Count encoding (size-implicit and
order-independent), 2) Ordinal encoding (explicit length
information and order-dependent), 3) One-hot encoding
(size-implicit and order-dependent).
Count Encoding (CE) The count encoding (CE) fea-
ture encodes the number of occurrences of a given amino
acid in a sequence, similar to a character count in a word.
In this work, the count encoding is a 20-element array,
where the value of each index indicates the number of
a given amino acid in the sequence. We note that this
feature is size-implicit since the sequence size can be cal-
culated by the sum of the array.
Ordinal Encoding (OE) The ordinal encoding (OE)
feature encodes the sequence into a finite length array
(in this case the length is 200, the largest sequence con-
sidered in the training and testing set), where each index
is assigned an integer that corresponds to one of the two
amino acids. To ensure the dimensionality of the feature
is the same for the whole dataset (necessary for compat-
ibility with many ML models), those sequences shorter
than the longest one in the data will pad zero at their
ends. For instance, the ordinal encoding inputs used in
this paper have 200 features, which is the largest sequence
in this data set.
One-Hot Encoding (OHE) The one-hot encoding
(OHE) feature encodes the sequence in an array consist-
ing of only 0 or 1 to represent the absence or presence
of the amino acid at the position. For a sequence with
length 200, there will be 200⇥21 elements in the one-
hot encoding feature. In each position, there are 21 ele-
ments. The ith element is one if the i indexed amino acid
is present. The 21st element is one if no amino acid at
that position. One-hot encoding is size-implicit and or-
dered. The sum of the array from 1st to 20th element at
each position corresponds to the sequence size. Although
this feature keeps the size and order information, it has
many more dimensions than the other two categorical
features. Higher dimensions could not only cause overfit-
ting but also require longer training times and larger sets
to train. The inclusion of this feature was motivated by
the results of Ref. 22, where the combination of one-hot
encoding and a linear-regularized regression model was
shown to perform well for evolutionary sequence data
prediction tasks.

2. Physically-motivated Features

Color Mapping The color mapping feature representa-
tion is derived based on its original description in Ref.
28, where it was applied to predicting the radius of gyra-
tion calculated from coarse-grained polymer simulations.
Rather than using the index number of an amino acid
as in the ordinal encoding, the index number is replaced
by the coarse-grained simulation parameters such as hy-
dropathy, charge, and the particle’s van der Waals radius.
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FIG. 1. Featurization techniques overview. (a) Overall workflow for predicting IDP properties directly from primary sequences.
In this work, we are focusing on featurization techniques. (b) Graphical illustration of the categorical and physically-motivated
features considered in this work (c) The sampling strategy employed to train the machine learning models, based on the
composition of the benchmarking set, has equally distributed chain lengths. We sample the data equally and perform cross-
validation.

Thus, for the sequences in this study, the total number
of dimensions for the input is 600. The feature can be
either remain as a 2D array or be flattened into a 1D ar-
ray and fed to Convolutional 2D or 1D neural networks,
as discussed further below.

Bag of Amino Acid Interactions (BAA) The BAA
feature developed for this work was motivated by the

importance of pairwise interactions37,38 in determining
the properties of disordered proteins.39 Some e↵orts have
been made on predicting the contact density and poten-
tial in a sequence40. However, those methods still en-
counter the scaling problem when the sequence size gets
larger and use an arbitrary cuto↵ for feature definitions.
Herein, inspired by the sequence charge decoration41 and
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sequence hydropathy decoration parameters,29 we devel-
oped a new feature called bag of amino acid interactions.
In this feature, the pairwise interaction counts are calcu-
lated by how many specific pairs of non-adjacent amino
acids are in the sequence. Each count is divided by the
square root of the number of bonds between each amino
acid in that pair. The feature will be a 20⇥20 array,
totaling 400 features, and will not increase for longer se-
quences. A demonstration of converting an example se-
quence into each of the physically-motivated features is
shown in the supporting information (Fig. S4).

C. Machine Learning Models

The machine learning models used in this paper can
be classified into classical models and artificial neural
network models. In general, classical models are used
when limited training data is available and artificial neu-
ral networks are used when a larger dataset is available.
However, each model may find use outside of its normal
context, and the performance of each model for a partic-
ular feature can aid in the interpretability of the models
and give insights into further feature development. Here,
we provide a brief description of the machine learning
models used in this work and highlight prior applications
to protein property prediction models, where appropri-
ate.
L2-Linear Regularized Regression (LRR) A lin-
ear regression model is the most straightforward model,
which employs a linear model on the features. To train
the model, the loss is minimized between the predicted
values and target values (in the case of an L2 model, the
sum of the square of the losses). To avoid overfitting, a
regularization term is added to the loss function, which
is the sum of the coe�cient in the functions. Larger
regularization terms indicate more regularized models.
In Ref. 22, this technique was used in combination with
one-hot encoding.
Kernel Ridge Regression (KRR) Kernel ridge re-
gression is a regularized model using a kernel trick to
transform the target function into desired forms, which
is not restricted to a linear model. The kernel applied in
this paper is the radial basis function.

g(✓) =
NX

n=1

(y(n) � f(s(n); ✓))2 + �
LX

i=1

X

a2A

✓i(a)
2 (1)

Support Vector Regression (SVR) Support vector
regression uses a di↵erent strategy than LRR to calculate
the loss function. Rather than calculate the loss function
directly, a hyperplane is added and any errors for data
points within the range will be considered as 0. For data
points outside the hyperplane, the loss function is the
error - hyperplane width ✏. The kernel is the radial basis
function.

Gaussian Process Regression (GPR) Gaussian pro-
cess regression starts with a prior probability distribu-
tion. It uses a covariance kernel function and Bayes’ rule
to acquire a posterior probability function.
Feed-forward Neural Network (FNN) The first type
of neural network in this work is a simple uni-directional
neural network, where each layer is fully connected to the
next layer.
Convolutional Neural Network (CNN) The second
type of neural network in this work is chosen due to its
potential compatibility with the “color mapping” feature
representation. In this case, the “RGB” values for the
convolutional neural network are the coarse-grained pa-
rameters. Given the structure of the data (sequences),
a one-dimensional convolutional model is applied here.
The output from the last convolutional layer is flattened
and fed into fully connected hidden layers and the final
outputs are scaling exponent and radius of gyration.

D. Training Process

For the training and testing process, we the IDP-10260
dataset, which was randomly generated from a distribu-
tion using all of the amino acids.29 It consists of 171
chain lengths and 60 data points for each chain length
(total 10260). To ensure the training quality, the train-
ing set is sampled to have an equal number of data points
from each chain length. For the classical model hyperpa-
rameter tuning, 80% is used to undergo a six-fold cross-
validation. The remaining 20% is used as the testing set.
For generating the learning curves, eight splits are ap-
plied in each fold. For the neural network models, 60%
is used as the training set, 20% is used as the validation
set and the model is trained based on the validation loss.

III. RESULTS AND DISCUSSION

A. Classical models and categorical features

We consider the performance of the models on predict-
ing both Rg and the scaling exponent. The initial test
includes three features (CE, OE and OHE) using four
classical machine learning models and the 300 K data to
see the correlation between these features and the scaling
exponent without the e↵ect of temperature. The testing
results are shown in Fig. 2. The R2, MSE, and RMSE
are listed in Table 1. The order of performance is CE >
OHE > OE. The combination of CE and SVR gives the
best performance. This result indicates that the variation
of amino acid compositions can easily capture the struc-
tural characteristics of IDPs in the IDP-10260 dataset
and that sequence-specific information is not needed for
this dataset.
For the OE representation, the model performances

for each of the regression methods are similar. The in-
dex number used in the feature could potentially interfere
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FIG. 2. Categorical feature results. We use four types of classical models to benchmark the categorical features. The best
model is shown on the right upper corner, the combination of Support Vector Regressor and Count Encoding.

with the learning process since the index numbers do not
correlate with the amino acid properties directly. The
performance of one-hot encoding is shown in Fig. 2. The
learning curves (Fig. S5-16) indicate that this model is
overfitting because of the high dimensionality of this fea-
ture. It has 4200 dimensions and many of the elements
are zero. This points out the problem that one-hot en-
coding may su↵er from a scaling problem when longer
sequences are considered.

To find the most important factor in categorical fea-
tures, a principal component analysis (PCA) analysis was
performed on the count encoding feature. Surprisingly,
there is still 60% of the cumulative covariance remaining
when one component is left after the dimension reduc-
tion. We interpret this result as consistent with recent
studies, which have been shown that chain length is the
most important information in the CE feature.28 To test
this, we trained a model using only chain length as a
feature and compared it with PCA-reduced feature per-
formance. The testing result is shown in Fig. 3a. The
performance and data distribution are both very similar.
This result suggests that the most important information
in the CE feature is the chain length. A that uses chain

length as an input feature has an R2 of 0.77, which can
be considered to be a baseline for predicting Rg. While
the performance of count encoding is already high, this
feature doesn’t take sequence order into account and does
not further physical insights. In addition, these results
may be dataset-dependent, as it is possible to construct
sequences with identical compositions but drastically dif-
ferent scaling behavior and values for Rg.39,42 Thus, we
seek to test physically-motivated features that can take
orders into account and avoid the scaling problem for
future application to longer sequences.

B. Color Mapping

For the color mapping featurization, the testing re-
sults (when paired with convolutional neural networks)
are shown in Fig. 3b. These results can be directly com-
pared to ordinal encoding, and the improvements in per-
formance from ordinal encoding to color mapping indi-
cate that the inclusion of the coarse-grained parameters
may make the feature more physically-informed, com-
pared to having a categorical index number. Moreover,
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FIG. 3. (a) PCA on the performance of count encoding. The testing results using chain length as the only feature and
PCA-reduced Count Encoding give similar performance. (b) Color Mapping testing results. (c) Bag of amino acid interactions
testing results, tested on both scaling exponent and the radius of gyration.

we examined the significance of the three coarse-grained
parameters on the prediction accuracy. Of the three fea-
tures, hydropathy turns out to be the most important
parameter, with charge as the second most important.

We used both 1D and 2D convolutional layers. Our
results show that a 1D convolutional neural network per-
forms better while the original paper used a 2D convo-
lutional neural network (Fig. S17). The benefit of using
a 1D convolutional neural network is that the feature
extraction process becomes more flexible. Although the
overall performance is not better than count encoding,
finding the importance of di↵erent parameters can be po-
tentially incorporated into a graph neural network that
only takes the most significant parameter as the value in
each node.

C. Bag of Amino Acid Interactions

The results for the BAA representation are shown in
Fig. 3c. We show the results for a model trained using
support vector regression (which outperforms other mod-
els in categorical features). On this IDP-10260 dataset,
the performance is almost the same as count encoding.
Though the performance is similar in the aggregate, the
models do not have identical results on a sequence-by-
sequence basis. Instead, models with similar overall per-
formance arrive at these performance levels through dif-
ferent means. Although the length of the sequence is
highly correlated with the Rg (and scaling exponent) in
the IDP-10260 dataset, the BAA representation is able
to achieve similar performance, despite having no explicit
considerations of size in the representation.
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TABLE I. Testing R-square, mean squared error(MSE) and
root mean squared error(RMSE)

R2 Linear Kernel Support Gaussian

MSE Ridge Ridge Vector Process

RMSE Regressor Regressor Regressor Regressor

Count Encoding 0.80 0.93 0.94 0.94

1.76 0.61 0.52 0.52

1.32 0.78 0.72 0.72

Ordinal Encoding 0.80 0.82 0.82 0.81

1.72 1.61 1.61 1.65

1.31 1.27 1.27 1.28

One-Hot Encoding 0.88 0.88 0.88 0.86

1.08 1.07 1.07 1.28

1.04 1.04 1.03 1.13

There are several advantages of BAA interaction rep-
resentation. Unlike the other representations considered
in this work, the BAA interactions will have the same di-
mension for longer sequences, and the order of the amino
acids is still taken into account. In addition, our formu-
lation of the representation, with an exponent of 1/2 in
each of the terms, is one of many possible scaling expo-
nents. We conducted a test of the performance of the
model over a range of exponents, and find that many
have similar performance (supporting information, Fig.
S18 and S19). The flexibility of the model enables each of
these interaction exponents to be potentially tuned in fu-
ture work, when larger (and more challenging) testing se-
quences are used to train the models. Both the exponents
and the weights that are found when the representation
is trained with either classical machine learning models
or simple neural network models can be connected more
deeply to the polymer physics of these sequences and
their interactions, particularly when the trained models
are applied to simpler model sequences.

FIG. 4. The extrapolation strategy. The forward process
is using 20% larger chain length data for testing while the
reverse process is using 20% smaller chain length data as the
testing set.

D. Extrapolation Performance

Given the promising initial results of the BAA repre-
sentation, we developed further tests to examine the abil-

ity for the model to perform on out-of-training-sample
property prediction tasks. When machine learning mod-
els are used in design tasks or in high-throughput virtual
screening scenarios, they are often tasked with extrap-
olating out of their initial training spaces, at least until
enough new data has been obtained for retraining. Thus,
we conducted two types of tests to determine the extrap-
olation ability of models that use the new BAA features.
Since the most variant factor in the IDP-10260 dataset is
the chain length, we do an extrapolation test using either
shorter sequences as the training set and longer sequences
(20% longer) as the testing set (or vice versa). The split-
ting strategy is represented in Fig. 4. We tested the
performance of both support-vector machine and feed-
forward neural network models. As seen in Fig. 5a, the
support vector regression gives better performance when
limited data is applied while the feed-forward neural net-
work requires more data to reduce the test loss. Overall,
the performance of the bag of amino acid interaction for
longer (or shorter) sequences can still maintain a reason-
able test loss.

E. Integrating Temperature into Features

Finally, we tested the compatibility of the BAA
model over multiple temperatures. Amino acid pair-
wise interactions demonstrate temperature-dependent ef-
fects that lead to phenomena such as temperature-
induced collapse43 and cold denaturation,44 to name
a few. In order to predict the temperature depen-
dence of IDP size, such temperature-dependent interac-
tions must be encoded within the model. Previous ef-
forts to capture this temperature dependence have relied
on empirical temperature-dependent scaling of pairwise
interactions45,46 In this work, we test the compatibility
of the BAA model in predicting dimensions of IDPs from
sequence over a range of temperatures. Due to the na-
ture of the CG model used, however, we only consider the
expansion of the chain with increasing temperature im-
plying that interactions are getting weaker with increased
temperature.
Here, we calculated Rg and the scaling exponent at

seven di↵erent temperatures in the IDP-10260 dataset
(270K, 300K, 330K, 360K, 390K, 420K, 450K). By
adding one more feature, which is the temperature (in
Kelvin), a model was built to predict the scaling expo-
nent at di↵erent temperatures. To make the training
process easier, we do joint training on both scaling expo-
nent and radius of gyration using a feed-forward neural
network. The testing result is shown in Fig. 5b. The R2

for scaling exponent and radius of gyration are 0.95 and
0.98, respectively. The integration of temperature into
the features using the BAA model provides a promising
method to further investigate the e↵ect of temperature
on the dimensions of IDPs with the potential to further
extend the model to account for temperature-induced col-
lapse in the future.
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FIG. 5. (a) Extrapolation test results. The extrapolation
testing RMSE for both forward extrapolation and reverse ex-
trapolation. The support vector regression gives better results
when the training size is small. (b) Testing results including
the temperature for ⌫ (left) and Rg (right).

IV. CONCLUSION

In this paper, we built categorical and physically-
motivated features and coupled these features with
machine-learning models to predict the polymer physics

on the IDP-10260 dataset for intrinsically disordered pro-
teins directly from primary sequences. We compared the
performance of count encoding, ordinal encoding, and
one-hot encoding combined with four classical regression
models, and found that count encoding is able to predict
both the Rg and scaling exponents with high accuracy.
A PCA analysis of count encoding confirmed that chain
length is one of the most important factors for predict-
ing scaling exponent within this dataset. The bag of
amino acid representation is able to predict both scal-
ing exponent and radius of gyration, is compatible with
both classical and artificial neural network models, and
does not have an explicit specification of the length in
its features. The architecture of the bag of amino acid
interactions makes it promising for future applications,
as the feature’s dimensionality does not increase when
longer sequences are introduced. We further tested the
extrapolation ability and generalizability for reverse se-
quences and incorporation with temperature data. In all
tests, the representation shows promising accuracy, giv-
ing the representation potential for future use as a sur-
rogate model for high-throughput IDP simulation tasks.
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