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Abstract

We derive and implement the necessary equations for solving a dynamically weighted,

state-averaged constrained CASSCF(2,2) wavefunction describing a molecule on a

metal surface. We show that a partial constraint is far more robust than a full con-

straint. We further calculate the system-bath electronic couplings that arise because,

near a metal, there is a continuum (rather than discrete) number of electronic states.

This approach should be very useful for simulating heterogeneous electron transfer

going forward.
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I Introduction

Molecular dynamics at metal surfaces is a fascinating research area. From a theoretical

perspective, there are just so many processes of interest: fast molecular scattering,1–5 slow

electrochemical dynamics (e.g. molecular junctions6–15), electron transfer,16–20 vibrational

dissipation,21,22 and electron-hole creation.23,24 Of course, all of these processes can couple

to photons (e.g. photo-electrochemistry25) or to protons (i.e. heterogeneous proton-coupled

electron transfer26). From an experimental point of view, all of the above can be studied,

even though it is difficult to separate the different effects.

In the present article, our interest is in the area of non-adiabatic dynamics and the ques-

tion of how to propagate nuclear dynamics for molecules when electron transfer is possible.

The phenomenon of interfacial electron transfer at a metal surface lies at the heart of Mar-

cus’s electrochemical rate theory27 and in recent years our research group28–31 and others

have made a broad push to model such dynamics semiclassically (as applicable to large sys-

tems). While quite a bit of progress has been made to date, the inevitable practical problem

that arises is not of a dynamical nature but rather of an electronic structure nature. How can

we best (and most quickly) describe the electronic wavefunction of a molecule at an interface,

especially if there is strong molecule-metal coupling? The usual frameworks would be GW

methods,32–34 embedding methods,35–38 constrained DFT,39–46 and/or ∆SCF.47 That being

said, recently48 we introduced an orthogonal approach. Namely, we showed early data sug-

gesting that a small CASSCF(2,2) calculation (if properly constrained) could function as an

excellent method, balancing accuracy and computational speed. The key insight presented

in Ref. 48 is that, when constructing such a CASSCF(2,2) approach, one must be sure (i)

to constrain the two active orbitals so that their total population has some overlap with the

molecule on the surface; and (ii) to use state-averaging so as to balance the gap between

the ground and excited state and make smooth surfaces. If one implements these guidelines,

Ref. 48 demonstrates that the resulting algorithm can seemingly perform quite well (at least

for those models tested).
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With this background in mind, in the present paper, we have three goals in mind. First,

because the molecular constraint just described above [(i)] is highly non-standard, we will

show how to derive the necessary equations (and we will further analyze other possible con-

straints). Second, for the sake of completeness, we will then provide step-by-step instructions

delineating exactly how to solve the equations just described, and we will benchmark the

convergence of our proposed optimization. Third and finally, going beyond Ref. 48, we will

investigate the couplings to the bath that arise from the infinite continuum of states. These

couplings are needed if we wish to run fully nonadiabatic dynamics that are compatible with

Marcus’s electrochemical rate expression and achieve electronic equilibration to the correct

temperature, e.g. as in the FSSH-ER31 dynamics.

II Theory

We will now present the relevant equations as far as determining a constrained CASSCF(2,2)

solution for an impurity on a metallic substrate.

A Review of CASSCF(2,2) Theory

To implement a constrained CASSCF theory, we must establish the necessary nomencla-

ture conventions. Henceforward, we let i, j represent inactive (i.e. fully occupied) or-

bitals; t, u, v, w, x, y represent active orbitals; a represent an (empty) virtual orbital; and

m,n, p, q, r, s represent arbitrary orbitals. Clearly, the identity can be resolved as

Î = P̂inactive + P̂active + P̂virtual (1)

where P̂inactive, P̂active and P̂virtual are projection operators onto the inactive, active, and

virtual orbitals. Subscripts α, β index electronic spin. pα refers to a spin orbital while p

refers to a spatial orbital. We index atomic orbitals with greek letters µ and ν.
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We will now give a very brief review of CASSCF following Ref. 49(Helgaker). The savvy

reader familiar with the CASSCF formalism can skip directly to Sec. B.

We consider a spin-conserving Hamiltonian in second quantization,

H =
∑
pq

∑
α

hpαqαp
†
αqα

+
1

2

∑
pqrs

∑
αβ

gpαqαrβsβp
†
αr

†
βsβqα

(2)

Because we do not include spin-orbit coupling, the one electron Hamiltonian does not depend

on spin:

hpαqα = hpq (3)

The two electron integrals are written in chemists’ notation

gmnpq = (mn|pq)

=

∫
ϕ∗
m(r1)ϕn(r1)ϕ

∗
p(r2)ϕq(r2)

|r1 − r2|
dr1dr2

(4)

with the following symmetries:

gpqrs = gpαqαrβsβ (5)

A simple calculations shows that the total energy (i.e. the expectation value of Hamiltonian)

can be written as:

⟨H⟩ =
∑
pq

hpqDpq +
1

2

∑
pqrs

gpqrsD̃pqrs (6)

where the one-particle Dmn and two-particle D̃mnpq density matrices are defined as:

Dpq =
∑
α

⟨0|p†αqα|0⟩

D̃pqrs =
∑
αβ

⟨0|p†αr
†
βsβqα|0⟩

(7)

where |0⟩ represents the multi-configurational ground state.
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Following Ref. 49, the total electronic energy can be written using the (non-Hermitian)

generalized Fock matrix F and the one electron density matrix D:

E =
1

2

∑
pq

(Dpqhpq + δpqFpq). (8)

Here, the generalized Fock matrix is defined as:

Fmn =
∑
α

⟨0|m†
α[nα, Ĥ]|0⟩ (9)

which is equivalent to:

Fmn =
∑
q

Dmqhnq +
∑
qrs

D̃mqrsgnqrs

=
∑
q

Dmqhnq +
∑
qrs

D̃rsmqgrsnq,

(10)

In the above equation, the second equality uses the relationship:

D̃mqrs = D̃rsmq

gmqrs = grsmq

(11)

For real orbitals, one can switch {mn} or {pq}, i.e.:

gmnpq = gnmpq = gmnqp = gnmqp (12)

To calculate general Fock matrix Fmn, there are three different cases for the row index

m:
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1. If the first index is inactive i and the second index is any orbital n:

Fin =
∑
q

Diqhnq +
∑
qrs

D̃rsiqgrsnq

= 2hni +
∑
qrs

(2δiqDrs − δsiDrq)grsnq

= 2hni +
∑
rs

Drs(2grsni − grins)

= 2(IFni +
A Fni)

(13)

Here the second equality uses the relationship:

Diq = 2δiq

D̃rsiq = 2δiqDrs − δsiDrq,

(14)

and the so-called inactive IF and active AF Fock matrices are defined as:

IFmn = hmn +
∑
j

(2gmnjj − gmjjn)

AFmn =
∑
vw

Dvw(gmnvw − 1

2
gmwvn)

(15)
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2. When the first index is active v and the second index is any orbital n:

Fvn =
∑
q

Dvqhnq +
∑
qrs

D̃vqrsgnqrs (16)

=
∑
w

Dvwhnw

+
∑
iqs

D̃vqisgisnq +
∑
wqs

D̃vqwsgwsnq (17)

=
∑
w

Dvwhnw +
∑
wi

Dvw(2giinw − giwni)

+
∑
wxy

D̃vxwygwynx (18)

=
∑
w

IF nwDvw +Qvn (19)

In going from Eq. 16 to 17, we change from the arbitrary index q to the active index w

because only Dvw is non-zero (i.e. Dvi and Dva are always zero). Between Eq. 16 and

17, we separate the sum over an arbitrary index r into a sum over an inactive index

i and an active index w as far as the D̃vqrs term is concerned. Between Eq. 17 and

Eq. 18, we then recognize that D̃vqws is nonzero only when q, s are active, so that in

Eq. 18, we have replaced q, s with x, y. In Eq. 19, we have introduced the auxiliary Q

matrix:

Qvm =
∑
wxy

D̃vwxygmwxy (20)

3. Finally, when the first index is virtual a, the general Fock matrix vanishes:

Fan = 0 (21)

Finally, all that remains is calculate the density matrices Dvw and D̃vwxy where all indices

are active. Note that, for a CASSCF calculation, we have only two active orbitals, which

henceforward we label t, u; we envision t to be the orbital with lower energy and u to
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be the orbital with higher energy. Ignoring the core (inactive) orbitals, the CASSCF(2,2)

wavefunction |Ψ0⟩ can be written as:

|Ψ0⟩ = α |tt̄⟩+ β |uū⟩+ γ(|tū⟩+ |ut̄⟩) (22)

We then can evaluate the one-particle density matrix (1PDM):

Dtt = 2(α2 + γ2)

Dtu = Dut = 2(α + β)γ

Duu = 2(β2 + γ2)

(23)

As one would expect, the trace of the 1PDM is the number of active electrons:

2 = Duu +Dtt = 2(α2 + β2 + 2γ2) (24)

Next, for two-particle density matrix (2PDM), we find:

D̃tttt = 2α2

D̃tttu = D̃ttut = D̃tutt = D̃uttt = 2αγ

D̃ttuu = D̃uutt = D̃uttu = D̃tuut = 2γ2

D̃tutu = D̃utut = 2αβ

D̃tuuu = D̃utuu = D̃uutu = D̃uuut = 2βγ

D̃uuuu = 2β2

(25)

A.1 Final Form for the Gradient

Finally, we can write down the electronic gradient. A CASSCF ansatz is a function of

coefficients and orbital rotations. The gradients with respect to coefficients are easy to

extract; one merely diagonalizes the Hamiltonian for a fixed set of orbitals. As far as the
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optimization of the orbitals is concerned, as for any CASSCF calculation, there are 6 classes

of orbital rotations (see a schematic matrix below):


(κji) κit κia

κti (κut) κta

κai κat (κba)

 (26)

However, note that all intraspace rotations (e.g. κji,κut and κba) are redundant. Thus,

we need to evaluate the electronic energy gradient only with respect to the inactive-active

rotations κit, the inactive-virtual rotations κia and the active-virtual rotations κta. Following

Ref. 49, the electronic gradient can be written as

Bmn = 2 ⟨0|[Emn, Ĥ]|0⟩ , (27)

where the orbital excitation operator Emn is defined as:

Emn =
∑
α

m†
αnα (28)

Using basic algebra, Bmn can be re-expressed as:

Bmn = 2
∑
α

[ ⟨0|m†
α[nα, Ĥ]|0⟩

− ⟨0|n†
α[mα, Ĥ]|0⟩] (29)

= 2(Fmn − Fnm), (30)

9



Henceforward, the final electronic energy gradient expression is:

Bit =
∂E

∂κit

= 2(Fit − Fti)

= 2(2IFti + 2AFti −
∑
w

IF iwDtw −
∑
wxy

D̃twxygiwxy)

= 2{2[hti +
∑
j

(2gtijj − gtjji)] + 2[
∑
vw

Dvw(gtivw − 1

2
gtvwi)]

−
∑
w

[hiw +
∑
j

(2giwjj − gijjw)]Dtw −
∑
wxy

D̃twxygiwxy}

(31)

Bia =
∂E

∂κia

= 2(Fia − Fai)

= 2(2IFai + 2AFai)

= 2{2[hai +
∑
j

(2gaijj − gajji)] + 2[
∑
vw

Dvw(gaivw − 1

2
gavwi)]}

(32)

Bta =
∂E

∂κta

= 2(Fta − Fat)

= 2(
∑
w

IF awDtw +
∑
wxy

D̃twxygawxy)

= 2{
∑
w

[haw +
∑
j

(2gawjj − gajjw)]Dtw +
∑
wxy

D̃twxygawxy}

(33)
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B State-Averaged Constrained CASSCF(2,2) Energy and Gradi-

ent

In Ref. 48, we analyzed the Anderson Hamiltonian, which can be written as:

Ĥel =
1

2
mω2x2 + Ĥone(x) + Π̂

Ĥone(x) = ϵd1(x)
∑
σ

d†1σd1σ + ϵd2(x)
∑
σ

d†2σd2σ

+ td
∑
σ

(d†1σd2σ + d†2σd1σ)

+
∑
kσ

ϵkσb
†
kσbkσ +

∑
kσ

Vk(d
†
1σbkσ + b†kσd1σ)

Π̂ = U(d†1↑d1↑d
†
1↓d1↓ + d†2↑d2↑d

†
2↓d2↓)

ϵd1(x) = ed1 −
√
2gx

ϵd2(x) = ed2 −
√
2gx

(34)

Here, d1 and d2 are impurity atomic orbitals and bkσ is a bath atomic orbital with electronic

orbital index k and spin σ. The Hamiltonian above is two-site impurity model (with d1 and

d2); if one includes only d1, the Hamiltonian becomes a one-site model. The impurity-bath

couplings are characterized by a hybridization function:

Γ(ϵ) =
∑
k

|Vk|2δ(ϵk − ϵ) (35)

For the results below, we will make the wide band approximation, so that Γ(ϵ) = Γ is

independent of energy.

To study charge transfer between a molecule and a metal surface, the active space must

be chosen carefully. In general, the 2 active orbitals t, u must be well-balanced mixtures of

both the impurity atomic orbitals {dµ} and the bath atomic orbitals {bν}. We will not be

able to recover charge transfer if the active orbitals are exclusively on the impurity or in

the bath. Thus, a constraint becomes necessary if we wish to guarantee that we find such a
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well-balanced mixture of orbitals from a CASSCF solution.

B.1 Form of the Constraint

Let us denote the projection onto the impurity as:

P̂imp =
∑

µ∈impurity

d†µdµ (36)

and the projection onto the bath as:

P̂bath =
∑

ν∈bath

b†νbν . (37)

Clearly, one can write the identity as:

Î = P̂imp + P̂bath (38)

One possible constraint enforcing this active orbital requirement is insisting on a total

population on the impurity for the active space:

Tractive

(
P̂imp

)
=

∑
µ∈impurity

⟨t|d†µdµ|t⟩+ ⟨u|d†µdµ|u⟩ = 1
(39)

Because

⟨t|t⟩+ ⟨u|u⟩ = 2, (40)

Eq. 39 is equivalent to

Tractive

(
P̂bath

)
=

∑
µ∈bath

⟨t|b†µbµ|t⟩+ ⟨u|b†µbµ|u⟩ = 1
(41)

In other words, constraining the impurity is equivalent to constraining the bath. Hencefor-
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ward, we will label this a “partial constraint” (“pc” for short).

Below, we will compare Eqn. 39 against a stricter “full constraint” (“fc” for short), where

we insist that each of two active orbitals is fully localized on either the impurity or bath

(resulting in two [not one] constraints):

∑
µ∈impurity

⟨t|d†µdµ|t⟩ = 1;

∑
µ∈impurity

⟨u|d†µdµ|u⟩ = 0

(42)

Although the derivation below is given for the case of a partial constraint, the electronic

energy and gradient has a straightforward analogy for the case of the full constraint.

B.2 The Need for State Averaging

As discussd above, without the constraints above, a CASSCF(2,2) calculation could easily

produce two active orbitals localized to the bath, which would not help in describing the

molecule-metal charge transfer problem. Thus, the constraints above are necessary. That

being said, these constraints are not yet sufficient as far generating a balanced set of active

orbitals; one still must perform a state-average CASSCF(2,2) to get meaningful excited

states.

To see why a state average is absolutely essential, consider a single site Anderson model

without the onsite repulsion U and the limiting case where the the impurity site is fully

occupied for the ground state, i.e.
〈
d†d

〉
=

〈
d̄†d̄

〉
= 1. In such a case, the ground state

CASSCF(2,2) |Ψ0⟩ can be written as (ignoring the core electrons);

|Ψ0⟩ =
∣∣dd̄〉 , (43)

and there is no stable means to identify the corresponding active orbital in the bath, b. In

other words, without state averaging, b is chosen as that orbital that most helps to lower
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the energy of the ground state; however, in this regime, the ground state really does not mix

with the bath and so the choice of b will be numerically unstable. As a result, as we change

the fermi level, we will likely see instabilities of the excited states. Indeed, these instabilities

will be shown below. Note that this unstable structure can be easily removed, however, if

we simply give some weight to the excited state so that the latter is chosen robustly. For

this reason, we will perform state-averaging below.

For this reason, we will now explicitly write down the energy and gradient expression

for state-averaged constrained CASSCF(2,2). First, we write out the three CASSCF(2,2)

states:

|Ψ0⟩ = α0 |tt̄⟩+ β0 |uū⟩+ γ0 |tū+ ut̄⟩ (44)

|Ψ1⟩ = α1 |tt̄⟩+ β1 |uū⟩+ γ1 |tū+ ut̄⟩ (45)

|Ψ2⟩ = α2 |tt̄⟩+ β2 |uū⟩+ γ2 |tū+ ut̄⟩ (46)

The state-averaged CASSCF(2,2) energy can be written as:

ESA−CASSCF (2,2) =
2∑

I=0

wI ⟨I|H|I⟩ , (47)

where wI is the weight for the energy of Ith CASSCF(2,2) state. For reasonable ground and

excited states– both near and far from crossing regimes – we employ dynamically weighted

weights of the form:50

w0 =
1

1 + e−ζ(E1−E0) + e−ζ(E2−E0)

w1 =
e−ζ(E1−E0)

1 + e−ζ(E1−E0) + e−ζ(E2−E0)

w2 =
e−ζ(E2−E0)

1 + e−ζ(E1−E0) + e−ζ(E2−E0)
.

(48)

For this exponential weighting factors, the parameter ζ controls the mixing strength of

the ground state with the excited states. When ζ → 0, we recover three-state-averaged

CASSCF(2,2) with equal weighting wI =
1
3
; when ζ → ∞, we recover becomes state-specific
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CASSCF(2,2). 
ζ → 0 equal weighting

ζ → ∞ ground-state-specific

(49)

Compared to the state-specific CASSCF(2,2) energy in Eq. 6, the state-averaged CASSCF(2,2)

energy is different only in the way we construct the state-averaged 1PDM and 2PDM:

Dpq =
2∑

I=0

wID
I
pq

D̃pqrs =
2∑

I=0

wID̃
I
pqrs.

(50)

Here, the state-specific 1PDM DI
pq and 2PDM D̃I

pqrs in the active space basis are calculated

in Eqs. 23 and 25.

B.3 Minimization with Lagrange Multipliers to Find a Solution

In order to obtain a state-averaged constrained CASSCF(2,2) solution, we look for stationary

solutions of a lagrangian representing the state-averaged CASSCF(2,2) energy with the active

orbital constraint:

L = ESA−CASSCF (2,2) − λ{
∑

µ∈impurity

⟨t|d†µdµ|t⟩+ ⟨u|d†µdµ|u⟩ − 1}, (51)

Here λ is the relevant lagrange multiplier for the constraint. Following Eqs. 31, 32 and 33),

the analogous derivative of the lagrangian with respect to orbital rotations is:

B̃it = 2{2[hti +
∑
j

(2gtijj − gtjji)] + 2[
∑
vw

Dvw(gtivw − 1

2
gtvwi)]

−
∑
w

[hiw +
∑
j

(2giwjj − gijjw)]Dtw −
∑
wxy

D̃twxygiwxy}

+ 2λ
∑

µ∈impurity

⟨i|d†µdµ|t⟩

(52)
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B̃ia = 2{2[hai +
∑
j

(2gaijj − gajji)] + 2[
∑
vw

Dvw(gaivw − 1

2
gavwi)]} (53)

B̃ta = 2{
∑
w

[haw +
∑
j

(2gawjj + gajjw)]Dtw +
∑
wxy

D̃twxygawxy}

− 2λ
∑

µ∈impurity

⟨t|d†µdµ|a⟩
(54)

Therefore, applying a variational principle to the lagrangian in Eq. 51 is equivalent to solving

a set of self-consistent equations given by Eq. 39 and Eq. 55:

(B̂ + λV̂ ) |k⟩ = ϵk |k⟩ (55)

Here, B̂ is the matrix in Eqs. 31, 32 and 33 and V̂ is an operator that arises from the

constraint:

V̂ = 2
(
P̂inactP̂impP̂active + P̂activeP̂impP̂inact − P̂virtP̂impP̂active − P̂activeP̂impP̂virt

)
(56)

In practice, there are many means by which one can solve the equations above. In

the present paper, we consider the optimization problem above (Eq. 51) as an equality-

constrained quadratic optimzation problem and following standard optimization approaches,51

we solve the relevant Newton-Karush–Kuhn–Tucker (Newton-KKT) matrix equations:

 ∇2
xxLk −∇C(xk)

∇CT (xk) 0


 pk

λk+1

 =

−∇ESA−CASSCF (2,2)(xk)

−C(xk)

 (57)

Here, C(xk) is the constraint (Eq. 39); xk is a generic variable in the orbital rotation space

(Eq. 26) for the k-th optimization cycle; pk is the walking direction for xk, i.e. xk+1 = xk+αpk

and the step length α is obtained from a line search; λk+1 is the lagrange multiplier for the

next (k + 1)-th optimization cycle. To reduce the computational cost, the hessian ∇2
xxL is

approximated and updated by a BFGS scheme.
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III Details of the Implementation

Wemay summarise our implementation of DW-SA-cCASSCF(2,2) with the algorithm flowchart

in Fig. 1. Note that this implementation should be valid for any reasonably sized impurity

(larger than one site):52

• First, we calculate the 1PDM and 2PDM for our state-average target function (using

Eq. 23, Eq. 25 and Eq. 50) with an initial set of weighting factors (ω0 = 1, ω1 =

0, ω2 = 0 in Eq. 48).

• Second, we solve the Newton-KKT equations 57 in order to optimize orbitals and the

lagrange multiplier;

• Third, we diagonalize the configuration interaction (CI) Hamiltonian (3×3 for CAS(2,2))

and recover the CI coefficients.

• Finally, we examine the norm of the energy gradient in Eqs. 52, 53 and 54: if the

gradient is smaller than a target threshold, the calculation has converged; otherwise,

we update the weighting factor according to the Eq. 48 and repeat the whole procedure.
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Calculate 
𝐷𝑆𝐴, 𝑑𝑆𝐴

Newton-KKT

CAS-CI

𝑑𝐸

𝑑𝜅
< 𝑡ℎ𝑟𝑒𝑠ℎ?

Converged

Yes

No

Figure 1: A flowchart of dynamically weighted state-averaged constrained CASSCF(2,2)

IV Results

We will now present three sets of data that allow for a better understanding of the above

calculation (both theoretically and practically). First, we will present data as to the con-

vergence performance of DW-SA-cCASSCF(2,2), studying different Γ with and without

electron-electron interactions. Second, we will assess the choice of the dynamical weight-

ing parameter ζ and show how the results vary with ζ. Third, we will compare results for a

partially localized constraint (pc) versus a fully localized constraint (fc).
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A Convergence

For the one-site calculations below, we start with such an initial guess: we use the identity

matrix and switch its first column with the Ne
2
-th column (Ne is the total number of elec-

trons). The parameter set is: mω2 = 0.003, g = 0.0075, ed1 = 0.05, and we discretize the

bath with 101 metallic states evenly distributed with energy spacing dE = Γ
10
. We set the

dynamical weighting parameter to be ζ = 40. And we set the convergence threshold for the

norm of gradient to be 1× 10−4. In Table 1 and Table 2, we report total number of orbital

optimization cycles needed to converge the calculation. We observe that (i) convergence is

harder when Γ is large; and (ii) converge is also more difficult when the electron-electron

repulsion is finite (U = 0.1). Clearly, for Γ = 0.01, our algorithm for finding a cCASSCF

solution is suboptimal and can be improved (the number in the bracket is calculated by

reading the CI coeffcients for Γ = 0.001). Nevertheless, we have been able to converge the

solutions and, as we show below, the final states are illuminating.

Table 1: Convergence Results for U = 0

Γ 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Converging cycles 336(52) 3 3 2
Time(s) 54(12) 3 3 2

Table 2: Convergence Results for U = 0.1

Γ 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Converging cycles 388(45) 3 3 3
Time(s) 117(10) 3 3 3

B Choice of ζ

In order to analyze the pros and cons of a given choice of ζ, we study three different criteria

by which we can judge the resulting solutions focusing on the one-site model (U = 0):

1. One criterion is the ground state energy accuracy; for the case of U = 0, clearly an

exact energy can be obtained for us to benchmark against.
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2. A second criterion is the excited state energy asymptotic behavior. Here, we expect

that a proper excited state should asymptotically approach the relevant diabatic energy

when the impurity onsite energy is far away from the fermi level.

3. A third criterion is smoothness. For dynamics, it will be essential that we obtain

smooth DW-SA-cCASSCF energies and wavefunctions.
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Figure 2: Different metrics for guiding the choice of ζ. (a) The ground state energy difference
between the DW-SA-pcCASSCF(2,2) state S0 and the exact ground state (the difference is mea-
sured at the curve crossing point); in general, we want the most accurate ground state energy
possible. (b) The excited state energy difference between the DW-SA-pcCASSCF(2,2) state S2

and the ne = 0 diabatic state (i.e. the diabatic state whose number of electrons on the impurity
is 0). Far away from the crossing point, the onsite energy ϵd(x) is so much larger energy than the
fermi level that for a good algorithm, the asymptotic behavior of the S2 energy should approach
the ne = 0 diabatic state energy. Note that these two metrics favor opposite ζ parameters, and
so have we chosen ζ = 40 as a compromise so as to keep the ground state as accurate as possi-
ble without sacrificing the excited state asymptotic behavior entirely. Luckily, the excited states
are smooth for all ζ parameters (not shown here). The parameter set is the one-site model with
mω2 = 0.003, g = 0.0075, ed1 = 0.05, U = 0 with 101 metal states evenly distributed with energy
spacing dE = Γ

10 (i.e. the full band width is 10Γ).

In practice, picking the optimal ζ is usually a compromise between the criteria above: we

expect that a large ζ would be best if we seek ground state accuracy while a smaller ζ would

be best for achieving the correct excited state asymptotic behavior and smooth surfaces.

This intuition is confirmed in Fig. 2. In Fig. 2(a), we plot the error in the energy of the

ground state as a function of ζ. As we would guess, the larger ζ is, the less mixing there is
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between S0 and S1, S2, and therefore the more accurate S0 is. Next, in Fig. 2(b), we plot

the asymptotic energy difference between E(S2) (by DW-SA-cCASSCF(2,2)) and E(ne = 0)

(the diabatic state whose number of electrons on the impurity is 0) as a function of ζ. We see

clearly that E(S2) is closer to E(ne = 0) when ζ is small and there is more mixing between

S0 and S1, S2 during the orbital optimization. Lastly, as far as the smoothness is concerned,

we find that surfaces are all smooth for ζ = 20, 30, 40, 50 for the one-site U = 0 model.

From the considerations above, in order to maintain reasonable ground state accuracy

while keeping the excited state asymptotic behavior as accurate as possible, we chose ζ = 40

as a compromise value. (Note that for the two-site model, ζ = 10 is a better compromise;

See Section C). In short, our rule of thumb in picking the proper ζ is that we will need to

sacrifice some ground-state energy accuracy in order to recover a smooth and qualitatively

correct surface suitable for nonadiabatic dynamics.

C A Partially Localized Constraint Versus a Fully Localized Con-

straint For a Two-Site Hamiltonian With U = 0.1

Finally, in Figs. 3, 4 and 5, we plot results for two different constraints: partially localized

constraint (denoted as “pc” , see Eqn. 39) v.s. fully localized constraint (denoted as “fc”,

see Eqn. 42). As one can see in Fig. 3(a), “fc” S1 and S2 energies are much larger than

the corresponding “pc” energies for ϵd ∈ [−0.05, 0.19], and the former also have a large

discontinuity around ϵd = 0.19. At this discontinuity point, in Fig. 3(c), we can clearly

see that the “fc” ground state energy recovers the RHF result. A similar anomaly is found

in Fig. 4, where we plot the total number of electron on the impurity (⟨ntot⟩) against the

exact numerical renormalization group (NRG). In Fig. 4(a), for “pc”, two excited state

populations have a transition around ϵd = −0.05: from 3 to 1 for S1 and from 4 to 0 for S2.

However, for “fc”, S1 and S2 do not capture this population transition. Moreover, in Fig.

4(c), the fc S0 population is wrong (and equal to the RHF answer) when ⟨ntot⟩ changes from

2 to 0 around ϵd ∈ [0.1, 0.19]; the fc results display a discontinuity at ϵd = 0.19. Altogether

21



we may hypothesize that the fc method fails to describe how the active orbital switches

locality around ϵd = −0.05. This hypothesis is confirmed in Fig. 5(a), where we plot the

impurity population on the pc and fc active orbitals. For the pc method, the HOMO is not

always localized on the impurity (true for ϵd < −0.05) and in fact becomes a bath orbital for

ϵd > −0.05; however, for fc, the HOMO is always on the impurity. Such a change in frontier

orbital localization can also be identified by the small tip/dip in Fig. 5(b), where we plot

the eigenvalues of the impurity projection operator, P̂imp = 2(d†1d1 + d†2d2). All told, the pc

approach appears to be a far more robust approach than does the fc approach. Note that,

in the range ϵd ∈ [−0.3,−0.25] (in Fig. 4(b)) or ϵd ∈ [0.15, 0.2] (in Fig. 4(c)), UHF results

become non-smooth whereas pc results remain smooth; this attribute is encouraging as far

as the potential to run dynamics.
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Figure 3: The partially constrained (pc) and fully constrained (fc) energies relative to RHF as a
function of the onsite energy ϵd. (a) The full range of ϵd; (b) Zoom in on the left red circle in (a);
(c) Zoom in on the right red circle in (a). Note that the fc energies are not smooth in Fig. (c)
and the fc S1, S2 energies are far too large compared to pc for ϵd ∈ [−0.05, 0.19] in Fig. (a). The
parameter set is= a two-site model with ϵd = ϵd1 = ϵd2 ,Γ = 0.01, td = 0.2, U = 0.1, ζ = 10 and 31
metal states evenly distributed with energy spacing dE = Γ

10 (i.e. the full band width is 3Γ).
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Figure 4: The pc and fc total number of electrons on the impurity as a function of the onsite
energy ϵd. (a) The full range of ϵd; (b) Zoom in on the red solid box in (a); (c) Zoom in on the red
dashed box in (a). The fc ground state is neither smooth nor accurate compared to the NRG ground
state electron population in Fig. (c); the pc results are more accurate relatively and always smooth.
The parameter set is the two-site model with ϵd = ϵd1 = ϵd2 ,Γ = 0.01, td = 0.2, U = 0.1, ζ = 10 and
31 metal states evenly distributed with energy spacing dE = Γ

10 (i.e. the full band width is 3Γ).
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(a) (b)

Figure 5: An analysis of the pc and fc active (or frontier) orbitals. (a) Impurity population. (b)
The eigenvalues of the impurity projector P̂imp. Note that the HOMO/LUMO impurity populations
switch at ϵd = −0.05 only for pc (but not for fc) in Fig. (a), leading to the tip/dip in the eigenvalue
curve in Fig. (b). This switch enables smooth curves over the full range of ϵd as shown in Figs. 3 and
4. The parameter set is the two-site model with ϵd = ϵd1 = ϵd2 ,Γ = 0.01, td = 0.2, U = 0.1, ζ = 10
and 31 metal states evenly distributed with energy spacing dE = Γ

10 (i.e. the full band width is
3Γ).

Lastly, in Fig. 6, we investigate how these different constraints behave as a function of

the dynamical weighting parameter ζ. In particular, we plot the ground and excited energy

(relative to RHF) of fc and pc for a dynamical weighting parameter ζ = 10, 20, 30, 40. One

can see that the fc excited state energies S1 and S2 never recognize a curve crossing around

ϵd = −0.05 which eventually leads to a discontiuity; the pc excited states do recognize a

curve crossing but only when ζ = 10, 20. Altogether, the fc constraint would appear inferior

to the pc constraint.
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Figure 6: Sensitivity of the pc and fc excited state energies as a function of the dynamical
weighting parameter ζ. (a) ζ = 10; (b) ζ = 20; (c) ζ = 30; (3) ζ = 40. Note that the pc approach
recognizes a curve crossing around ϵd = −0.05 for ζ = 10, 20 (though ζ = 30, 40 does not). This
switch enables smooth curves over the full range of ϵd as shown in Figs. 3 and 4. The parameter
set is the two-site model ϵd = ϵd1 = ϵd2 ,Γ = 0.01, td = 0.2, U = 0.1 with 31 evenly distributed metal
states with energy spacing dE = Γ

10 (i.e. the full band width is 3Γ).

V Discussion

So far, we have demonstrated that cCASSCF potential energy surfaces should be useful for

modeling electron transfer processes at surfaces. That being said, in order to apply them

in practice, two more practical quantities must be extracted. First, if we seek to run fully

nonadiabatic dynamics in the spirit of an FSSH-ER algorithm,31 we will require system-bath

couplings that capture non-vibrational electronic relaxation. Second, if we seek to extract

Marcus-like rate expression, we will need diabatic curves and diabatic couplings. We will

now show how these quantities can be obtained.
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A System-Bath Couplings

In order to describe the molecule-metal coupling in a charge transfer process using as few

singly-excitation configurations as possible (for reasons of efficiency), we will consider only

single excitations between core and active (i → t, u) as well as single excitations between

active and virtual (t, u → a).

Let us denote our three DW-SA-cCASSCF(2,2) system CI states as {|Ψ0⟩ , |Ψ1⟩ , |Ψ2⟩}:

ΩS ≡ {|Ψ0⟩ , |Ψ1⟩ , |Ψ2⟩} (58)

following the conventions of Eq. 44 above. For the three system CI states above, we focus

on those bath states that arise from single excitations with reference to three configurations:

|tt̄⟩, |uū⟩ and |tū+ ut̄⟩. In general, identifying and indexing excitations from a multireference

configuration can be very difficult and tedious. Howevever, for CASSCF(2,2) refrence, this

task is not terrible. If we define the reference state configuration to be |tt̄⟩, then there

are four relevant classes of excited state slater determinants composed of molecular orbitals

i, t, u, a:

|Ψu
i ⟩ = |· · ·uī · · · tt̄⟩

|Ψa
t ⟩ = |· · · īi · · · at̄⟩

|Ψuū
it̄ ⟩ = |· · ·uī · · · tū⟩

|Ψaū
tt̄ ⟩ = |· · · īi · · · aū⟩

(59)

Therefore, let us denote our bath CI states as:

ΩB ≡ {|Ψu
i ⟩ , |Ψa

t ⟩ , |Ψuū
it̄ ⟩ , |Ψaū

tt̄ ⟩} (60)

Having defined the system and the bath states, the Hamiltonian for the whole universe can

be schematically represented as:
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H =

 system coupling

coupling bath



system =


⟨Ψ0|H|Ψ0⟩ 0 0

0 ⟨Ψ1|H|Ψ1⟩ 0

0 0 ⟨Ψ2|H|Ψ2⟩



coupling =


⟨Ψ0|H|Su

i ⟩ ⟨Ψ0|H|Sa
t ⟩ ⟨Ψ0|H|Suū

it̄ ⟩ ⟨Ψ0|H|Saū
tt̄ ⟩

⟨Ψ1|H|Su
i ⟩ ⟨Ψ1|H|Sa

t ⟩ ⟨Ψ1|H|Suū
it̄ ⟩ ⟨Ψ1|H|Saū

tt̄ ⟩

⟨Ψ2|H|Su
i ⟩ ⟨Ψ2|H|Sa

t ⟩ ⟨Ψ2|H|Suū
it̄ ⟩ ⟨Ψ2|H|Saū

tt̄ ⟩



bath =



⟨Su
i |H|Su

i ⟩ ∗ ∗ ∗

∗ ⟨Sa
t |H|Sa

t ⟩ ∗ ∗

∗ ∗ ⟨Suū
it̄ |H|Suū

it̄ ⟩ ∗

∗ ∗ ∗ ⟨Saū
tt̄ |H|Saū

tt̄ ⟩



(61)

Here, we have employed spin-adapted singlet configurations:

|Su
i ⟩ =

|Ψu
i ⟩+

∣∣Ψū
ī

〉
√
2

|Sa
t ⟩ =

|Ψa
t ⟩+ |Ψā

t̄ ⟩√
2

|Suū
it̄ ⟩ =

|Ψuū
it̄ ⟩+

∣∣Ψuū
t̄i

〉
√
2

|Saū
tt̄ ⟩ =

|Ψaū
tt̄ ⟩+ |Ψuā

tt̄ ⟩√
2

(62)

We may then construct many-body hybridization function between the system excited

states and the bath (which is analogous to the single-orbital hybridization in Eq. 35):

Γ̃1 = 2π
∑
B

| ⟨ΨB|H|Ψ1⟩ |2δ(EB − E1)

Γ̃2 = 2π
∑
B

| ⟨ΨB|H|Ψ2⟩ |2δ(EB − E2),

(63)
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where |ΨB⟩ is the bath state defined in Eq. 60 and EB is the bath state energy. |Ψ1⟩ , |Ψ2⟩

are two excited system states defined in Eq. 58 and E1, E2 are excited system state energies.

Consider the U = 0 case. In Fig. 7, we plot the first and the second excited state

hybridizations, Γ̃1 and Γ̃2, respectively. The magnitudes of both Γ̃1 and Γ̃2 are of the same

order as the impurity-bath hybridization Γ as found in Ref. 31. More interestingly, in both

cases, there is a dip in the effective hybridization around ϵd(x) = 0. For the Γ̃1 case, this

interesting behavior was reported previously in Ref. 31. In Ref. 31, it was argued that this

dip arises from the fact that although electronic relaxation between molecule and metal is

dictated by the hybridization far away from the crossing, near the crossing the relaxation is

dictated by vibronic or electron-phonon interactions (which leads to the dip at ϵd(x) = 0).

To better understand the origin of this effect, in Fig. 8(b), we plot the density of bath states

for the case Γ = 0.01. We find that the density of states is roughly constant for the S0 − S1

crossing as a function of ϵd(x). Thus, at least in one case, this dip is indeed caused by the

changing character of the electronic states around the crossing point. As a practical matter,

we note size of this dip does depend on the extent of dynamical weighting (not shown); at

the same time however, following the results in Ref. 31, we do not expect this dip to have a

major dynamical impact.
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(a) (b)

Figure 7: The hybridization between a DW-SA-pcCASSCF(2,2) (ζ = 40) excited state and the
bath states. (a) The hybridization for state S1 (Γ̃1); (b) the hybridization for state S2 (Γ̃2). We
investigate four different Γs: 10−2, 10−3, 10−4, 10−5. Note that both Γ̃1 and Γ̃2 have a dip at the
symmetric point, where the onsite energy ϵd(x) reaches the fermi level ϵf = 0. We calculate Γ̃1

and Γ̃2 using a lorentzian function to approximate the delta function in Eq. 63: i.e. δ(x − x0) ≈
1
π

σ/2
(x−x0)2+(σ/2)2

with the full width at half maximum (FWHM) σ = Γ. The parameter set is theone-

site model with mω2 = 0.003, g = 0.0075, ed1 = 0.05, U = 0 with 101 evenly distributed metal states
with energy spacing dE = Γ

10 (i.e. the full band width is 10Γ).
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Figure 8: (a) The many-body hybridizations Γ̃1 and Γ̃2; (b) The density of states (DOS) around
the S1 and S2 energy levels. Note that the DOS around S1 is effectively constant so that the dip in
Γ̃1 at ϵd = 0 is caused exclusively by the change in electronic wavefunctions at the crossing point.
The case of S2 is slightly more difficult to interpret, but the fact that the DOS seems to have two
maxima whereas the hybridization Γ̃2 has two minima would also suggest that the variations in Γ̃2

are not due to DOS effects. Here, the DOS(S1) is calculated by counting in those bath states whose
energy is within the energy window [E(S1)−Γ/2, E(S1)+Γ/2] (same for DOS(S2)). The parameter
set is the one-site model with mω2 = 0.003, g = 0.0075, ed1 = 0.0365,Γ = 0.01, U = 0, ζ = 40 with
101 evenly distributed metal states with energy spacing dE = Γ

10 (i.e. the full band width is 10Γ).
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B Diabatization

For the purposes of modeling electron transfer with Marcus theory,16 it can be very helpful

to work with a set of diabatic states. Luckily, for a CASSCF(2,2) calculation, generating

such diabatic states is often straightforward. Here, we will generate an adiabatic-to-diabatic

transformation by diagonalizing the impurity projector ŵ in the basis of the three DW-SA-

cCASSCF(2,2) states (S0, S1 and S2). For the one-impurity Hamiltonian in Eq. 34, we

diagonalize ŵ = d†d:

C†
diabŵCdiab = ndiab (64)

The transformed diabatic Hamiltonian is then:

Hdiab = C†
diabĤCdiab (65)

In Fig. 9, we plot the extracted diabatic energies for the one-site Hamiltonian in Eq. 34.

From the data, it is clear that the resulting energies and couplings are smooth: the diabati-

zation is robust.

U=0

(a)

U=0.1

(b)

Figure 9: The adiabatic and diabatic energies as a function of ϵd(x), for (a) U = 0; (b) U = 0.1.
The diabatization uses the three DW-SA-pcCASSCF(2,2) (ζ = 40) states as the adiabatic state
basis. The parameter set is the one-site model and for U = 0, we set mω2 = 0.003, g = 0.0075, ed1 =
0.0365,Γ = 0.01. For U = 0.1, we set mω2 = 0.001, g = 0.0075, ed1 = 0.06,Γ = 0.01. There are 101
metal states evenly distributed with energy spacing dE = Γ

10 (i.e. the full band width is 10Γ).

Next, in Fig. 10, we plot the diabatic couplings between the diabat 0 and the diabat 1
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(V01) as a function of ϵd and for a range of different Γs: 10−2, 10−3, 10−4, 10−5. We investigate

both the U = 0 and U = 0.1 cases. Note that these couplings are nearly identical across all

values of ϵd and both values of U ; the couplings depend more than anything on the value of

Γ. Note that the values of |V01| are identical (up to 10−15 significant digits) with the values

of |V12|. The diabatic coupling between the diabat 0 and the diabat 2 (V02) is effectively zero

(not shown).

U=0

(a)

U=0.1

(b)

Figure 10: The diabatic coupling |V01| (which is numerically found to be equal to |V12|) as a
function of ϵd(x), for (a) U = 0; (b) U = 0.1, for four different Γs: 10−2, 10−3, 10−4, 10−5. Note
that diabat 0 and diabat 2 are indirectly coupled with each other according to V01 and V12 but the
direct coupling V02 is 0. The diabatization uses the three DW-SA-pcCASSCF(2,2) (ζ = 40) states
as the adiabatic state basis. The parameter set is U = 0, mω2 = 0.003, g = 0.0075, ed1 = 0.05 or
U = 0.1, mω2 = 0.001, g = 0.0075, ed1 = 0.06. We include 101 metal states evenly distributed with
energy spacing dE = Γ

10 (i.e. the full band width is 10Γ).

Lastly, in Fig. 11, we plot the diabatic coupling V01, as well as the adiabatic S0 − S1

minimum excitation gap, as a function of the molecule-metal coupling Γ. We plot results

with dynamically-weighted state-averaging (DW-SA, blue) and without any state-averaging

(red). Several conclusions are apparent. First, the relationship between V01 − Γ and gap−Γ

are almost linear; see the dashed line for linear fits. Note that a linear relationship between

the gap and Γ was found previously in Ref. 31), where it was shown that a reduced model

Hamiltonian can in fact recover Marcus’s electrochemical rate expression for the case U = 0.

Second, one finds that DW-SA reduces both the gap and the diabatic coupling (compared

to no DW-SA); this finding is perhaps expected because, in the gas phase, without state
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averaging, one does not properly the ground state and the excited state (and the gap is often

too large). Third, by comparing (a) with (b) or (c) with (d), we find that the results do not

change a lot after adding electron-electron repulsion (U = 0.1); it would seem that, within

this model, the main impact of electron-electron repulsion is on the barriers present in the

ground state. For instance, for the U = 0 case in Fig. 9(a), the symmetric barrier is 0.013;

for the U = 0.1 case in Fig. 9(b), the symmetric barrier is 0.007 for the middle well and

0.009 for the left/right well. Fourth, if one looks carefully at the ζ = 40 lines, one can discern

a slight uphill behavior for large (around Γ = 0.01); this feature arises because the weight of

the ground state S0 increases as the gap grows; after all, ζ is a constant. In the future, one

may want to employ a ζ that depends on Γ; in practice, this would mean choosing weighting

parameters depending on the distance from the molecule to the metal.
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Figure 11: The diabatic coupling |V01| (the same as |V12|) at the minimum crossing, for (a)
U = 0; (b) U = 0.1. The S0 − S1 excitation gap at the minimum crossing, for (c) U = 0;
(d) U = 0.1. Note that both quantities effectively depend linearly on the system-bath coupling
Γ. Also note that the slight uphill behavior for the ζ = 40 line arises because the weight on
the ground state S0 increases for large ζ. The parameter set is the one-site model with U = 0,
mω2 = 0.003, g = 0.0075, ed1 = 0.05 or with U = 0.1, mω2 = 0.001, g = 0.0075, ed1 = 0.06. We
include 101 metal states evenly distributed with energy spacing dE = Γ

10 (i.e. the full band width
is 10Γ).
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VI Conclusions

In this paper, we have investigated a novel dynamically-weighted state-averaged constrained

CASSCF(2,2) (DW-SA-cCASSCF(2,2)) electronic structure approach for studying open quan-

tum systems and in particular molecules on metal surfaces. We have focused on this approach

after several aborted attempts with other methods. For several reasons, the present method

seems to be an excellent candidate for future work navigating electron transfer at a metal

surface: (i) The adiabatic energies are smooth as a result of state-averaging and implement-

ing a constraint that forces the active space to overlap with the impurity; (ii) Diabatization is

possible and Marcus curves can be generated; (iii) The approach overlaps well with standard

CASSCF theory and we can employ (with modification) many standard quantum chemistry

tools to solve the necessary equations. In the end, although DW-SA-cCASSCF(2,2) wave-

functions are slightly more involved than standard multireference approaches, the active

space is small and convergence can be achieved.

Looking forward, the present method should be applicable to realistic, ab initio systems,

which we will report in a future publication. We also anticipate running fewest switches

surface hopping (FSSH) calculations in the future where we will studying molecules moving

(adiabatically or nonadiabatically) along metal surfaces once a gradient53 has been con-

structed; obviously, studying electrochemical dynamics will be easier than studying photo-

electrochemical dynamics. Finally, in this paper, by working with a model Hamiltonian,

we have ignored the question of electron-electron exchange that inevitably complicates any

description of a metal (where Hartree-Fock exchange is not physical). In the future, when

working with realistic (fully ab initio) models of molecules on surfaces, it would be very

helpful if we can merge the present CASSCF(2,2) wavefunction calculation with a DFT

framework, either in the spirit of multiconfiguration pair-density functional theory (MC-

PDFT),54 time-dependent density functional theory plus one double (TDDFT-1D),55 or

hole–hole Tamm–Dancoff approximated (hh-TDA).56 Armed with such an algorithm, one

anticipates many new calculations that one would like to tackle at a catalytic metal surface.
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VII Appendix

A Single Excitation Matrix Elements

In this subsection, for the sake of concreteness, we report the matrix element between the

system states (defined in Eq. 58) and the bath states (defined in Eq. 60).

⟨tt̄|H|Su
i ⟩ = ( ⟨· · · īi · · · tt̄|H|· · ·uī · · · tt̄⟩+ ⟨· · · īi · · · tt̄|H|· · · iū · · · tt̄⟩)/

√
2

=
√
2 ∗ (F I

iu + 2(iu|tt)− (it|tu))
(66)

⟨tt̄|H|Sa
t ⟩ = ( ⟨· · · īi · · · tt̄|H|· · · īi · · · at̄⟩+ ⟨· · · īi · · · tt̄|H|· · · īi · · · tā⟩)/

√
2

=
√
2 ∗ (F I

ta + (ta|t̄t̄))
(67)

⟨tt̄|H|Suū
it̄ ⟩ = ( ⟨· · · īi · · · tt̄|H|· · ·uī · · · tū⟩+ ⟨· · · īi · · · tt̄|H|· · ·ut̄ · · · iū⟩)/

√
2

=
√
2 ∗ (iu|t̄ū)

(68)

⟨tt̄|H|Saū
tt̄ ⟩ = ( ⟨· · · īi · · · tt̄|H|· · · īi · · · aū⟩+ ⟨· · · īi · · · tt̄|H|· · · īi · · ·uā⟩)/

√
2

=
√
2 ∗ (ta|t̄ū)

(69)

⟨uū|H|Su
i ⟩ = ( ⟨· · · īi · · ·uū|H|· · ·uī · · · tt̄⟩+ ⟨· · · īi · · ·uū|H|· · · iū · · · tt̄⟩)/

√
2

= −
√
2 ∗ (it|ūt̄)

(70)
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⟨uū|H|Sa
t ⟩ = ( ⟨· · · īi · · ·uū|H|· · · īi · · · at̄⟩+ ⟨· · · īi · · ·uū|H|· · · īi · · · tā⟩)/

√
2

=
√
2 ∗ (ua|ūt̄)

(71)

⟨uū|H|Suū
it̄ ⟩ = ( ⟨· · · īi · · ·uū|H|· · ·uī · · · tū⟩+ ⟨· · · īi · · ·uū|H|· · ·ut̄ · · · iū⟩)/

√
2

= −
√
2 ∗ (F I

it + 2(it|uu)− (iu|ut))
(72)

⟨uū|H|Saū
tt̄ ⟩ = ( ⟨· · · īi · · ·uū|H|· · · īi · · · aū⟩+ ⟨· · · īi · · ·uū|H|· · · īi · · ·uā⟩)/

√
2

=
√
2 ∗ (F I

ua + (ua|ūū))
(73)

⟨ut̄|H|Su
i ⟩ = ( ⟨· · · īi · · ·ut̄|H|· · ·uī · · · tt̄⟩+ ⟨· · · īi · · ·ut̄|H|· · · iū · · · tt̄⟩)/

√
2

=
√
2 ∗ (−F I

it − (it|t̄t̄))
(74)

⟨ut̄|H|Sa
t ⟩ = ( ⟨· · · īi · · ·ut̄|H|· · · īi · · · at̄⟩+ ⟨· · · īi · · ·ut̄|H|· · · īi · · · tā⟩)/

√
2

=
√
2 ∗ (F I

ua + (ua|t̄t̄))
(75)

⟨ut̄|H|Suū
it̄ ⟩ = ( ⟨· · · īi · · ·ut̄|H|· · ·uī · · · tū⟩+ ⟨· · · īi · · ·ut̄|H|· · ·ut̄ · · · iū⟩)/

√
2

= −
√
2 ∗ (it|t̄ū)

(76)

⟨ut̄|H|Saū
tt̄ ⟩ = ( ⟨· · · īi · · ·ut̄|H|· · · īi · · · aū⟩+ ⟨· · · īi · · ·ut̄|H|· · · īi · · ·uā⟩)/

√
2

=
√
2 ∗ (ua|t̄ū)

(77)

⟨tū|H|Su
i ⟩ = ( ⟨· · · īi · · · tū|H|· · ·uī · · · tt̄⟩+ ⟨· · · īi · · · tū|H|· · · iū · · · tt̄⟩)/

√
2

=
√
2((iu|ūt̄)

(78)

⟨tū|H|Sa
t ⟩ = ( ⟨· · · īi · · · tū|H|· · · īi · · · at̄⟩+ ⟨· · · īi · · · tū|H|· · · īi · · · tā⟩)/

√
2

=
√
2 ∗ (ta|ūt̄)

(79)

⟨tū|H|Suū
it̄ ⟩ = ( ⟨· · · īi · · · tū|H|· · ·uī · · · tū⟩+ ⟨· · · īi · · · tū|H|· · ·ut̄ · · · iū⟩)/

√
2

=
√
2 ∗ (F I

iu + (iu|ūū))
(80)
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⟨tū|H|Saū
tt̄ ⟩ = ( ⟨· · · īi · · · tū|H|· · · īi · · · aū⟩+ ⟨· · · īi · · · tū|H|· · · īi · · ·uā⟩)/

√
2

=
√
2 ∗ (F I

ta + (ta|ūū))
(81)

Finally, again for completeness, let us now also report the diagonal matrix elements for

the Hamiltonian in the basis of single excitation configurations:

⟨Su
i |H|Su

i ⟩ = ⟨· · ·uī · · · tt̄|H|· · ·uī · · · tt̄⟩+ ⟨· · ·uī · · · tt̄|H|· · · iū · · · tt̄⟩

= Ett + F I
uu − F I

ii + [2(uu|tt)− (ut|tu)]− [2(ii|tt)− (it|ti)]− (uu|ii) + 2(ui|iu)

(82)

⟨Sa
t |H|Sa

t ⟩ = ⟨· · · īi · · · at̄|H|· · · īi · · · at̄⟩+ ⟨· · · īi · · · at̄|H|· · · īi · · · tā⟩

= Ett + F I
aa − F I

tt + [2(aa|tt)− (at|ta)]− [2(tt|tt)− (tt|tt)]− (aa|tt) + 2(at|ta)

(83)

⟨Suū
it̄ |H|Suū

it̄ ⟩ = ⟨· · ·uī · · · tū|H|· · ·uī · · · tū⟩+ ⟨· · ·uī · · · tū|H|· · ·ut̄ · · · iū⟩

= Euu + F I
tt − F I

ii + [2(tt|uu)− (tu|ut)]− [2(ii|uu)− (iu|ui)]− (tt|ii) + 2(ti|it)

(84)

⟨Saū
tt̄ |H|Saū

tt̄ ⟩ = ⟨· · · īi · · · aū|H|· · · īi · · · aū⟩+ ⟨· · · īi · · · aū|H|· · · īi · · ·uā⟩

= Euu + F I
aa − F I

uu + [2(aa|uu)− (au|ua)]− [2(uu|uu)− (uu|uu)]− (aa|uu) + 2(au|ua).

(85)

Here Ett and Euu are the energies of the reference states:

Ett = ⟨· · · īi · · · tt̄|H|· · · īi · · · tt̄⟩ (86)

Euu = ⟨· · · īi · · ·uū|H|· · · īi · · ·uū⟩ (87)
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