Bidirectional Elongation Strategy Using Ambiphilic Radical Linchpin for Modular Access to 1,4-Dicarbonyls via Sequential Photocatalysis

Akira Matsumoto,*† Natsumi Maeda,+ and Keiji Maruoka*†‡

1Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
2School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

KEYWORDS: photoredox catalysis • sequential photocatalysis • phosphonium ylides • ambiphilic linchpin

INTRODUCTION

Rapid assembly of widely available substrates into synthetically valuable products is of prime importance in modern organic chemistry. The use of small organic molecules which connect themselves with multiple substrates by a sequential C−C bond-forming process has offered a bidirectional approach to increase the molecular complexity with a high modularity (Figure 1a). Such multicomponent protocols utilizing linchpin compounds have enabled the expeditive construction of complex building blocks for natural products and biologically important molecules. However, their C−C bond-forming processes rely heavily on the use of organometallic reagents as strong nucleophiles, which narrows the scope of accessible products due to the limited functional group compatibility. Moreover, complicated manipulations (i.e., cryogenic conditions with strict prohibition of water) are frequently required to control the reactivity of these reagents and intermediates. On the other hand, the chemistry of radical species can provide a complementary approach to that of ionic species for new bond disconnectations. The recent advances of methodologies for the generation of radical species, such as photoredox catalysis and electrocatalysis, has made these conditions milder and more practical. Despite these breakthroughs, the linchpin coupling strategy based on radical-mediated C−C bond formations has been less explored.

Aliphatic aldehydes are one of the simplest linchpin motifs with ambiphilic character: while the formyl carbon is electrophilic, the α-carbon center can be a nucleophile via an enolate or enamine intermediate (Figure 1b). To date, several classic transformations associated with carbonyl groups, such as aldol reaction, Mannich reaction, and Wittig olefination, have been applied as a method for C−C bond formation with aldehyde linchpin. Similarly, in the field of radical chemistry, two different carbon-centered radicals can be generated from aldehydes. For example, hydrogen-atom transfer (HAT) from the formyl C−H bond affords acyl radicals as a nucleophilic radical. On the other hand, the single-electron transfer (SET) of various carbonyl compounds and their derivatives generates electrophilic radicals at the α-carbon of carbonyl group. Based on these backgrounds, we envisioned that the controlled activation of a specific aldehyde unleashes its latent reactivity both as a nucleophile and an electrophilic carbon-centered radical in a sequential manner, thus functioning as an ambiphilic radical linchpin. Here, we report the realization of this concept by using (triphenylphosphoranylidene)acetaldehyde (P1) as a commercially available aldehyde to initiate two mechanistically distinct radical processes (Figure 1c). With a single photoredox catalyst (PC), a one-pot sequence involving two different radical addition reactions via the formation of intermediate ylide P2 is established by a stepwise and controllable generation of nucleophilic and electrophilic carbon-centered radicals. This approach allows a modular access to 1,4-dicarbonyls, which are versatile synthetic intermediates and ubiquitous motifs found in natural products, from two electronically differentiated alkene fragments. The mild and practical conditions of visible-light photoredox catalysis enable a rapid assembly of complex molecules with various functional groups which are difficult to apply to the polar linchpin coupling strategy.
Figure 1. (a) General scheme for linchpin coupling strategy. (b) Aliphatic aldehydes as ambiphilic linchpin. (c) Sequential photocatalysis using formyl-stabilized phosphonium ylide (P1) as ambiphilic radical linchpin. EWG = electron-withdrawing group.

RESULTS AND DISCUSSION

Optimization of Reaction Conditions. We commenced our study with the investigation of the reactivity of P1 as a precursor of nucleophilic acyl radical. Initially, it was expected that the desired acyl radical would be generated via photoinduced HAT catalysis. To our surprise, a brief survey of the conditions revealed that the reaction of P1 and benzyl acrylate (1a) afforded the desired product P2a in the absence of any HAT catalyst. Further screening of photocatalysts led us to find 4CzIPN as the optimal catalyst (Table 1, entry 1. See the Supporting Information (SI) for details). Other catalysts with similar redox properties to 4CzIPN, such as 3CzClIPN and [Ir(ppy)2(dtbbpy)]PF6 ([Ir]-2), also afforded high yields of P2a, while strongly reducing catalyst (fac-Ir(ppy)3: [Ir]-1) or oxidizing catalyst (Me-Acr+) were not effective (Table 1, entries 2–5). The use of other solvents, including DMSO, CH2Cl2, and acetone, showed lower efficiency than MeCN (Table 1, entries 6–8). Several control experiments and radical-trapping experiments by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) suggested a radical mechanism via excitation of the photocatalyst induced by visible light (Table 1, entries 9–10). We then investigated the scope of Michael acceptors. Although the purification of the obtained ylides P2 were found to be difficult, a wide range of acceptors including α,β-unsaturated esters, ketones, sulfone, and phosphonate successfully converted to the corresponding products P2 generally in high yields according to the crude 1H NMR analysis (See SI for the full list of acceptor scope).

<table>
<thead>
<tr>
<th>entry</th>
<th>deviation from standard conditions</th>
<th>P2a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>3CzClIPN instead of 4CzIPN</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>[Ir]-1 instead of 4CzIPN</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>[Ir]-2 instead of 4CzIPN</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>Me-Acr+ instead of 4CzIPN</td>
<td>N.D.</td>
</tr>
<tr>
<td>6</td>
<td>DMSO instead of MeCN</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>CH2Cl2 instead of MeCN</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>acetone instead of MeCN</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>without photocatalyst or light</td>
<td>N.D.</td>
</tr>
<tr>
<td>10</td>
<td>with TEMPO (2.0 equiv.)</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Yields were determined by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard. N.D. = Not Detected.
Next, we turned our attention to the 2nd step, where an electrophilic carbon-centered radical is generated from ylide \( \text{P2} \) to react with unactivated alkene fragments. Recently, Miura and Murakami have reported a convenient method for the generation of (alkoxycarbonyl)methyl radical from ester-stabilized phosphonium ylides based on photoredox catalysis. They used ascorbic acid with these ylides to form the corresponding phosphonium salts, which are subsequently reduced by highly reducing photoredox catalyst [Ir]-1 (Figure 2a). However, our initial attempt to generate an electrophilic radical from acyl-stabilized ylide \( \text{P2}^* \) under the identical conditions was unsuccessful and the reaction with 4-phenyl-1-butene \( (2a) \) afforded the desired ketone product \( 3a \) in a significantly low yield (7% NMR yield). Moreover, while a highly reducing photocatalyst would be favorable for this method as the 2nd step, a more oxidizing photocatalyst such as 4CzIPN is rather required at the 1st step. Such a discrepancy of the required potential of photoredox catalysts between each step would be problematic for the realization of one-pot sequential process. Therefore, we sought to develop alternative conditions where the same photocatalyst can promote both the 1st and 2nd steps. Specifically, we focused on a method utilizing carbon dioxide radical anion (\( \text{CO}_2^- \)) as a potent single-electron reductant (\( E_{1/2} = -2.2 \) V vs saturated calomel electrode, SCE), which would smoothly reduce a phosphonium salt derived from \( \text{P2} \) to generate the desired electrophilic radical. Given that \( \text{CO}_2^- \) can be generated from metal formates under photochemical conditions, we envisioned that \( \text{CO}_2^- \) can be generated from a formate anion or its equivalent as a counterion of phosphonium salt, which is formed in situ from the corresponding Brønsted acid with ylide \( \text{P2} \) (Figure 2b).

![Figure 2. Strategy for the generation of electrophilic radical from phosphonium ylide at the 2nd step.](image)

Based on our hypothesis, the effect of acids was investigated for the reaction of ylide \( \text{P2}^* \) with \( 2a \) in the presence of 4CzIPN and methyl thiosalicylate \( (\text{S1}) \) as a thiol HAT catalyst under irradiation of blue light-emitting diode (LED, \( \lambda_{\text{max}} = 448 \) nm) (Table 2). While the addition of conventional Brønsted acids (Table 2, entries 1–3) or ascorbic acid (Table 2, entry 4) were found to be less effective, the use of formic acid remarkably improved the yield of \( 3a \) (Table 2, entry 5), which is consistent with our proposed mechanism (Figure 2b). A further exploration of Brønsted acids acting as a precursor of \( \text{CO}_2^- \) revealed that oxalic acid dihydrate \( ([\text{CO}_2\text{H}])_2\text{H}_2\text{O}) \) afforded \( 3a \) in a better yield (Table 2, entry 6). A screening of other parameters identified cosolvent of DMSO and \( \text{H}_2\text{O} \) \( (\nu/\nu = 9/1) \) as a suitable solvent (Table 2, entry 7). The replacement of 4CzIPN with \([\text{Ir}-2]\), another suitable photocatalyst for the 1st step, was found to be ineffective for the 2nd step (Table 2, entry 8). The prolonged reaction time provided \( 3a \) in a sufficiently high yield (Table 2, entry 9). Control experiments established the necessity of photocatalyst and light irradiation (Table 2, entry 10).

**Table 2: Optimization of Reaction Conditions for 2nd Step.**

<table>
<thead>
<tr>
<th>entry</th>
<th>acid (equiv.)</th>
<th>solvent</th>
<th>3a (%)&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CF&lt;sub&gt;3&lt;/sub&gt;CO:H (2.0)</td>
<td>DMSO</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>HBF&lt;sub&gt;4&lt;/sub&gt; (2.0)</td>
<td>DMSO</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>TsOH (2.0)</td>
<td>DMSO</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ascorbic acid (5.0)</td>
<td>DMSO</td>
<td>N.D.</td>
</tr>
<tr>
<td>5</td>
<td>HCO:OH (5.0)</td>
<td>DMSO</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>(CO&lt;sub&gt;2&lt;/sub&gt;H)₂:H₂O (2.0)</td>
<td>DMSO</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>(CO&lt;sub&gt;2&lt;/sub&gt;H)₂:H₂O (2.0)</td>
<td>DMSO/\text{H}_2\text{O} (9/1)</td>
<td>74</td>
</tr>
<tr>
<td>8&lt;sup&gt;b&lt;/sup&gt;</td>
<td>(CO&lt;sub&gt;2&lt;/sub&gt;H)₂:H₂O (2.0)</td>
<td>DMSO/\text{H}_2\text{O} (9/1)</td>
<td>21</td>
</tr>
<tr>
<td>9&lt;sup&gt;c&lt;/sup&gt;</td>
<td>(CO&lt;sub&gt;2&lt;/sub&gt;H)₂:H₂O (2.0)</td>
<td>DMSO/\text{H}_2\text{O} (9/1)</td>
<td>86 (84)</td>
</tr>
<tr>
<td>10&lt;sup&gt;d&lt;/sup&gt;</td>
<td>(CO&lt;sub&gt;2&lt;/sub&gt;H)₂:H₂O (2.0)</td>
<td>DMSO/\text{H}_2\text{O} (9/1)</td>
<td>trace</td>
</tr>
</tbody>
</table>

<sup>a</sup> Yields were determined by <sup>1</sup>H NMR using 1,1,2,2-tetrachloroethane as an internal standard. The isolated yield is shown in parentheses. <sup>b</sup> \([\text{Ir}-2]\) was used instead of 4CzIPN. <sup>c</sup> Reaction time was 20 h. <sup>d</sup> No light or photocatalyst.

**Mechanistic Investigations.** To better understand the reaction mechanism, a series of analytical and experimental studies for the 1st and 2nd steps were respectively carried out (Figure 3, see SI for details). Stern–Volmer fluorescence quenching studies for the 1st step revealed that only \( \text{P1} \) quenches the excited state of 4CzIPN and acceptor \( 1a \) does not (Figure 3, 1-A). In addition, electrochemical analysis of \( \text{P1} \) indicated its oxidation potential as 0.96 V vs SCE (Figure 3, 1-B), which is lower than the reduction potential of the excited state of 4CzIPN (\( E(PC^+/PC^-) = 1.35 \) V vs SCE). Hence, the reaction proceeds with the single-electron oxidation of phosphonium ylide via a reductive quenching cycle to generate a new radical species \( \text{I} \) (Figure 3, 1-C). At this point, we reasoned that two electron-withdrawing groups of \( 1, \) a carbonyl moiety and a quaternary phosphonium moiety, would render the neighboring carbon radical center highly electrophilic, which can act as a HAT mediator to abstract a hydrogen atom from the formyl C–H bond of \( \text{P1} \) to...
generate the nucleophilic acyl radical II.\textsuperscript{10} To provide more evidence for the generation of electrophilic radical I, the HAT ability of phosphonium ylides was investigated in the photoinduced alkylation of C–H or Si–H bonds using Michael acceptor 1j (Figure 3, 1–D).\textsuperscript{19} Indeed, the use of a catalytic amount of phosphonium ylide P1 or P2j, both of which are included in the reaction system of the 1st step, was found to be effective to promote the reactions of several substrates bearing C–H or Si–H bonds with those bond-dissociation energies (BDEs) ranging from 89–93 kcal/mol, affording the corresponding radical adducts in significantly high yields in all cases. Moreover, the use of a stoichiometric amount of P1 in the reaction of 1j and a large excess amount of THF dominantly produced P2j with a detection of a small amount of a THF-derived radical adduct, indicating the fast conversion of P1 to P2j before starting the reaction with THF. These results are consistent with the formation of electrophilic radical I serving as a HAT mediator in the 1st step of our method. While the HAT ability of the electrophilic radical derived from P1 is still unclear, the one derived from product ylide P2 can abstract a formyl C–H bond and is likely to be involved in the productive photocatalytic cycle of acyl radical II. Regarding the evidence for the generation of acyl radical II, P1 was subjected to the conditions for photocatalytic deuteration of formyl C–H bonds mediated by thiol catalyst, which can donate a deuterium atom to nucleophilic acyl radicals (Figure 3, 1–E).\textsuperscript{20} As expected, the reaction of P1 in the presence of 4CzIPN and S2 as the thiol catalyst in cosolvent of MeCN and D\textsubscript{2}O, followed by the Wittig reaction with 4-chlorobenzaldehyde, afforded deuterated 4-chlorocinnamaldehyde with a high deuterium incorporation at the formyl group. This result supports the generation of acyl radical from P1.
Next, to identify an actual radical precursor responsible for the 2nd step, Stern–Volmer fluorescence quenching studies and electrochemical analysis of ylide P2' and the corresponding phosphonium salts were carried out (Figure 3, 2-A and 2-B). The Stern–Volmer plots showed that the quenching rate of phosphonium oxalate (P’OA), which was prepared by mixing an equimolar amount of P2' with oxalic acid, is different from those of P2' and phosphonium tetrafluoroborate (P’BF4). Notably, P’OA quenches the excited state of 4CzIPN whereas P’BF4 hardly quenches it, indicating the non-innocent role of the counterion of P’OA. The cyclic voltammetry reflected different redox behaviors of these species (Figure 3, 2-B). While P2' and P’OA indicated the oxidation potential at 1.1 V vs SCE and 0.92 V vs SCE, respectively, P’BF4 did not show any obvious oxidation peak within the measurement range. Instead, the reduction potential of P’BF4 was found to be −1.6 V vs SCE. Given the redox potential of 4CzIPN (E(POA/PC) = 1.35 V vs SCE; E(PC/PC−) = −1.21 V vs SCE), these observations well explain the experimental results: the use of conventional acid such as HBF4 led to a low yield of 3a due to a less efficient SET between 4CzIPN and the corresponding phosphonium salt P’BF4 (Table 2, entry 2). However, the use of (CO2H)2·2H2O was effective because the resulting phosphonium oxalate P’OA can be oxidized by 4CzIPN, probably followed by the degradation of the oxalate anion to generate potient reductant CO2− (Table 2, entry 6). Thus, we next sought to obtain the evidence for generation of CO2− by capturing it with 1,1-diphenylethylene (4) as a radical-trapping agent (Figure 3, 2-C). Indeed, after a reaction of P2' with 4 under optimal conditions, the expected radical adduct 6 could be detected by 1H NMR analysis and high-resolution mass spectrometry (HRMS) along with 5 as the major product. Furthermore, another radical-trapping experiment using TEMPO suppressed the formation of ketone product 3a and two kinds of TEMPO adducts were detected by HRMS, indicating the generation of acetyl-substituted carbon radical and the subsequent radical addition to alkene 2a (Figure 3, 2-D). Lastly, to confirm the effect of the formation of an ion pair between a phosphonium and an oxalate, phosphonium salt P’BF4 was subjected to conditions for the 2nd step using several CO2− precursors (Figure 3, 2-E). None of the examined reductants including oxalic acid, oxalate salt, and formate salt showed comparable results to the optimized conditions, indicating that the smooth formation of the ion pair via acid-base reaction between phosphonium ylide P2' and oxalic acid contributes to the efficient single-electron reduction of the phosphonium salt.

Taken together, we propose a mechanism for the whole process of our method as shown in Figure 4. For the 1st step, the single-electron oxidation of ylide P1 (or P2 after the first catalytic cycle) by the excited state of 4CdPN (PC*) generates highly electrophilic radical I, which can act as a HAT mediator as demonstrated in 1-D of Figure 3. Here, the negative charge at α-carbon of P1 renders its formyl C–H bond highly hydridic. Therefore, the HAT between I and P1 would take place selectively due to the polarity-matching effect and acyl radical II is efficiently generated along with phosphonium salt III. Since II has a nucleophilic character, it undergoes Giese-type addition to Michael acceptor 1 to afford intermediate IV. The subsequent SET by the reduced form of photocatalyst (PC−) converts IV to V, which deprotonates a moderately acidic α-C–H bond of III to furnish the intermediate ylide P2. After P1 is completely converted to P2 at the 1st step, oxalic acid is added to the system to form phosphonium oxalate VI, which is then engaged in the catalytic cycle of the 2nd step. As discussed in 2-A and 2-B of Figure 3, VI can be oxidized by the same photocatalyst of the 1st step. Upon the following deprotonation and decarboxylation, CO2− is generated as a potent reductant, which facilitates the cleavage of a C–P bond in the phosphonium moiety of the same ion pair VII to afford electrophilic radical VIII. The addition of VIII to unactivated alkene 2 provides intermediate IX, which accepts a hydrogen atom from thiol catalyst S1 to afford the desired product 3. Finally, the resulting thyl radical S1· is reduced by PC− with the concurrent protonation, closing the catalytic cycle. We observed quantum yield (Φ) values much lower than 1 for both steps (Φ = 6.3 ×
Figure 5. Substrate Scope for sequential photocatalysis. Reaction conditions: [1st step] P1 (0.44 mmol), 1 (0.40 mmol), and 4CzIPN (0.0080 mmol) in MeCN or DMSO, blue LED (λmax = 448 nm), 25 °C, 6 h; [2nd step] P2 (not isolated), 2 (0.20 mmol), (CO2H)2·2H2O (0.40 mmol), and methyl thiosalicylate (S1, 0.040 mmol) in DMSO/H2O (9/1), blue LED (λmax = 448 nm), 25 °C, 20 h. Isolated yields over 2 steps are shown. See SI for full experimental details. a MeCN (4.0 mL) was used as a solvent for the 1st step. b LiBF4 (0.080 mmol) was added for the 1st step. c Regioisomeric ratio and diastereomer ratio (dr) were determined by 1H NMR of the crude product. d DMSO (2.0 mL) was used as a solvent for the 1st step. e Reaction time for the 2nd step was 40 h.
10^{-2} for the 1\textsuperscript{st} step and 3.0 \times 10^{-3} for the 2\textsuperscript{nd} step. See SI for details), which are consistent with closed catalytic cycles and thus the mechanism of sequential photocatalysis.

**Development of Sequential Process.** Based on the optimized conditions for each step together with the proposed mechanism, we sought to develop a one-pot protocol for sequential photocatalysis using ambiphilic radical linchpin P1 with two alkenes fragments (1 and 2) to access unsymmetrical ketone product 3 (Figure 5). Gratifyingly, reaction conditions established for each step were successfully combined to realize the sequential process, and intermediate ylide P2 formed after the 1\textsuperscript{st} step could be directly used for the 2\textsuperscript{nd} step without purification (see SI for detailed protocols). Of note, the photocatalyst added before the 1\textsuperscript{st} step was still active for the 2\textsuperscript{nd} step, establishing a unique protocol for the sequential process where a single photocatalyst promotes two mechanistically distinct radical reactions successively in one pot. With the optimized experimental protocols in hand, we sought to evaluate the scope of the sequential photocatalysis. Firstly, a variety of Michael acceptors 1 were employed for the 1\textsuperscript{st} step of our method to unite them with P1 and 2a, affording 1,4-dicarbonyl compounds in most cases. Acrylate derivatives were well tolerated to give the desired γ-oxoesters 3aa–3ka in moderate to good yields. In the case of acceptors with insufficient reactivity at the 1\textsuperscript{st} step, the addition of LiBF\textsubscript{4} was found to be effective, providing acceptable yields of the products. Highly activated alkenes furnished the corresponding products 3ia–3ja in high yields. When methyl cinnamate was used, a mixture of two regioisomers 3ka and 3ka′ was obtained. Various types of electron-deficient alkenes, such as α,β-unsaturated cyclic ketones, activated indole derivative, vinyl sulfone, and vinyl phosphonate, were also applicable to the present method, affording structurally diverse dialkyl ketones 3la–3pa.

We then turned our attention to the scope of unactivated or electron-rich alkenes 2 as the fragment of 2\textsuperscript{nd} step. Dehydroalanine derivative 1j was used as a suitable alken for the 1\textsuperscript{st} step of these reactions, affording α-monosubstituted amino acid derivatives containing various functionalities as the final product. 3-Butenyl benzoate derivatives with a range of substituents at para position of the phenyl group provided the corresponding products 3jb–3jf in good yields. Terminal alkenes bearing reactive functional groups, such as hydroxy, (pseudo)halogen, acetyl, silyl, and epoxy groups, were well tolerated (3jg–3jm). In addition, relatively acidic C–H bond of malonate moiety and N–H bonds of protected amino groups were also successfully incorporated to the products (3jn–3jp). These examples display the high functional group tolerance of our method. On the other hand, an alken with basic pyridine moiety showed a decreased reactivity, probably due to the interference with the formation of phosphonium oxalate (3jr). Besides monosubstituted alkenes, a cyclic alken and α,α-disubstituted alkenes were also amenable to this method, furnishing the desired products 3js–3jv in moderate to good yields. The reactions with enol ethers as electron rich alkenes proceeded well to afford the corresponding products 3jw–3x.

Encouraged by the broad scope of alkenes for both steps, we conducted the radical linchpin coupling with complex alkene fragments derived from biorelevant molecules (Figure 6). The derivatives of naturally occurring bioactive compounds, such as i-menthol and deoxycholic acid, and ibuprofen as a representative pharmaceutical were successfully employed for the sequential photocatalysis (7a–7c). Natural and unnatural amino acids, including L-proline, L-cysteine, α-allylalanine, and L-serine, could be incorporated to afford the desired 1,4-carbonyl products in moderate to high yields (7d–7g). The same protocol was also applicable to sugar derivatives as the acetonide form (7h–7i). Finally, two kinds of biorelevant compounds, L-serine and vinclozolin, could be connected to furnish the product 7j in one pot, demonstrating the utility of our method as a tool for rapid connection of two complex molecules.

**Figure 6.** Radical linchpin coupling with biorelevant molecules. See SI for full experimental details.
Taking advantage of the utility of products and a characteristic reaction mechanism, several synthetic applications of the sequential photocatalysis were carried out (Figure 7). Firstly, 1,4-dicarbonyls can be transformed into a diverse array of structures by making use of their two carbonyl moieties, the obtained 1,4-dicarbonyl products were derivatized to access various heterocycles (Figure 7a). As a model product, γ-oxoester 3ja could be synthesized in a gram scale (see SI for details). Transformations of a ketone moiety of 3ja, such as reduction, reductive amination, and condensation, gave rise to a new oxygen or nitrogen nucleophile, which subsequently reacted with the terminal ester group to form cyclized products 8–10 in good to high yields. The reaction of other γ-oxoester 3ba with histamine as a bis-
nucleophile produced a fused triaza heterocycle 11, which is a synthetic congener of glochidine.23 Furthermore, the deacetylation of a terminal acetoxy group of 3bo, followed by a tandem imine formation/aminoacetalization/amidation sequence, afforded spirocyclic aminoacetal 12 in 2 steps. Next, our protocol was applied to an iterative strategy for synthesis of 1,4-diketone (Figure 7b). The sequential photocatalysis using P1, 10, and 2u under the optimal conditions provided the corresponding β-sulfonyl ketone 3ou, which could be converted to α,β-unsaturated ketone 13 by a base-promoted β-elimination of the sulfonyl group. Repeating the sequential process to assemble 13 with linchpin P1 and another alkene 2q successfully proceeded to afford the desired 1,4-diketone 14. This approach potentially expands the scope of accessible 1,4-dicarbonyl products using our method. Lastly, we sought to synthesize a series of deuterated isotopomers of the product in a site- and degree-controlled manner, which is enabled by the unique mechanism of the present method (Figure 7c). Specifically, three kinds of C–H bonds in the target structure are formed during the sequential process via different mechanisms for incorporation of hydrogen atom: protonation at the α-carbon of ester group, reversible proton exchange at the ylide-derived α-carbon, and hydrogen-atom transfer from thiol catalyst to carbon-centered radical derived from unactivated alkene. Notably, H2O can serve as a unified hydrogen source for these mechanisms. Therefore, we modified the protocol for sequential process, where a readily available deuterium source D2O was added or replaced with H2O at each step according to the desired degree of deuteration of the product. As a result, while non-deuterated product 3jv was obtained in 51% yield under the optimal conditions using P1, 1j, and 2v, the use of cosolvent of DMSO and D2O (v/v = 9/1) only at the 1st step afforded mono-deuterated product 3jv-d1, without affecting the product yield. Moreover, the replacement of H2O with D2O at the 2nd step provided tri-deuterated product 3jv-ds, and the use of DMSO/D2O cosolvent at both steps furnished tetra-deuterated product 3jv-ds as a major product. These results demonstrate that our method is useful for preparation of selectively deuterated molecules.24

Conclusions

In summary, a sequential photocatalysis involving two mechanistically distinct radical additions has been developed. This process is enabled by multiple roles of amphiolic radical linchpin P1, which serves as a nucleophilic and an electrophilic carbon-centered radical source, as well as a HAT mediator, in the presence of a single photoredox catalyst. A variety of alkene fragments, such as those with reactive functional groups under polar mechanism and biologically relevant complex molecules, can be involved in the bi-directional formations of two C–C bonds from P1 in one pot. Overall, the present radical linchpin coupling strategy has enabled a rapid and modular access to synthetically valuable 1,4-dicarbonyl compounds. Further investigations on the radical reactivity of phosphonium ylides, especially as a novel HAT catalyst platform, are currently underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at http://pubs.acs.org.

Experimental procedures, mechanistic studies, compound characterization data, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Akira Matsumoto – Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan; orcid.org/0000-0002-3719-8597; Email: matsumoto.akira.3c@kyoto-u.ac.jp

Keiji Maruoka – Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan; Guangdong University of Technology, Guangzhou, China; orcid.org/0000-0002-0044-6411; Email: maruoka.keiji.4w@kyoto-u.ac.jp

Author

Natsumi Maeda – Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

K.M. gratefully acknowledges financial support via JSPS KAKENHI grant No. 21H05026. A.M. is thankful for financial support via JSPS KAKENHI grant No. 22K14680. The authors thank Kishida chemical Co., Ltd. for donation of (R)-N-Boc-α-allylalanine ethyl ester (starting material of 7f).

REFERENCES


Insert Table of Contents artwork here

![Diagram](image.png)

- Ambiphilic radical linchpin
- Electrophilic radical
- Nucleophilic radical

- One-pot sequential process
- Bidirectional elongation
- One photocatalyst for two radical reactions
- Modular access to 1,4-dicarbonyls