RT-Tranformer: Retention Time Prediction for Metabolite Annotation to Assist in Metabolite Identification

Jun Xue,[†] Weihua Li,^{*,†} and Bingyi Wang[‡]

†School of Information Science and Engineering, Yunnan University, Kunming, China ‡Faculty of Drug Control, Yunnan Police College, Kunming, China

E-mail: liweihua@ynu.edu.cn

Abstract

Liquid chromatography retention times (RTs) prediction can assist in metabolite identification, which is a critical task and challenge in non-targeted metabolomics. However, different chromatographic methods (CM) may result in different RTs for the same metabolite. Current RT prediction methods lack sufficient scalability to transfer from one specific chromatographic method to another. Therefore, we present RT-Transformer, a novel deep neural network model coupled with 1D-Transformer and graph attention network (GAT) that can predict RTs under any chromatographic methods. First, we obtain a pre-trained model by training RT-Transformer on the large small molecule retention time (SMRT) dataset containing 80038 molecules, and then project the resulting model onto different chromatographic methods based on transfer learning. When tested on the METLIN dataset, as other authors did, the average absolute error reached 27.3 after removing samples with retention times fewer than five minutes. Still, it reached 33.5 when no samples were removed. The pre-trained RT-Transformer was further transferred to 5 datasets corresponding to different chromatographic conditions and fine-tuned. According to the experimental results, RT-Transformer achieves competitive performance compared to state-of-the-art methods. In addition, RT-Transformer was applied to 30 external molecular RT datasets. Extensive evaluations indicate that RT-Transformer has excellent scalability in predicting RTs for liquid chromatography and improves the accuracy of metabolite identification.

Introduction

Metabolomics systematically identifies and quantifies all metabolites in a given organism or biological sample.¹ Metabolite annotation and identification is the main bottleneck in untargeted metabolomics.^{2–5} Liquid chromatography-mass spectrometry (LC-MS) has become the most widely used method for metabolite identification because of its enhanced resolution and excellent sensitivity.^{6,7} Typically, the original liquid chromatography (LC) data consists of hundreds of original mass spectra. Therefore, various approaches^{8–16} have been developed to identify metabolites by searching against structural databases, such as PubChem¹⁷ and ChemSpider.¹⁸ Unfortunately, all of these approaches return multiple candidates with similar structures. To reduce the cost of the experiment, it's necessary to filter out as many false candidates as possible. Previous studies have shown that retention times(RTs) obtained by chromatographic separation would enable filtering candidates with similar spectra but different RTs, further facilitating the identification of metabolites.

Experimental methods for obtaining RTs are costly, so CM-specific datasets only contain a tiny portion of known compounds. To predict compounds that lack experimental RTs, numerous researchers have developed various RT prediction methods.^{19–26} Traditional machine learning approaches, such as multiple linear regression, random forest, support vector machine, and gradient boosting, are frequently employed for RT prediction.^{27–32} For example, Bouwmeester et al.³³ compared different ML methods for RT prediction and found an ensemble of multiple ML-based models performed optimally. Recently, METLIN small molecule retention time (SMRT) dataset³⁴ of 80038 molecules were released to the public, which stimulating deep learning-based RT prediction methods, such as DLM,³⁴ DNNpwa,³⁵ and 1D-CNN.³⁶ More deep learning-based methods, such as GNN-RT,³⁷ CPORT,³⁸ MPNN,³⁹ and Blender,⁴⁰ apply transfer learning⁴¹ to predict the retention times in specific chromatographic separation systems. These methods alleviate the limitation of small training data by pre-training the neural networks on SMRT and further reusing some parameters in the pretrained networks. More specifically, GNN-RT³⁷ and MPNN³⁹ exploit graph neural networks (GNN) to learn effective molecular representations from the structures of small molecules, improving the transferability of the models.

These methods have been developed and have made significant progress in RT prediction. However, RTs result from the combination of the metabolite with the chromatographic method(CM) used, so the retention time of the same molecule can vary from CM to CM. Thus, the models developed using the SMRT dataset still need more scalability to predict the RT of a molecule in other CMs. Besides, most current methods heavily rely on molecular fingerprints or molecular descriptors, while neglecting node and edge attributes in molecular structures, resulting in the inability to learn effective molecular representations. It is still being determined how to exploit and combine molecular fingerprints and structures to predict RTs better. Third, recent methods, such as GNN-RT, attempt to use GNNs to embed a molecule structure as a fixed feature vector for RTs prediction. Nonetheless, GNNs tend to treat atoms and chemical bonds equally, making models fail to capture inter-atomic correlations effectively. Graph attention networks(GAT),⁴² one of the most popular GNN architectures, employ the attention mechanism⁴³ to update the attributes of every node and are insensitive to the selection order of neighbors. It has been shown that GAT can better exploit the graph structure, node information, and edge information, and obtain their representations in low-dimensional space.

Guided by these, we propose a new deep neural network model, RT-Transformer, coupled with 1D-Transformer is a model we developed based on the Transformer Encoder⁴⁴ for processing one-dimensional data and GAT, to learn the effective molecular representations from molecular graphs and molecular fingerprints for RT prediction. We train the model using the SMRT dataset, freeze the feature extraction layer of the resulting model, and further fine-tune the model on other datasets for prediction. The results show that our model significantly outperforms the previous methods. In addition, the pre-trained model on SMRT dataset is evaluated with 30 external RT datasets obtained from PredRet.²⁰ Extensive evaluations demonstrate that the RT-transformer has excellent and robust scalability.

Methods

Preparation of the SMRT Dataset

The SMRT dataset from the METLIN library was released by Domingo et al.³⁴ It provides RT data for 80038 small molecules, including metabolites, natural products, and drug-like small compounds, all obtained using RP chromatography and HPLC-MS. The majority of molecules can be categorized into seven groups, including organic heterocyclic compounds (63.9%), benzene compounds (24.7%), organic acids and derivatives (6.6%), organic nitrogen compounds (1.6%), organic oxygen compounds (1.18%), organic sulfur compounds (0.66%), and other compounds (1-25%). Furthermore, other compounds consist of lipids, lignans, nucleosides, nucleotides, phenylpropane, and polyketides. SMRT provides RTs in seconds, PubChem molecule numbers, molecular structure data in SDF format, as well as several chemical descriptors and extended connectivity fingerprints ECFP. The experimental RTs for 80038 small molecules range from 0.3 to 1471.7 seconds. In previous studies, new molecules were omitted, and samples with retention periods longer than 300 seconds were utilized for training. These retained molecules have a relative atomic mass of 113.08-741.46 Da and mainly comprise metabolites, natural products, and tiny compounds resembling drugs. The relative atomic mass in all available data sets varies from 104.18 to 741.46 Da. We obtained two pre-trained models on the data sets of retained molecules and SMRT, respectively. The two-pertained models were then transferred to several datasets, and their effects were compared.

Molecular Graph Data

We transform molecules into graphs, with the nodes and edges representing the atoms and chemical bonds in the molecule, respectively. The node features consist of chirality, relative atomic mass, degree, formal charge, orbital hybrid mode, valence, radical electrons, whether or not it is on a ring, etc. The edge attributes include the type of the bond, whether it is a ring, aromatic, or conjugated. All the type attributes mentioned above are transformed into one-hot vectors concatenated with the value attribute. Besides, for each chemical bond in the molecular graphs, we convert it into a bi-directional edge. This paper uses Python package RDKit(www.rdkit.org)⁴⁵ to generate molecular graphs with 34 features per node and 5 features per bond.

Overview of RT-Transformers

RT-Transformers take the resulting molecular graphs and Morgan fingerprints from InChl (International Chemical Identifier) as input, and extract the features using a multi-head GAT and a stacked 1D-transformer, respectively. Then, the obtained features are fused and fed into a linear layer to produce a vector representation for RT prediction. An overview of RT-transformer is illustrated in Figure 1.

Figure 1: Procedure of RT prediction by RT-Transformer

ResGAT

Graph Attention Networks(GAT) were proposed by Veličković et al.⁴² to learn graph-structured data based on attention mechanism.⁴³ To learn the embedding vectors of the molecular graph, we devise a ResGAT block based on a three-head GAT with a residual connection. And, the ResGAT block uses a linear layer as an aggregation function rather than an addition or concatenation function to accelerate training. This enables any node to aggregate information from all other nodes. Then, the node features are updated by skip connections of the non-updated features. At Last, we apply layer normalization⁴⁶ to all node features.

$$y = \frac{x - \mathbf{E}[x]}{\sqrt{\operatorname{Var}[x] + \epsilon}} * \gamma + \beta$$

The mean and standard deviation are calculated over the last D dimensions, where D is the dimension of the inputs. γ and β are learnable affine transform parameters.

The input of this block is node features $h = \left\{ \overrightarrow{h_1}, \overrightarrow{h_2}, \dots, \overrightarrow{h_N} \right\}$ and edge features $d = \left\{ \overrightarrow{d_1}, \overrightarrow{d_2}, \dots, \overrightarrow{d_M} \right\}$, where $\overrightarrow{h_i} \in R^F, \overrightarrow{d_i} \in R^G$, N and M are the numbers of nodes and edges, respectively; F and G are the dimensions of a node feature and an edge feature, respectively. For any two nodes, their features $\overrightarrow{h_i}$ and $\overrightarrow{h_j}$ and the features of the bond between them $\overrightarrow{d_{ij}}$ are transformed into a vector e_{ij} and then the attention coefficient a_{ij} between these two nodes is calculated as follows :

$$e_{ij} = Attention\left(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j, \mathbf{W}\vec{d}_{ij}\right)$$
$$a_{ij} = \text{Softmax}_j\left(e_{ij}\right) = \frac{\exp\left(e_{ij}\right)}{\sum_{k \in N_i} \exp\left(e_{ik}\right)}$$

where \mathbf{W} is a weight matrix; Attention is a function of attention mechanism. The specific

implementation of this function, Attention, is as follows:

$$a_{ij} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\overrightarrow{\alpha}^{\top}\left[\mathbf{W}\vec{h}_{i} \left\|\mathbf{W}\vec{h}_{j}\right\|\mathbf{W}\vec{d}_{ij}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}}\exp\left(\operatorname{LeakyReLU}\left(\overrightarrow{\alpha}^{\top}\left[\mathbf{W}\vec{h}_{i}\left\|\mathbf{W}\vec{h}_{k}\right\|\mathbf{W}\vec{d}_{ik}\right]\right)\right)}$$

where α is a 2N + M dimensional vector; \parallel is the concatenation operation; LeakyReLU is an activation function as follows:

$$LeakyReLU(x) = \begin{cases} x, x > 0\\ \lambda x, x \le 0 \end{cases}$$

where λ is 0.0001. After getting the attention coefficient, we could calculate the final output features of every node (after potentially applying a nonlinearity).

The updated eigenvectors of node i are as follows:

$$\vec{h}_i' = \sigma\left(\sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{W} \vec{h}_j\right)$$

Because this block uses multi-head attention, we concentrate all vectors generated by all heads as follows:

$$\vec{h}'_i = \operatorname{concat}\left(\sigma\left(\sum_{j\in N_i} \alpha^k_{ij} W^k h_j\right)\right)$$

The detail of ResGAT is shown in Figure 2.

1D-Transformer

The 1D-Transformer is based on transformer architecture.⁴⁴ Transformer, an encoder-decoder architecture, is proposed for machine translation tasks and has achieved state-of-art performance in many deep learning areas such as computer vision, and natural language processing. The 1D-Transformer is a combination of attention layers and feed-forward layers. The attention layer exploits the scaled-dot attention mechanism to capture the features most relevant

Figure 2: Structure of RT-Transformer

to RTs, and takes three inputs, i.e., the keys \mathbf{K} , the queries \mathbf{Q} , and the values \mathbf{V} . To make the attention layer more robust, we add a trainable matrix \mathbf{W} and compute the attention as follows.

Attention
$$(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V}\mathbf{W}$$

The dot product of \mathbf{Q} and \mathbf{K} computes how closely the keys are aligned with the queries. If the query and key are aligned, their dot product will be big, and vice versa. Each key has a value vector multiplied by the softmax output, normalizing the dot products and emphasizing the greatest components. d is a scaling factor that changes based on the layer size. We use it as self-attention mechanism, so \mathbf{Q} , \mathbf{K} , and \mathbf{V} are all the input vectors $\vec{f} \in \mathbb{R}^d$, where d is the number of the input features. The feed-forward layers are composed of 2 linear layers. The detail of 1D-Transformer is shown in Figure 2.

Output-Block

Output-Block receives molecular graphs output by ResGATs and fingerprints proceed by 1D-Transformers. We used an addition function to readout the molecular graph, ignoring the features of bonds on the graph. The readout layer adopts a linear layer with a 512-dimensional input channel and a 512-dimensional output channel so that the features produced by ResGAT are suitable for feature fusion. Then, two linear layers are used to reduce the dimension of the fused features. The features extracted by ResGAT and 1D-Transformer have been resized to 512 dimensions by several linear layers. A 1024-dimensional vector concatenating these features goes through 3 linear layers and produces a vector for RTs prediction. All the linear layers are activated by Rectified Linear Unit function(ReLU) as follows:

$$ReLU(x) = \begin{cases} x, x > 0 \\ 0, x \le 0 \end{cases}$$

RT-transformer

RT-Transformers could be divided into three modules: ResGAT, 1D-Transformer, and Output-Block. A linear layer embeds the node features into 512 dimensions to get the higher dimension relationship. Graph-Transformers receive molecular graphs as input. By stacking 9 ResGAT Blocks, every atom could get information from other atoms and chemical bonds. At the end of Graph-Transformers, we use an addition function to readout all the atom features into the molecular graph features. 1D-Transformer receives a molecular fingerprint, a 2048-dimensional vector, as its input, and produces a 2048-dimensional vector as its output. We stack 12 1D-Transformer blocks to process the fingerprint feature. After processing these features, we send them to Output-Block to get the final prediction.

Evaluation Metrics

We evaluate the model's performance with MAE, MRE, MedAE, MedRE, and R². The calculation formulas are as follows:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$
$$MRE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{|y_i|}$$

$$MedAE = median(|y_i - \hat{y}_i|)$$
$$MedRE = median(\frac{|y_i - \hat{y}_i|}{|y_i|})$$
$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

Experimental Setups

The SMRT dataset employs a random partitioning strategy whereby molecules are allocated to non-overlapping training, validation, and test sets in the proportions of 80%, 10%, and 10%, respectively. During training, the model seeks to minimize L1 loss in the validation set for a maximum of 300 epochs. The RT-transformer is trained through backpropagation and optimized using AdamW with an initial learning rate of 0.0001 that decays by a factor of 0.1 every 50 epochs. The batch size is set to 64. In the transfer learning phase, the model adopts an initial learning rate of 0.001 that decreases by a factor of 0.1 per 30 epochs, while the batch size is set to 8. The model trains for 130 epochs using the AdamW optimizer.

Code and pre-trained models available

The source code for the model is available at https://github.com/Oldadada/RT-Transformer . The pre-trained models and all data is available for download at the following link: https: //drive.google.com/file/d/1TM-w1Y9xr6iHw0wVW7SSv_B5ivDDIJIa/view?usp=sharing

Results and discussion

Evaluation of the RT-Transformer Model

The SMRT dataset is a publicly accessible collection of data which can be used for the assessment of models designed for the prediction of retention times (RTs). Previous investigations have employed SMRT molecules with RTs less than 600 seconds as training data for their models. However, our research indicates that in certain circumstances, models trained with the complete SMRT dataset exhibit superior performance when transferred to other chromatographic methods (CMs). This improved performance may be attributed to the model's ability to acquire additional features from the unretained molecules. Consequently, we have trained our model using both the complete SMRT dataset and a subset of the SMRT dataset that exclusively contains molecules with retention times of 300 seconds or greater. Specifically, we have utilized only those SMRT molecules whose RT is greater than 300 seconds to train our RT-Transformer. On the test set, our model achieved a mean absolute error (MAE) of 27.2 seconds and a median absolute error (MedAE) of 16.8 seconds. By comparison, the MAE and MedAE errors for the model trained with all SMRT molecules are 33.2 and 17.6 seconds, respectively. A comparison of the accuracy of our RT-Transformer model with previous works is presented in Table 1. In general, RT-Transformer is superior to the other models in all the performance metrics, including MAE, MRE, MedAE, MedRE, and \mathbb{R}^2 .

RT-Transformer Transfer Learning on other Chromatographic Systems

Currently, the development of specific chromatographic methods is often hampered by a paucity of training data. Transfer learning offers a viable solution to address the issue of overfitting of models on small datasets by leveraging the Shared Modification Retention Time (SMRT) dataset.

To evaluate the efficacy of the transfer learning approach, we utilized 41 datasets obtained from PredRet, which were generated by diverse chromatographic methods (CMs) and contributed by researchers from independent laboratories. We pre-trained the RT-transformer model using SMRT, then froze the parameters of ResGATs and 1d-transformer modules in the pre-trained model, and fine-tuned the parameters of the Output-Block using target data to obtain RT prediction models for various CMs. The results of the transfer of the models to the 41 CMs, including the means and standard deviations of MAE, MedAE, MRE, MedRE, and R2 determined via 10-fold cross-validation, are presented in Tables 5, 6, 3, and 4. As these datasets have not been tested in previous studies, we compared the performance of our model with other established models using previously tested datasets, which serve as a benchmark for evaluating the performance of machine learning models in various tasks. By using these well-established datasets, we could compare our model's performance with other state-of-the-art models. As shown in Table 2, our model outperformed the state-of-the-art models on most evaluated metrics and datasets.

Application and Evaluation of RT Prediction in Compound Annotation

Currently, metabolite identification methods based on MS2 spectra always propose different candidate motifs, resulting in a large number of false positive compounds. Especially when the molecules are structurally similar, it may be difficult to identify them. RT contains information that is orthogonal to the mass spectra. It helps filter candidates, even if they have similar structures.

From the histogram in Figure 3, prediction errors of 7790 molecules in the test set can be regarded as a normal distribution. There were 7047 molecules (90.36%) with an absolute error of less than 60s and 7503 molecules (96.22) with an absolute error of less than 120s in the RT prediction. Using ± 2 SD (standard deviation of RT prediction errors in the test set is 59.89s) as the filter threshold,³⁷ the false negative rate decrease to 3.78%. The threshold can be adjusted to filter more false positive molecules or minimize false negative molecules.

We randomly selected 100 molecules from the test set of SMRT. And the visualization in Figure 3 presents that these molecules were distributed uniformly in the SMRT dataset. Then we searched PubChem with the exact molecular mass to get their candidates. All the candidate molecules were filtered by RT-Transformer filter. The number of selected candidates and the number of candidates filtered by RT-Transformer filter are shown in Table 7. It can be seen that the means of the filter rate in 100 test molecules were 75.71%. This result showed the ability of the RT-Transformer filter to filter out false positive molecules.

Figure 3: Distributions of 100 molecules of the test set in SMRT

We built this model to provide a filter for filtering out more isomers in non-targeted LC-MS workflow. We search isomers of all molecules from PubChem. To access the capacity of RT-Transformers in the compound annotation. We generated receiver operating characteristic (ROC) curves based on SMRT(test set) and SMRT_Retained(retained molecules test set), as shown in Figure 4 and Figure 5 respectively. The resulting curves were then utilized to determine the optimal threshold and filter out candidate compounds based on these values. The best threshold for SMRT and SMRT_Retained is 5.7% and 4.3%, and eliminating 80% and 80% false identity. We generated the boxplot with the x-axis representing the filter's effectiveness and the y-axis representing the number of molecules and the

number of molecules filtered out. The boxplot showed a significant increase in the number of molecules filtered out, indicating a notable improvement in the filter's performance. The boxplot is illustrated in Figure 5 and Figure 4.

Figure 4: ROC curves and eliminated false identities of SMRT

Overall, these results indicate that RT-transformer filters can effectively filter false positive molecules with RT prediction.

Conclusion

The retention time prediction in liquid chromatography is increasingly essential for identifying small molecules, as it provides valuable orthogonal information to tandem mass spectra. In this study, we present a robust RT prediction model, RT-Transformer, designed to aid in identifying small molecules. The model exhibits excellent scalability across different chromatographic methods, and its performance was validated on both the SMRT dataset and 41 datasets obtained using various chromatographic methods. Our results indicate that RT-Transformer outperforms state-of-the-art models when trained on the SMRT dataset. By leveraging transfer learning, the model can accurately predict RT values in any chro-

Figure 5: ROC curves and eliminated false identities of SMRT_Retained

matographic method and demonstrate superior performance to other RT prediction models. Our findings demonstrate that RT-Transformer can filter isomeric candidates based on their predicted RT values, thereby facilitating molecular identification. Furthermore, we have made the source code and pretrained-model of RT-Transformer publicly available, enabling researchers to apply this model to their datasets via transfer learning and improve the accuracy and efficiency of their chemical analyses.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (32060151), the Yunnan Provincial Foundation for Leaders of Disciplines in Science and Technology, China (202305AC160014), and the Innovation Research Foundation for Graduate Students of Yunnan University (KC-22221489)

References

- (1) Idle, J. R.; Gonzalez, F. J. Metabolomics. Cell Metab 2007, 6, 348-51.
- (2) van Der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E.; Rogers, S. Topic modeling for untargeted substructure exploration in metabolomics. *Proceedings of the National Academy of Sciences* **2016**, *113*, 13738–13743.
- (3) Neumann, S.; Böcker, S. Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Analytical and bioanalytical chemistry 2010, 398, 2779–2788.
- (4) Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N., et al. HMDB 4.0: the human metabolome database for 2018. *Nucleic acids research* **2018**, *46*, D608–D617.
- (5) Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D. S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. *Nucleic acids research* **2018**, *46*, W486–W494.
- (6) Bell, A. W.; Deutsch, E. W.; Au, C. E.; Kearney, R. E.; Beavis, R.; Sechi, S.; Nilsson, T.; Bergeron, J. J. A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. *Nature methods* **2009**, *6*, 423–430.
- (7) Gika, H. G.; Theodoridis, G. A.; Plumb, R. S.; Wilson, I. D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. *Journal of pharmaceutical and biomedical analysis* **2014**, *87*, 12–25.
- (8) Ruttkies, C.; Schymanski, E. L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. *Journal of cheminformatics* **2016**, *8*, 1–16.

- (9) Wang, Y.; Kora, G.; Bowen, B. P.; Pan, C. MIDAS: a database-searching algorithm for metabolite identification in metabolomics. *Analytical chemistry* 2014, *86*, 9496–9503.
- (10) Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. *Nucleic acids research* 2014, 42, W94–W99.
- (11) Wang, Y.; Wang, X.; Zeng, X. MIDAS-G: a computational platform for investigating fragmentation rules of tandem mass spectrometry in metabolomics. *Metabolomics* 2017, 13, 1–9.
- (12) Ridder, L.; van der Hooft, J. J.; Verhoeven, S. Automatic compound annotation from mass spectrometry data using MAGMa. *Mass Spectrometry* **2014**, *3*, S0033–S0033.
- (13) Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. *Proceedings of the National Academy of Sciences* **2015**, *112*, 12580–12585.
- (14) Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D. S. CFM-ID 3.0: significantly improved ESI-MS/MS prediction and compound identification. *Metabolites* **2019**, *9*, 72.
- (15) Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. *Nature methods* **2019**, *16*, 299–302.
- (16) Ruttkies, C.; Neumann, S.; Posch, S. Improving MetFrag with statistical learning of fragment annotations. *BMC bioinformatics* **2019**, *20*, 1–14.
- (17) Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.;
 He, S.; Shoemaker, B. A., et al. PubChem substance and compound databases. *Nucleic acids research* 2016, 44, D1202–D1213.

- (18) Hettne, K. M.; Williams, A. J.; van Mulligen, E. M.; Kleinjans, J.; Tkachenko, V.; Kors, J. A. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining. *Journal of cheminformatics* **2010**, *2*, 1–7.
- (19) Eugster, P. J.; Boccard, J.; Debrus, B.; Bréant, L.; Wolfender, J.-L.; Martel, S.; Carrupt, P.-A. Retention time prediction for dereplication of natural products (CxHyOz) in LC–MS metabolite profiling. *Phytochemistry* **2014**, *108*, 196–207.
- (20) Stanstrup, J.; Neumann, S.; Vrhovsek, U. PredRet: prediction of retention time by direct mapping between multiple chromatographic systems. *Analytical chemistry* 2015, 87, 9421–9428.
- (21) Cao, M.; Fraser, K.; Huege, J.; Featonby, T.; Rasmussen, S.; Jones, C. Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. *Metabolomics* **2015**, *11*, 696–706.
- (22) Falchi, F.; Bertozzi, S. M.; Ottonello, G.; Ruda, G. F.; Colombano, G.; Fiorelli, C.; Martucci, C.; Bertorelli, R.; Scarpelli, R.; Cavalli, A., et al. Kernel-based, partial least squares quantitative structure-retention relationship model for UPLC retention time prediction: a useful tool for metabolite identification. *Analytical chemistry* **2016**, *88*, 9510–9517.
- (23) Bruderer, T.; Varesio, E.; Hopfgartner, G. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition. *Journal of Chromatog*raphy B 2017, 1071, 3–10.
- (24) Amos, R. I.; Haddad, P. R.; Szucs, R.; Dolan, J. W.; Pohl, C. A. Molecular modeling and prediction accuracy in Quantitative Structure-Retention Relationship calculations for chromatography. *TrAC Trends in Analytical Chemistry* **2018**, *105*, 352–359.
- (25) Aalizadeh, R.; Nika, M.-C.; Thomaidis, N. S. Development and application of retention

time prediction models in the suspect and non-target screening of emerging contaminants. *Journal of Hazardous materials* **2019**, *363*, 277–285.

- (26) Pasin, D.; Mollerup, C. B.; Rasmussen, B. S.; Linnet, K.; Dalsgaard, P. W. Development of a single retention time prediction model integrating multiple liquid chromatography systems: Application to new psychoactive substances. *Analytica Chimica Acta* 2021, 1184, 339035.
- (27) Aicheler, F.; Li, J.; Hoene, M.; Lehmann, R.; Xu, G.; Kohlbacher, O. Retention time prediction improves identification in nontargeted lipidomics approaches. *Analytical chemistry* 2015, *87*, 7698–7704.
- (28) Wolfer, A. M.; Lozano, S.; Umbdenstock, T.; Croixmarie, V.; Arrault, A.; Vayer, P. UPLC–MS retention time prediction: A machine learning approach to metabolite identification in untargeted profiling. *Metabolomics* **2016**, *12*, 8.
- (29) Bach, E.; Szedmak, S.; Brouard, C.; Böcker, S.; Rousu, J. Liquid-chromatography retention order prediction for metabolite identification. *Bioinformatics* 2018, 34, i875– i883.
- (30) Bonini, P.; Kind, T.; Tsugawa, H.; Barupal, D. K.; Fiehn, O. Retip: retention time prediction for compound annotation in untargeted metabolomics. *Analytical chemistry* 2020, *92*, 7515–7522.
- (31) Feng, C.; Xu, Q.; Qiu, X.; Ji, J.; Lin, Y.; Le, S.; She, J.; Lu, D.; Wang, G., et al. Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS. *Chemosphere* 2021, 271, 129447.
- (32) Liapikos, T.; Zisi, C.; Kodra, D.; Kademoglou, K.; Diamantidou, D.; Begou, O.; Pappa-Louisi, A.; Theodoridis, G. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine

Learning algorithms and evaluating their performance. *Journal of Chromatography B* **2022**, *1191*, 123132.

- (33) Bouwmeester, R.; Martens, L.; Degroeve, S. Comprehensive and empirical evaluation of machine learning algorithms for small molecule LC retention time prediction. *Analytical chemistry* 2019, *91*, 3694–3703.
- (34) Domingo-Almenara, X.; Guijas, C.; Billings, E.; Montenegro-Burke, J. R.; Uritboonthai, W.; Aisporna, A. E.; Chen, E.; Benton, H. P.; Siuzdak, G. The METLIN small molecule dataset for machine learning-based retention time prediction. *Nature communications* **2019**, *10*, 5811.
- (35) Ju, R.; Liu, X.; Zheng, F.; Lu, X.; Xu, G.; Lin, X. Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules. *Analytical Chemistry* **2021**, *93*, 15651–15658.
- (36) Fedorova, E. S.; Matyushin, D. D.; Plyushchenko, I. V.; Stavrianidi, A. N.; Buryak, A. K. Deep learning for retention time prediction in reversed-phase liquid chromatography. *Journal of Chromatography A* 2022, 1664, 462792.
- (37) Yang, Q.; Ji, H.; Lu, H.; Zhang, Z. Prediction of liquid chromatographic retention time with graph neural networks to assist in small molecule identification. *Analytical Chemistry* 2021, 93, 2200–2206.
- (38) Zaretckii, M.; Bashkirova, I.; Osipenko, S.; Kostyukevich, Y.; Nikolaev, E.; Popov, P.
 3D chemical structures allow robust deep learning models for retention time prediction. Digital Discovery 2022, 1, 711–718.
- (39) Osipenko, S.; Nikolaev, E.; Kostyukevich, Y. Retention Time Prediction with Message-Passing Neural Networks. *Separations* **2022**, *9*, 291.

- (40) García, C. A.; Gil-de-la Fuente, A.; Barbas, C.; Otero, A. Probabilistic metabolite annotation using retention time prediction and meta-learned projections. *Journal of Cheminformatics* 2022, 14, 1–23.
- (41) Weiss, K.; Khoshgoftaar, T. M.; Wang, D. A survey of transfer learning. Journal of Big data 2016, 3, 1–40.
- (42) Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv preprint arXiv:1710.10903 2017,
- (43) Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 2014,
- (44) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.;
 Polosukhin, I. Attention is all you need. Advances in neural information processing systems 2017, 30.
- (45) Landrum, G., et al. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. *Greg Landrum* 2013, 8.
- (46) Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450 2016,

Methods	MAE(s)	MRE(%)	MedAE(s)	MedRE(%)	\mathbb{R}^2
GNN-RT	39	5	24		0.85
1D-CNN	34.7	4.3	18.7	2.4	
Blender	34		17.2		
CPORT	44	5.5	26	3.4	
MPNN	31.5	4	16		0.879
RT-Transformer	27.3	3.2	11.88	1.58	0.87

Table 1: RT Prediction Accuracy of Different Models

Figure 6: distribution of errors

Table 2: MAEs of different models on multiple datasets

Model	RIKEN Retip	FEM_long	Eawag_XBridgeC18	LIFE_new
1D-CNN	32.4		—	23.6
MPNN	38.2	204.6	80.9	22.1
GNN-RT		235.01	112.78	29.38
RT-Transformers(SMRT_Retained)	37.16	184.04	73.34	20.36
RT-Transformers($SMRT$)		176.53	69.8	22.12

dataset	mae(s)	$\operatorname{mre}(\%)$	medAE(s)	medRE(%)	R2
Acquity HSST3-RP-60mn	328.73	49.10	238.73	19.12	0.62
AjsTestF	77.57	41.21	50.11	25.60	0.58
AjsUoB	61.25	51.01	32.91	26.60	0.68
BDD_C18	52.07	46.67	18.88	13.58	0.78
BfG_NTS_RP1	78.84	20.52	53.09	10.54	0.72
CBM_Test_A	150.65	41.93	131.50	34.07	-0.05
$CBM_Test_A_$	57.63	20.20	41.33	13.30	-0.15
CBM_Test_B	137.66	46.14	112.38	37.94	-0.04
CBM_Test_E	75.47	26.30	58.15	19.72	-0.01
CBM_Test_F	23.26	3.39	17.88	2.58	-0.82
CBM_Test_G	133.39	45.91	103.12	23.17	0.35
CS1	32.95	10.31	21.86	3.65	0.88
Cao_HILIC	101.74	64.94	52.28	36.21	0.48
$Eawag_XBridgeC18$	73.34	27.43	58.40	13.41	0.82
FEM_{long}	184.04	36.85	122.45	11.80	0.93
FEM_orbitrap_plasma	50.29	18.63	35.87	8.77	0.94
HILIC_BDD_2	148.64	47.83	91.77	17.93	0.54
HILIC tip	80.51	42.63	50.79	26.49	0.51
IJM TEST	92.66	51.26	36.84	11.30	0.27
IPB Halle	48.75	38.98	29.04	20.61	0.64
KI GIAR zic HILIC pH2 7	97.36	43.87	80.22	23.03	0.51
LIFE new	20.36	26.61	11.82	12.53	0.87
LIFE^{-} old	11.57	16.04	8.27	9.31	0.91
MTBLS87	72.54	12.30	51.62	7.88	0.65
MTBLS 36	61.16	38.45	29.26	18.79	-0.01
Mceachran HPLC	50.54	26.08	42.32	16.19	0.70
Meister zic-pHILIC pH9.3	71.23	35.49	54.24	24.10	0.51
RIKEN	45.29	81.57	17.25	30.79	0.62
RPFDAMM	23.11	8.20	14.37	4.59	0.84
RPLC zorbax150 JH	32.94	30.41	20.43	20.06	0.60
RPMMFDA –	33.48	18.14	22.28	7.01	0.79
SNU RIKEN POS	37.39	15.12	28.60	10.83	0.80
SNU RP indole annotation	34.34	16.31	18.94	7.53	0.94
\overline{SNU} \overline{RP} indole order	36.89	17.47	24.88	8.65	0.83
SNU organoid	95.81	43.91	60.87	11.99	0.87
UFZ Phenomenex	128.79	21.63	81.19	6.18	0.64
UniTovama Atlantis	44.80	5.12	27.50	3.05	0.90
Waters ACOUITY UPLC					
with Synapt G1 O-TOF	135.62	48.76	97.53	31.20	0.29
Waters STA Forensic	132.33	54.71	110.49	32.78	-0.03
cecum JS	36.89	17.47	24.88	8.65	0.83

Table 3: Means of MAE, MedAE, MRE, MedRE, and R2 of 10-fold Cross-Validation of 41 CMs transfer by the model trained with retained molecules

dataset	mae	mre	medAE	medRE	R2
Acquity HSST3-RP-60mn	87.15	39.14	90.71	8.17	0.18
AjsTestF	8.60	6.97	8.06	3.69	0.11
AjsUoB	6.64	6.53	7.39	5.04	0.07
BDD_{C18}	9.82	14.37	8.01	3.07	0.09
BfG_NTS_RP1	8.60	4.04	7.32	1.43	0.07
CBM_Test_A	10.39	4.09	18.57	3.27	0.05
$CBM_Test_A_$	23.79	8.72	26.84	8.05	0.30
CBM_Test_B	13.94	5.94	19.29	6.56	0.07
CBM_Test_E	15.30	5.64	15.91	5.56	0.13
CBM_Test_F	8.38	1.29	9.77	1.40	1.16
CBM_Test_G	43.49	26.09	45.35	15.43	0.39
CS1	11.44	12.14	7.96	1.22	0.07
Cao_HILIC	13.24	13.31	14.95	6.86	0.09
$Eawag_XBridgeC18$	8.19	8.26	11.57	2.81	0.05
FEM_long	40.01	17.49	37.76	3.88	0.04
FEM orbitrap plasma	20.21	13.51	19.84	4.83	0.05
HILIC_BDD_2	22.73	12.87	26.37	5.36	0.13
HILIC tip	8.35	5.83	7.96	3.62	0.10
IJM TEST	26.07	18.45	11.90	3.70	0.31
IPB Halle	14.07	13.26	14.93	9.27	0.28
KI_GIAR_zic_HILIC_pH2_7	10.14	7.28	13.15	4.96	0.11
$LIFE_new$	6.39	11.79	5.77	5.84	0.08
$\mathrm{LIFE}_\mathrm{old}$	2.61	4.70	2.51	3.23	0.08
MTBLS87	27.52	5.90	28.99	3.74	0.29
MTBLS_36	35.53	22.21	25.23	8.55	1.16
Mceachran HPLC	12.39	7.49	11.64	5.31	0.21
Meister zic-pHILIC pH9.3	14.83	8.32	16.65	6.50	0.18
RIKEN	16.32	25.34	5.39	9.64	0.28
RPFDAMM	9.54	4.65	8.75	2.95	0.14
RPLC_zorbax150_JH	7.24	7.78	6.26	6.07	0.25
RPMMFDA	3.24	3.79	2.15	0.78	0.06
SNU_RIKEN_POS	3.42	1.71	3.31	1.37	0.04
$SNU_RP_indole_annotation$	14.15	9.37	11.09	3.51	0.06
SNU_RP_indole_order	18.78	13.29	16.19	5.50	0.37
SNU_organoid	47.68	38.69	37.89	4.47	0.13
UFZ_Phenomenex	30.13	12.70	18.94	1.46	0.11
UniToyama_Atlantis	16.10	1.99	15.09	1.69	0.08
Waters ACQUITY UPLC	17 44	0.40	15.97	1 00	0.00
with Synapt G1 Q-TOF	11.44	8.49	15.37	4.08	0.22
Waters STA Forensic	19.06	15.50	25.62	8.26	0.07
$cecum_JS$	18.78	13.29	16.19	5.50	0.37

Table 4: Standard deviation of MAE, MedAE, MRE, MedRE, and R2 of 10-fold Cross-Validation of 41 CMs transfer by the model trained with all molecules

dataset	mae	mre	medAE	medRE	R2
Acquity HSST3-RP-60mn	311.33	32.39	225.11	17.42	0.65
AjsTestF	73.95	38.07	45.75	23.49	0.60
AjsUoB	51.92	45.91	28.19	21.17	0.77
BDD_C18	47.95	49.22	20.36	12.53	0.78
BfG_NTS_RP1	76.16	18.76	49.77	10.13	0.72
CBM_Test_A	158.05	43.76	139.76	35.29	-0.07
$CBM_Test_A_$	76.62	25.92	59.44	19.15	-0.10
CBM_Test_B	141.89	47.65	115.75	37.55	-0.07
CBM_Test_E	85.32	28.26	67.59	21.78	0.03
CBM_Test_F	53.58	11.38	21.13	3.10	-0.07
CBM_Test_G	174.07	61.69	125.25	29.07	-0.02
CS1	36.63	20.73	16.90	2.89	0.85
Cao_HILIC	105.88	60.98	52.18	34.46	0.50
$Eawag_XBridgeC18$	69.80	22.65	48.04	12.52	0.81
FEM_long	176.53	47.24	106.03	10.46	0.91
FEM_orbitrap_plasma	68.28	22.54	39.34	9.14	0.88
HILIC_BDD_2	116.60	38.25	57.87	11.87	0.66
$\mathrm{HILIC_tip}$	73.69	38.10	44.90	24.07	0.58
IJM_TEST	104.98	44.60	31.15	9.80	0.26
IPB_Halle	27.97	24.21	15.53	10.91	0.86
KI_GIAR_zic_HILIC_pH2_7	81.02	34.77	59.41	16.98	0.64
$\mathrm{LIFE_new}$	22.12	30.29	9.87	9.93	0.81
$\mathrm{LIFE_old}$	13.09	17.31	7.65	8.94	0.86
MTBLS87	138.18	22.27	86.90	13.56	0.33
MTBLS_36	93.06	42.57	38.43	20.72	0.18
Mceachran HPLC	84.21	33.01	47.58	18.30	0.32
Meister zic-pHILIC pH9.3	80.18	34.06	50.63	23.13	0.42
RIKEN	50.70	61.01	11.51	27.15	0.52
RPFDAMM	33.74	26.27	18.51	6.04	0.76
RPLC_zorbax150_JH	47.36	38.89	24.50	19.77	0.35
RPMMFDA	30.90	14.69	20.94	6.28	0.82
SNU_RIKEN_POS	35.85	13.86	25.56	9.64	0.80
SNU_RP_indole_annotation	42.59	17.97	17.68	7.41	0.88
$\overline{SNU}_{RP}_{indole}_{order}$	46.09	19.16	21.99	8.47	0.87
SNU organoid	151.22	51.93	62.88	16.57	0.59
UFZ Phenomenex	105.13	13.78	67.53	5.30	0.79
UniToyama Atlantis	95.30	13.32	55.00	5.99	0.67
Waters ACQUITY UPLC	100.00	10 71	07.01	00.05	0.49
with Synapt G1 Q-TOF	123.82	48.71	87.91	20.85	0.43
Waters STA Forensic	149.06	56.21	125.59	36.79	-0.08
$cecum_JS$	46.14	19.22	22.04	8.51	0.87

Table 5: Means of MAE, MedAE, MRE, MedRE, and R2 of 10-fold Cross-Validation of 41 CMs transfer by the model trained with all molecules

dataset	mae	mre	medAE	medRE	R2
Acquity HSST3-RP-60mn	62.22	9.86	83.40	6.50	0.17
AjsTestF	7.84	6.12	9.13	3.65	0.09
AjsUoB	5.77	8.59	4.59	5.31	0.06
BDD_C18	11.99	18.69	9.87	3.70	0.15
BfG_NTS_RP1	8.77	3.69	5.68	1.29	0.11
CBM_Test_A	11.73	4.84	20.14	3.63	0.06
$CBM_Test_A_$	20.96	8.47	33.88	10.37	0.29
CBM_Test_B	15.08	7.42	19.69	6.50	0.10
CBM_Test_E	14.46	5.57	19.47	5.30	0.13
CBM_Test_F	31.98	8.79	13.37	2.05	0.63
CBM_Test_G	34.52	20.47	51.31	17.34	0.36
CS1	15.26	21.12	8.44	1.36	0.12
Cao_HILIC	14.40	13.02	15.08	6.22	0.08
$Eawag_XBridgeC18$	13.61	6.51	10.23	3.17	0.11
${ m FEM_long}$	42.36	31.66	30.43	3.03	0.09
$FEM_{orbitrap_{plasma}}$	33.48	15.63	26.15	4.29	0.15
$HILIC_BDD_2$	18.95	8.51	17.75	3.12	0.11
$\mathrm{HILIC_tip}$	7.13	4.79	7.26	3.97	0.09
IJM_TEST	27.62	19.84	11.04	3.68	0.27
IPB_Halle	10.84	13.17	10.88	6.89	0.18
KI_GIAR_zic_HILIC_pH2_7	9.94	5.99	12.09	2.60	0.12
$LIFE_new$	6.04	11.86	4.32	4.26	0.12
$\mathrm{LIFE}_\mathrm{old}$	4.03	6.31	3.00	2.86	0.15
MTBLS87	51.15	7.63	46.76	7.23	0.38
MTBLS_36	39.46	18.71	38.86	12.47	0.73
Mceachran HPLC	34.19	11.64	19.06	6.47	0.33
Meister zic-pHILIC pH9.3	20.68	8.58	17.66	6.38	0.23
RIKEN	15.08	22.46	7.18	15.06	0.28
RPFDAMM	19.40	42.98	9.00	2.61	0.31
$RPLC_zorbax150_JH$	20.27	13.37	11.29	6.21	0.48
RPMMFDA	3.01	2.64	2.36	0.65	0.07
SNU_RIKEN_POS	3.95	1.51	3.84	1.60	0.04
$SNU_{RP_indole_annotation}$	18.66	12.09	11.40	3.75	0.11
$SNU_{RP_indole_order}$	24.32	17.37	18.13	4.35	0.15
$SNU_{organoid}$	87.31	29.18	44.94	13.66	0.46
$\rm UFZ_Phenomenex$	15.33	5.01	15.04	1.23	0.09
UniToyama_Atlantis	45.24	10.81	41.01	4.24	0.24
Waters ACQUITY UPLC	1/ 97	0.00	17 09	5 20	0.15
with Synapt G1 Q-TOF	14.01	9.00	11.92	0.89	0.10
Waters STA Forensic	22.29	15.54	30.47	7.96	0.10
$cecum_{JS}$	24.30	17.34	18.13	4.32	0.15

Table 6: Standard deviation of MAE, MedAE, MRE, MedRE, and R2 of 10-fold Cross-Validation of 41 CMs transfer by the model trained with all molecules

		Num of	Num of	Rate of	candidate is
formula	experimental	candidates	candidates	candidates	filtorod
ioiinala	RT	searched from	filtered by	filtered by	
		PubChem	RT-TFM	RT-TFM	Out
C16H16N4O	796.3	8896	7505	84.36	TRUE
C27H33N3OS	855.8	307	279	90.88	FALSE
C15H21N3O	518.3	27937	18393	65.84	TRUE
C23H28N6O2S	1108.2	992	983	99.09	FALSE
C19H23N3O3	888.9	21452	19283	89.89	TRUE
C21H23BrN4O3	621.4	375	257	68.53	FALSE
C22H22N2O5S	802.5	3753	2817	75.06	TRUE
C19H20N2O3	869.6	15864	11871	74.83	TRUE
C16H20N4O3	709.0	10154	7148	70.40	TRUE
C21H19N5O	673.8	3683	2354	63.92	TRUE
C17H14ClN3O2S	903.0	1691	1152	68.13	TRUE
C23H21FN6O4S	782.7	101	61	60.40	TRUE
C20H19N5O2S	737.8	3192	2029	63.57	TRUE
C23H17N3O6	1198.2	541	461	85.21	TRUE
C23H32N2O4	764.5	3137	2423	77.24	TRUE
C19H19ClN4O2S	891.5	1966	1457	74.11	TRUE
C18H26N4OS	914.5	3414	3205	93.88	TRUE
C24H27N5O2	858.6	5646	5038	89.23	TRUE
C18H15F2N3O	647.6	715	527	73.71	TRUE
C22H21N5O2	1083.7	5390	5204	96.55	TRUE
C14H19NO2	821.0	24904	19803	79.52	FALSE

Table 7: The results of RT-Transformer trained with retained molecules of SMRT in ranking capability

C24H28N4O2	692.7	7952	4971	62.51	TRUE
C19H15BrN4O	1146.6	305	276	90.49	TRUE
C18H13N3O4	1147.9	1163	1125	96.73	TRUE
C17H27NO3	685.7	13286	7888	59.37	FALSE
C20H24N4O4S	791.7	3384	2637	77.93	TRUE
C22H27N3O6S2	747.3	569	381	66.96	TRUE
C10H13N5	726.4	3899	3711	95.18	FALSE
C21H26N4O4S	617.4	3155	1785	56.58	TRUE
C17H16N2O2S	800.2	4575	3151	68.87	TRUE
C13H22N2O3	561.2	14740	6257	42.45	TRUE
C15H15N3O3S	728.0	3777	2284	60.47	TRUE
C24H36N4O3	627.0	2151	1029	47.84	TRUE
C16H19N3O2S3	972.6	148	131	88.51	TRUE
C22H31N3O4	1062.6	4355	4191	96.23	TRUE
C18H26N2O2	745.5	14671	10605	72.29	TRUE
C17H22ClFN2O3S	885.2	69	55	79.71	TRUE
C25H29N5O2S	1058.8	2331	2138	91.72	TRUE
C17H18N4O2S	838.0	6287	5198	82.68	TRUE
C16H10ClN5O	796.7	135	96	71.11	TRUE
C19H22N4O2	604.3	14431	6598	45.72	TRUE
C20H21N3O4S	918.0	7945	6329	79.66	TRUE
C23H22N4O	673.4	3755	2508	66.79	TRUE
C22H21N5O4S	761.0	1358	902	66.42	TRUE
C15H22N2OS	933.6	9324	8437	90.49	TRUE
C20H16FN3O4S	924.0	373	271	72.65	TRUE
C19H18ClN3O3	816.1	4212	2976	70.66	TRUE
C22H23ClFN5O	723.1	235	159	67.66	FALSE

C26H33N3O4S	1017.5	2420	1883	77.81	TRUE
C24H28N4O3	852.0	8984	7571	84.27	TRUE
C20H23N5O2	697.1	9960	6992	70.20	TRUE
C21H21FN2O4S	872.0	1128	726	64.36	TRUE
C18H23NO3	621.6	9160	7151	78.07	TRUE
C23H24ClN3O4S	795.7	1046	838	80.11	TRUE
C19H20ClN3O	1058.0	2089	1881	90.04	TRUE
C19H25N3O4S	928.6	5333	4572	85.73	FALSE
C18H24N4O3S2	1104.5	1400	1350	96.43	TRUE
C22H29NO5	1246.6	2295	2134	92.98	TRUE
C17H21ClFN3O2	705.4	298	214	71.81	TRUE
C16H18FN3O3S	720.7	1096	555	50.64	TRUE
C15H12FN3O2S	976.1	627	565	90.11	TRUE
C20H16N4O4S	681.2	1242	928	74.72	TRUE
C15H16N2O4	975.6	11207	10744	95.87	FALSE
C20H22N2O4	603.4	15634	13447	86.01	FALSE
C20H27N3O3S	776.9	6293	4913	78.07	TRUE
C23H24N6O3	565.6	2525	1964	77.78	TRUE
C21H16FN3O2S	1285.3	751	732	97.47	TRUE
C22H32FN3O3	724.2	363	260	71.63	FALSE
C19H18N4O2	799.1	8289	6300	76.00	TRUE
C20H24Br2N2O	906.2	42	35	83.33	TRUE
C21H28ClN5O	585.0	636	398	62.58	FALSE
C21H22ClN3O2	811.9	3962	3070	77.49	TRUE
C24H30FN3O	642.2	828	449	54.23	TRUE
C29H41N3O3	924.4	933	797	85.42	TRUE
C21H28N2O3	653.7	9554	6099	63.84	TRUE

C21H17N3O2S	745.8	2527	2104	83.26	TRUE
C10H13N3O3S2	738.1	645	559	86.67	TRUE
C18H15FN4O4	907.3	434	332	76.50	TRUE
C23H31N5O2	646.4	4223	1990	47.12	TRUE
C31H35NO10	721.2	107	85	79.44	TRUE
C18H23N3O4	750.0	10416	7474	71.75	TRUE
C19H25N3O3	1021.0	18650	18102	97.06	TRUE
C20H19N5O3	649.6	4171	2208	52.94	TRUE
C20H26N4O3	783.0	11688	9684	82.85	TRUE
C24H33N5O3	873.9	2678	2479	92.57	TRUE
C20H19ClN2O6	1143.4	536	487	90.86	FALSE
C19H20N2O	879.0	5684	4173	73.42	TRUE
C16H18FN3O3S	685.3	1096	513	46.81	TRUE
C15H19FN4O2S	736.0	625	375	60.00	TRUE
C14H13BrN4O	684.8	989	644	65.12	TRUE
C9H10N2O2	655.4	5495	3163	57.56	FALSE
C24H28N4O3	656.6	8984	5066	56.39	TRUE
C16H16N4O	1025.2	8896	8730	98.13	TRUE
C19H20N4O3	642.0	9785	5317	54.34	FALSE
C23H24FN5OS	1108.7	377	335	88.86	FALSE
C22H24FN5O4S	922.2	314	271	86.31	TRUE
C27H31N3O3S	674.1	2334	1744	74.72	TRUE
C17H16N2O6	777.5	1900	1220	64.21	TRUE
C26H27N3O3S	830.9	2862	2365	82.63	TRUE
C18H16FN3OS	783.6	1136	822	72.36	TRUE
