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ABSTRACT  

Machine learning models provide an informed and efficient strategy to create 
novel peptide and protein sequences with the desired profiles. Nevertheless, they are 
primarily trained on sequences where the tridimensional structures of peptides and 
proteins are often overlooked. We need a fast and reliable approach to estimate the 
structural diversity of medium-large training sets before building models. This study 
benchmarked four protein structure prediction methods (Jpred4, PEP2D, PSIPRED, 
AlphaFold2) using 261 curated and experimentally known structures from the PDBe 
database. We applied our best predictor to map the structural landscape of GRAMPA, 
the giant and vastly uncharted repository of 5,980 antimicrobial peptides. The dataset 
was predominantly made of loose helices (65.1%), followed by random coils (17.8%), 
and β-stranded and mixed structures accounted for the rest. 
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1. INTRODUCTION 

Advances in computer sciences, accessible high-performing machines and the 
proliferation of large public databases have accelerated the development of 
computational models for peptide design and protein engineering. The advent of 
artificial intelligence (AI) in the biological sciences has led to the creation of machine 
learning (ML) models capable of predicting and generating new peptides and proteins 
with the desired characteristics. Predictive models are trained on small-to-large 
datasets to learn the relationships between the biological sequences and their 
respective functional measurements (e.g., thermostability, bacterial growth inhibition, 
protein binding affinity). Generative models can learn meaningful representations 
(e.g., a conserved cysteine framework, a catalytic site) to create new peptide/protein 
sequences that resemble the native counterparts. The interplay between predictive 
and generative AI models provide an informed and efficient sequence design by 
predicting the outcomes of different peptide/protein sequences. Many comprehensive 
reviews have referenced the successful applications of ML-guided sequence design to 
antimicrobial peptides (AMPs)1–4, protein binders5, antigen-specific monoclonal 
antibodies6–9, protein families10–15 and enzymes16–20. The field of ML-guided 
peptide/protein sequence design is snowballing; the reader is encouraged to consult 
these two GitHub repositories21,22 to stay informed. 

 Machine learning models primarily predict or generate novel peptides and 
proteins from sequential representation, lacking structural information. To minimise 
the impact that structural factors might have upon biological prediction or sequence 
generation, researchers have voluntarily selected sequences based on structural or 
evolutionary constraints, so they presumably adopt the same tridimensional 
structure(s). In recent years, computational peptide designers have capitalised on 
neural network architectures to predict or generate novel α-helical AMPs23–26, α-helical 
non-hemolytic AMPs27 or α-helical non-hemolytic anticancer peptides28,29. Likewise, 
Batra and co-workers trained their models on peptides susceptible to form β-sheets to 
develop self-assembling materials30. In machine learning-guided directed evolution17, 
researchers have used directed evolution to assemble a set of homologous sequences, 
then devised robust ML strategies to engineer the next batch of proteins (e.g., 
channelrhodopsins31, fluorescent proteins32) or enzymes (e.g., glycosyltransferase 
superfamily 133). Alternatively, several upcoming “structure-first” ML strategies 
tackle the sequence-structure-function problem upside down; by designing sequences 
that would fold into a pre-determined backbone structure derived from native 
topologies or generated de novo34–37. These approaches are often regrouped under the 
terms inverse protein folding,  structure-based protein design or fixed-backbone protein design. 
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 Experimentally solving the structure of a peptide or a protein by techniques 
like X-ray crystallography or nuclear magnetic resonance is time-consuming and 
costly, making it challenging to have known structures for the vast number of 
available sequences38. This issue is even more pronounced in peptides, as their short 
length and high flexibility make it difficult to obtain stable structures experimentally. 
As a result, various computational methods have been developed to estimate 
peptide/protein structures, from the propensities of specific amino acids to form 
secondary structures39,40 to the predictions of secondary structures38,41 and tertiary 
structures42. Basic methods are inaccurate but easy to use, while advanced methods 
have high accuracy but require significant computational resources. We need a fast 
and reliable approach to estimate the structural diversity of medium-large training 
datasets used prior building ML models. Secondary structure predictors offer a 
moderate cost and good performance, and are often used as a preliminary step before 
predicting the tridimensional structure. They are particularly handy for analysing the 
structural landscape of medium-large peptide/protein databases. 

 In the present study, we used GRAMPA, the giant repository of AMPs, 
counting 6,760 unique sequences43. Despite the abundance of sequences, the structural 
information of most AMPs remains unclear as only a tiny fraction (2.5%) have a 
resolved structure44. Not many databases provide information on the number of 
structures they contain, but in the case of APD45, the majority (60.41%) of its sequences 
have no known structure, 15.20% are peptides with identified disulfide bonds but lack 
a tridimensional structure, while 14.38% are α-helical peptides, and just 2.59% have β-
sheet structures. This distribution is likely similar across other databases, indicating a 
significant gap in our understanding of AMP structures and the greater prevalence of 
α-helices. Here, we benchmarked four protein structure prediction methods - Jpred446, 
PEP2D47, PSIPRED48, AlphaFold249 - using 261 curated and experimentally known 
structures from the PDBe database. We applied our best structure predictor to map 
the structural landscape of GRAMPA, the giant yet vastly uncharted repository of 
antimicrobial peptides.  
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2. MATERIALS AND METHODS 

2.1. GRAMPA dataset. 

2.1.1. Collection. We obtained the peptide sequences from the GRAMPA repository 
(Giant Repository of AMP Activities), a robust database created in 2018 that contains 
the sequences of 6,760 peptides43. These sequences are associated with 51,345 
experimental minimum inhibitory concentration (MIC) values for 766 different 
bacteria, the most represented being E. coli (n=9,150), S. aureus (n=8,954), and P. 
aeruginosa (n=4,966), expressed in µM. MIC is the standard measure of antimicrobial 
activity and refers to the lowest drug concentration capable of inhibiting bacterial 
growth. In the present study, we only used the MIC values to filter GRAMPA into 
subsets. The GRAMPA repository and detailed information are available at: 

https://github.com/zswitten/Antimicrobial-Peptides  

2.1.2. Cleaning. The creators of GRAMPA obtained the peptide sequences and their 
experimental values from 5 different databases (APD45, DAPD50, DBAASP51, 
DRAMP52, and YADAMP53) resulting in overlapping information (e.g., same strain-
associated sequences, activity measured against multiple strains of the same bacterial 
species). We exclusively saved the unique pairs of peptide sequence - bacteria - MIC 
value, and we eliminated sequences with non-canonical amino acids or some unusual 
modification (i.e., other than amidation). 

 

2.2. Benchmarking dataset. 

2.2.1. Identification of experimentally known PDB structures. In order to identify the 
structures associated with the GRAMPA sequences, we used the Representational 
State Transfer Application Programming Interface (REST API) of the Protein Data 
Bank in Europe (PDBe). We modified three of the tutorial scripts provided by the 
PDBe (available at: https://github.com/PDBeurope/pdbe-api-training) to obtain the 
PDB identifiers of the structures associated with the GRAMPA sequences, the 
sequences belonging to these identifiers PDB and the secondary structure ranges of 
these sequences. 

2.2.2. Search for GRAMPA sequences in the PDBe database. The PDBe REST API 
sequence search module uses the MMseqs2 algorithm (Many-against-Many sequence 
searching)54 to search and cluster protein sequences with high precision in massive 
datasets based on different identity thresholds55. We carried out a search with this 
module of all the GRAMPA sequences after the initial filtering against the PDBe 
database, saving all the results that the algorithm returned without a restriction on the 
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maximum or minimum values of identity percentage and e-value, obtaining the PDB 
identifiers and the sequences of the structures related to the consensus sequences. 

2.2.3. Selection of GRAMPA peptide sequence–PDB structure pairs. To ensure that the 
structures obtained are significant for the study and represent a peptide and not a 
protein sequence motif, the PDB structures whose sequence had a difference in length 
greater than five residues compared to the GRAMPA sequences were eliminated. 
Subsequently, to guarantee a close relationship between the GRAMPA sequences and 
the PDB sequences, we calculated the Smith-Waterman distance56 between both 
groups. This algorithm performs a local alignment of biological sequences to search 
for similar regions between them, comparing motifs of different sizes to identify 
conserved domains, so it is more reliable than the percentage identity provided by the 
PDBe REST API sequence search module. The Smith-Waterman distance was 
calculated as a percentage for each GRAMPA peptide sequence–PDB structure pair, 
and only those pairs with a Smith-Waterman distance of at least 0.70 (1 indicates two 
identical sequences) were retained. Finally, due to the limitations of the secondary 
structure prediction algorithms we use below, we removed sequences longer than 50 
residues. 

2.2.4. Extraction of secondary structure ranges (H, E, C). We used the PDBe REST API 
secondary structure module, which details the ranges of ordinary secondary 
structures (H: helices, E: extended strand/β-sheets and C: coils) of residues found in a 
polypeptide chain to determine the secondary structure of the experimental 
tridimensional structures reported in PDBe. Some sequences in PDBe have more than 
one reported structure, which may be because they were reported by different 
research laboratories, were obtained by different experimental methods, or under 
different conditions. Because some of these structures show discrepancies in the 
secondary structure ranges, we kept only those sequences with only one reported 
structure. Secondary structure ranges (H, E, C) were converted in percentages (%). 

 

2.3. Protein secondary structure prediction (PSSP) methods. 

Two-hundred sixty one GRAMPA sequences with related experimental structure 
were used to test the performance of three secondary structure prediction tools: 
Jpred4, PEP2D and PSIPRED. The results are shown in Supplementary Information 
Table S1. 

Jpred4 uses the JNet 2.3.1 algorithm based on neural networks for the 
prediction of secondary structure, solvent accessibility and supercoiled helices of 
proteins. It can be used in single sequences, sequence batches or multiple alignments 
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and is available as a web server at: https://www.compbio.dundee.ac.uk/jpred/. It also 
has a REST API to easily automate the predictions, we use this method in this work. 

PEP2D is a tool developed in 2019 for the prediction of peptide secondary 
structure, it uses a random forest type multiclass classification algorithm and was built 
with a database balanced by ordinary folding type with sequences between 5 and 50 
residues of length47. The web server is available at: 
http://crdd.osdd.net/raghava/pep2d/. 

Finally, we used PSIPRED version 2.0, which is based on neural networks to 
predict the ordinary states of protein secondary structure48, included in the PHYRE257 
protein tertiary structure prediction suite available at: http://www.sbg. 
bio.ic.ac.uk/~phyre2/html/page.cgi?id=index. Although version 4.0 of PSIPRED is 
available as a web server at http://bioinf.cs.ucl.ac.uk/psipred, it only allows secondary 
structure prediction of one sequence at a time, so it was unfeasible to use it with our 
dataset. 

 

2.4. Protein tertiary structure prediction method 

We predicted the tridimensional structures of 261 AMP sequences using ColabFold58, 
an easy-to-use interface using the AlphaFold249 technology within the Google Colab 
environment. Their batch mode allows for the simultaneous protein structure 
prediction of medium-large datasets. In order to compare AlphaFold2 results with the 
aforementioned PSSP tools, we assigned secondary structure ranges (H, E, C) to our 
best-predicted structures using STRIDE59. 

 

2.5. Comparing H, E, C distributions. 

After the secondary structure prediction of the GRAMPA sequences with 
experimentally resolved structure, we calculated the Jensen-Shannon distance 
between the secondary structure probability distributions of each prediction method 
and the experimental reference. The Jensen-Shannon distance is calculated from the 
square root of the Jensen-Shannon divergence and makes it possible to measure the 
similarity between two probability distributions60, it is based on the Kullback-Leibler 
divergence, with the advantage of being symmetric. The Jensen-Shannon distance is 
defined as: 

JSD (p||q) = !!(#||%)'!((||%)
)

                                 (Eq. 1) 

where m = #'(
)

 and D is the Kullback-Leibler divergence. 
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2.6. GRAMPA structural prediction. 

We calculated the secondary structure of the GRAMPA sequences with PEP2D, 
filtering out sequences with unusual amino acids and keeping only those with a length 
of 50 residues or less due to program limitations. Subsequently, we obtained the 
density of sequences by secondary structure to identify the largest structure 
represented, we repeated the procedure with three different data subsets for the most 
represented microorganisms in GRAMPA, and we evaluated the distribution of 
antimicrobial activity for each type of secondary structure. We then divided the 
original dataset into subclassifications based on their percentage composition of 
secondary structure into seven groups: helical and coil, mostly helical, helical and 
stranded, mostly stranded (β-sheet), stranded and coil, and mixed structures and 
mostly coil.  

 

2.7. Graphics.  

We displayed the predictions of the three states of secondary structure (H, E, C) using 
a ternary plot with R version 4.1.2 (2021-11-01)61 in R Studio62 with libraries ggtern and 
ggplot. The reported H/E/C values must be non-null to make sure that all data points 
are considered for density estimation.  



8 

3. RESULTS AND DISCUSSION 

3.1. Building the benchmarking dataset 

3.1.1. Identifying and sorting known experimental structures 

We initially set to benchmark four protein structure prediction methods - 
Jpred446, PEP2D47, PSIPRED48 and AlphaFold249 - using a curated dataset of peptide 
sequences and their corresponding experimentally known structures from the PDBe 
database. We collected our benchmarking dataset from the GRAMPA repository 
(Giant Repository of AMP Activities), including 6,760 peptide sequences43. These 
sequences are associated with 51,345 experimental minimum inhibitory concentration 
(MIC) values for 766 different bacteria, the most represented being E. coli (n=9,150), S. 
aureus (n=8,954), and P. aeruginosa (n=4,966). After filtering for sequences with 
undetermined or non-canonical amino acids, we obtained 6,169 unique sequences and 
45,498 associated MIC values for 738 unique bacteria. The sequences against E. coli, S. 
aureus and P. aeruginosa will be used later in the study to compare the predicted 
structural landscapes across the three bacterial strains. We obtained 66,805 
associations/pairs of a GRAMPA sequence with a PDBe structure. However, these 
results only comprised 2,143 GRAMPA sequences related to 6,087 unique identifiers. 
Many of these structures were related to more than one GRAMPA sequence and that, 
of the total number of sequences, only 34.7% had a related experimental structure 
(Figure 1A). After reviewing the most prevalent biomolecules in our results (Figure 
1B), we observed large proteins that were only distantly related to the GRAMPA 
sequences through a short sequence motif with a significant degree of sequence 
identity between the two. Therefore, they did not truly represent the structures of the 
peptides present in GRAMPA. For example, we identified 36 GRAMPA sequences 
related to 364 PDBe identifiers belonging only to our most represented α-subunit of 
haemoglobin (Figure 1B), leading to 10,788 associations or pairs. 
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Figure 1. Obtaining our benchmarking dataset of GRAMPA sequences and related 
PDBe structures. (A) Percentages of GRAMPA sequences with or without related 
experimental structures, (B) Peptides or proteins with the largest number of related 
GRAMPA sequences, (C) Comparing length and identity between GRAMPA 
sequences and matching PDBe sequences. (D) Most represented AMP families after 
filtering the repository. 

 

3.1.2. Selecting pairs of peptide sequences – PDBe structures  

To ensure accuracy in our benchmarking study, we only considered peptides 
and concise structures, instead of peptide motifs or domains in larger proteins (Figure 
1C). They can result in varying secondary structures even though they are identical 
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sequences.  We filtered our results to retain only the structures belonging to peptides 
representative of the study. We further ensured that our selected GRAMPA and PDBe 
sequences (belonging to the experimental structures) had a maximum difference in 
length of no more than five residues. As a result, we obtained 11,266 pairs of GRAMPA 
sequences and PDBe structures, with 1,475 GRAMPA sequences linked to 1,905 PDBe 
structures that belong to 1,015 PDBe sequences. We then calculated the Smith-
Waterman distance between the GRAMPA and PDBe sequences, retaining only those 
with a minimum similarity of 70%. Our dataset consists of 3,158 pairs, with 787 unique 
GRAMPA sequences and 723 PDBe structures. Finally, we removed sequences longer 
than 50 residues (due to the limits of secondary structure prediction tools), reducing 
the number to 2,811 pairs, with 737 unique GRAMPA sequences, 435 PDBe structures 
and 320 PDBe sequences. We confirmed the usefulness of our filters by re-assessing 
the most prevalent biomolecules in our results, AMP families (Figure 1D). 

 

3.1.3. Extracting the secondary structure ranges 

Using the PDBe REST API secondary structure module, we obtained the ranges 
of secondary structure (H: helices, E: extended strand/β-sheets and C: coils) from 
residues found in the selected 435 PDBe structures. In some cases, we noted that 
multiple PDBe structures associated with the same GRAMPA sequence presented 
inconsistencies with their secondary structure annotations, as illustrated in Figure S1. 
We only kept 261 GRAMPA and PDBe sequences with only one experimentally 
known PDBe structure. We displayed the results on a ternary plot (Figure 2A), where 
each point in the figure represents a peptide structure, and its location in the plane 
alludes to its composition in secondary structures (H, E, C), expressed in percentages. 
These 261 structures, painted in dark blue, represent our experimental references or 
ground truth. We selected six peptides (1-6) and their respective known experimental 
structures to illustrate the structural trends across the ternary plot (PBDe IDs in 
parentheses). Complete helical structures are located on the top corner of the plot (e.g. 
pepG1 - (1) / 7NS1), whereas coiled and stranded structures (i.e., circulin A - (5) / 1BH4 
and arenicin-3 analogue - (3) / 5V11) would show at the bottom-right and bottom-left 
corners, respectively. The general examination of the 261 GRAMPA-related structures 
revealed that coiled motifs were the most common, accounting for 47.53% of the entire 
dataset. This was followed by helices (H) and extended strands/β-sheets (E), which 
made up 34.48% and 17.98% of the dataset, respectively (Figure 2B). The prevalence 
of coiled motifs can be attributed to their role as linker between helical and strand 
segments. As a result, it is not surprising that there are no structures made entirely of 
extended strands (E), as each pair of parallel or antiparallel chains forming a β-sheet 
will be linked by a coiled segment. 
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Figure 2. The structural landscape of our benchmarking dataset. (A) Ternary plot 
illustrating the secondary structure compositions for the 261 GRAMPA-related PDBe 
structures as ground truth (blue) and their corresponding PEP2D predictions (cyan).  
The following six examples serve as structural markers; (1) pepG1 (PDB ID: 7NS1), (2) 
termicin (1MM0), (3) synthetic arenicin-3 analogue (5V11), (4) kalata B1[W23WW] 
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(2MN1), (5) circulin A (1BH4) and (6) pleurocidin-like peptide 1a-1 (6RY9). The lines 
indicate the error between the three-state secondary structures (H, E, C) measured 
between PEP2D predictions and corresponding experimental references. (B) General 
distribution of each secondary structure (H, E, C) across our experimental references. 

 

3.2. Evaluating the performances of four protein structure predictors 

3.2.1. Protein Secondary Structure Predictions 

We set to benchmark multiple protein secondary structure prediction (PSSP) 
methods to establish a fast and reliable approach to estimating the structural diversity 
of medium-large training datasets. Several PSSP methods lacked maintenance or 
provided the structural prediction for a single query each time. We selected three 
publicly available - Jpred446, PEP2D47, and PSIPRED (using the version included in the 
PHYRE2 suite)48. We subjected the 261 GRAMPA sequences to these three PSSP 
methods and compared their performances across the assessment of the three 
secondary structure states (H, E, C). Their performances were measured using the 
Jensen-Shannon distance (JSD) between the secondary structure probability 
distributions (predictions) of each PSSP method and the experimental reference. JSD 
values range from 0 (both distributions are identical) to 1 (for completely different 
distributions). In short, the closer one H/E/C distribution is to the one made by 
experimental reference, the smaller the JSD is. The best structural predictor would be 
the one with the smallest Jensen-Shannon distance. Figure 3A illustrates the 
predictions of each PSSP method (cyan) versus the experimental distributions (blue, 
ground truth) for the three-state secondary structures -  H: helices, E: extended 
strand/β-sheets and C: coils. Overall, we observed that PEP2D predictions were the 
closest to the experimental distributions across the three states. We also noted that, for 
all three PSSP methods, the predicted distributions for β-sheet motifs were the furthest 
from the experimental distribution (largest JSD values), which could suggest that 
these models have more difficulty in predicting this secondary structure class. PEP2D 
underwent training with consideration given to the imbalance of secondary 
structures47. Indeed, its training dataset was heavily populated with coiled motifs, 
leading to a skewed outcome towards this particular secondary structure. To address 
this issue, the authors employed a balancing technique, where the weight each 
secondary structure holds in the prediction was adjusted based on the ratio between 
the most abundant secondary structure and the one that needed to be balanced. This 
could account for its good performance in predicting the three secondary structure 
states. In addition, PEP2D was solely trained using peptide sequences unlike Jpred4 
and PSIPRED. As a result, we anticipated that PEP2D would perform better when 
tested with sequences of similar length distributions that it was trained on. Finally, 
Figure 2A displayed the distribution of PEP2D secondary structure predictions (cyan) 
compared to the ground truth (blue). The six structures mentioned above also depicted 
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the differences between PEP2D predictions and experimental references. The lines 
indicated the error between the three-state secondary structures (H, E, C) measured 
between PEP2D predictions and corresponding experimental references. For example, 
the small lines for (1) pepG1 (7NS1), (2) termicin (1MM0), and (4) kalata B1[W23WW] 
(2MN1) suggested minor errors. In contrast, the lines for (3) arenicin-3 analogue 
(5V11), (5) circulin A (1BH4) and (6) pleurocidin-like peptide 1a-1 (6RY9) were wider 
suggesting more noticeable prediction errors. However, these errors remained local  
as the predictions and the experimental structures were predominantly in the same 
structural “regions''. 
 

 
 

     

 

Figure 3. Comparing four structural prediction methods. (A) Violin plots showing 
the distributions of the three secondary structure states - helix (H), strand (E), and coil 
(C) - across the three PSSP methods Jpred4, PEP2D, PSIPRED for our benchmarking 
dataset.  (B) Violin plots showing the performances of AlphaFold2 with STRIDE. 
Jensen-Shannon divergences (JSD) indicate similarities between the predicted and 
experimental distributions, a low value is synonymous with high similarity. 
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3.2.2. AlphaFold2 and STRIDE 

With the advent of AlphaFold2 (AF2)49 and its subsequent implementation in 
ColabFold58, we could predict the tridimensional peptide structures of our 
benchmarking dataset. ColabFold batch mode allowed us to simultaneously predict 
the tridimensional structures for our 261 GRAMPA sequences. For each sequence, we 
picked the three best AF2 predictions with the highest pLDDT (local distance-
dependent transition) scores. These values reflect the reliability of the predictions 
made by the algorithm between protein structures. The pLDDT values range from 0 
to 1, with higher values indicating more accurate AF2 predictions. We could observe 
pLDDT scores per residue and averaged across the entire peptide sequence. In order 
to compare our newly predicted AF2 structures to the protein secondary structure 
predictions,  we submitted each selected AF2 structure to the STRIDE webserver59 and 
measured the 3-state secondary structures (H, E, C) of each structure. The selected 261 
AF2 predictions, their pLDDT scores and corresponding STRIDE assessments were 
summarised in Table S1. In Figure 2B, we depicted the AF2+STRIDE predictions 
(cyan) against experimental distributions (blue) across the three secondary structure 
states (H, E, C). The results indicated that AF2+STRIDE outperformed PEP2D with its 
predictions closer to the experimental distributions for the helical and stranded states 
(respective JSD values of 0.266 and 0.255). In contrast, all three PSSP methods 
accounted for better predictions of the coiled state than AF2+STRIDE (C: JSD = 0.255). 
Our results corroborate the recent findings by McDonald and co-workers regarding 
the performance of AlphaFold2 in predicting 588 peptide structures between 10 and 
40 amino acids63. The authors also reported that AF2 predicted helical (H) and 
stranded/β-sheets structures with high accuracy, but the program failed with 
segments presenting low pLDDT scores, often associated with coils (C). Our approach 
combining AlphaFold2 and STRIDE was more time-consuming and computer-
intensive than PSSP methods. Despite these shortcomings, the coupled method 
represents an excellent alternative to PEP2D, particularly for peptide sequences with 
50 or more residues. 
 

3.3. Mapping the structural landscape of GRAMPA 

Considering the rapid implementation of PEP2D to estimate secondary 
structures of our benchmarking dataset, we chose to apply this tool to the entire 
GRAMPA repository. After eliminating sequences with unusual amino acids and 
length greater than 50 residues, we submitted 5,980 GRAMPA sequences to PEP2D 
for secondary structure prediction. The results are shown in Figure 4, where each dot 
represents the PEP2D prediction of a GRAMPA sequence across the 3-state secondary 
structures (H, E, C). We also depicted the density of structures present in GRAMPA 
using a colour gradient (green “low”- red “high”). Our analysis showed that the 
peptide dataset is heavily populated with sequences that are likely forming helices 
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and sequences with a fully extended structure (coils). The abundance of helical 
structures may be due to evolutionary forces that have preferred them, but it may also 
stem from certain studies that purposely skew their predictive and generative models 
towards these AMP structures23,26. We noticed that specific dots followed each other 
forming straight lines. They corresponded to PEP2D predictions that presented 
similar or identical values for two of the 3-state secondary structures (H, E, C); they 
were not homologous sequences. 

 

 

 

Figure 4. Predicting the structural space of GRAMPA. Ternary plot (points and 
density map) showing the PEP2D secondary structure predictions. 

 

To ease readership of GRAMPA structures based on their secondary structure 
composition, we created a classification system using a graphical representation of the 
percentage of structural composition. The segmentation was done by dividing the 
ternary plot into three triangles and assigning a structural class to each intersection of 
their edges (Figure 4). The resulting seven classes were: helical and coiled structures 
(1), mostly helical structures (2), helical and stranded/β-sheet structures (3), mostly β-
sheet structures (4), stranded/β-sheet and coiled structures (5), mixed structures (7), 
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and mostly coiled structures (7). Here, we report the largest structural prediction of 
AMPs with 5,980 sequences. Our segmented analysis further confirmed that the 
GRAMPA repository is dominated by helical and coiled structures (1), with three-four 
times more sequences than the second most represented classification, mostly coiled 
structures (6), i.e. 65.1% versus 17.8% (Table 1). In contrast, structural classes (2), (3) 
and (4) were disregarded due to the few structures they contained (< 2%). Finally, 
stranded and coiled structures (5) and mixed structures (7) represent about 15% of the 
entire dataset.  

 

Before our study, Kozic and co-workers conducted the large-scale Rosetta ab initio 
modelling of 184 AMPs containing between 20 and 120 residues64. The authors 
measured PSIPRED secondary structure predictions and clustered all 184 peptides 
into one of 4 structural classes; all-α, all-β, αβ and coil. About half were predicted to 
fold into α-helices, supporting our general observation that helical structures 
dominate fold spaces of the benchmarking dataset and GRAMPA (structural classes 1 
and 2, Table 1). In addition, stranded/β-sheets structures represented about 15% of 
their dataset in agreement with GRAMPA (structural classes 4 and 5). These 
percentages were higher in the benchmarking dataset for PDBe structures and PEP2D 
predictions. Unlike our study, the authors indicated few coiled structures - i.e., 0.5% 
vs. 17.6% (structural class 6) - and many αβ structures – i.e., 33.7% vs. 3.1% (structural 
classes 3 and 7). The differences in the number of peptide sequences, ranges in 
sequence length, PSSP predictions and disulfide-rich structures between the three 
datasets might explain these variations in percentages (Table 1). In Figure 3A, 
PSIPRED was less successful than PEP2D in predicting the 3-state secondary 
structures (H, E, C) for the 261 AMPs.  

 

Table 1 

 Structural class Benchmarking dataset (N=261) GRAMPA 
N=5,980         % PDBe           % PEP2D         % 

1 helices and coils  90               34.5 106             40.6 3,892             65.1 
2 mostly helices 36               13.8 3                   1.1 88                    1.5 
3 helices and strands  1                   0.4 0                   0.0 0                      0.0 
4 mostly strands (β-sheets) 4                   1.5 0                   0.0 1                      0.0 
5 strands and coils 63               24.1 113             43.3 754                12.6 
6 mostly coiled structures 27               10.3 15                 5.7 1,063             17.8 
7 mixed structures 40               15.3 24                 9.2 182                  3.0 
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3.4. Mapping the structural landscapes of GRAMPA subsets 

The release of GRAMPA43 in 2019 has led several research groups to develop 
generative ML models capable of designing broad-spectrum AMPs25,44 and strain-
specific AMPs26-27,65-68. Most studies described their AI-generated AMPs to share 
similar physicochemical properties (i.e., hydrophobicity, hydrophobic moment, 
global charge) and similar amino acid composition (i.e., moderate-high fractions in 
alanine, valine, glycine, lysine, arginine) to their training sets. In addition, some would 
predict the newly generated peptides to fold into α-helices using helical wheel 
representation and circular dichroism,25,27 protein structure predictors,26,65,68 or 
molecular dynamics simulations67. The training sets often consisted of sequences with 
proteinogenic residues (except cysteine), positively charged, between 10 and 52 
residues in length, and potentially amidated on their C-terminus. Their secondary or 
tertiary structures were often ignored but assumed to be helical. 

Thus, we explored the structural composition of GRAMPA sequences inhibiting the 
three bacterial strains E. coli, S. aureus or P. aeruginosa (FASTA sequences, see Data 
availability). After eliminating sequences with unusual amino acids and lengths 
greater than 50 residues, we displayed PEP2D secondary structure predictions of the 
three GRAMPA subsets in Figure 5 - top-left: E. coli N=4,567, top-right: S. aureus 
N=4,146, and bottom-right: P. aeruginosa N=2,519. In addition, we reported the 
secondary structures for 3,367 GRAMPA sequences (Figure 5, bottom-left); the subset 
is quasi-identical to the 3,280 training sequences used to build PepVAE26, showing 
antimicrobial activity against E.coli. The results, summarised in Table 2, alluded that 
the first three subsets would mimic the fold landscape of GRAMPA; where most of 
the sequences (i.e., 67-69.5%) may fold into α-helices (1) and another 16.4-17.5% would 
predict as mostly coiled structures (6). The structural classes (2)-(4) were merely 
observed (<2%). Stranded and coiled structures (5) and mixed structures (7) 
represented 12.4-13.9% of the subsets.  

Our structural analysis of the PepVAE-like subset (Figure 5, bottom-left) 
predominantly showed three-four times more helical and coiled structures (1) than 
mostly coiled structures (6). The structural classes (2), (3) and (4) were quasi-
inexistent. Removing cysteine-rich sequences to the original E. coli subset has 
drastically reduced PEP2D predictions across stranded and coiled structures (5) and 
mixed structures (7), i.e., <4% (Table 2). These observations coincided with Dean and 
co-workers’ observations, where their generated AMPs against E. coli were likely 
folding into α-helices (Group B, Figures 3 and 5A)26. Likewise, the authors reported 
that the generated AMPs against S. aureus or P. aeruginosa would mostly be α-helical 
structures. We can therefore assume that removing cysteine-rich sequences from the 
relevant subsets would enrich their training sets with folds from structural classes (1), 
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(2) and (6). Notably, their strain-specific predictive models towards the three bacterial 
strains were prone to fewer errors between predicted and experimental MICs with the 
α-helical subset (Group B) than the one with more diverse structures (Figure 5B). 
These results suggested a bias towards α-helical structures from model training and 
models that might not generalise well over other structural classes. It further 
highlights the importance of estimating the structures of medium-large training 
datasets before building predictive or generative ML models. 

 

Figure 5. Predicting the structural spaces of GRAMPA subsets. Ternary plots (points 
and density map) showing the PEP2D secondary structure predictions applied to 4 
subsets against E.coli (top-left and bottom-left), S. aureus (top right) and P. aeruginosa 
(bottom-right). 
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Table 2 

 Structural class E. coli 
N= 4,567       % 

S. aureus 
N= 4,146       % 

P. aeruginosa  
N= 2,519       % 

E.coli (PepVAE)  
N= 3,367        % 

1 helices and coils  3,059           67.0 2,805           67.6 1,751            69.5 2,578             76.6 
2 mostly helices 71                 1.6 66                 1.6 42                  1.7 56                    1.7 
3 helices and strands  0                   0.0 0                   0.0 0                    0.0 0                      0.0 
4 mostly strands (β-sheets) 0                   0.0 1                   0.0 0                    0.0 0                      0.0 
5 strands and coils 525             11.5 466             11.2 260              10.3 97                    2.9 
6 mostly coiled structures 800             17.5 694             16.7 413              16.4 610                18.1 
7 mixed structures 112               2.4 114               2.7 53                  2.1 26                    0.8 
 

 

4. CONCLUSIONS 

The present study searched for a fast and reliable approach to estimate the 
structural diversity of medium-large training datasets for general fold discovery. We 
considered three protein secondary structure predictors (PSSP) Jpred4, PEP2D, 
PSIPRED and the 3D structure predictor AlphaFold2 (batch mode) in combination 
with STRIDE for secondary structure annotation. We benchmarked the four PSP 
methods comparing 261 curated and experimentally known PDBe structures with 
their predicted 3-state secondary structures (H, E, C). PEP2D predictions were the 
closest to the experimental distributions across the three states among the PSSP 
methods. Our results also revealed that the AlphaFold2+STRIDE approach provided 
more accurate predictions of helical and stranded/β-sheet structures, but PSSP 
methods performed better for coiled structures. The protein secondary structure 
predictor PEP2D is fast, and its results were comparable to those of 
AlphaFold2+STRIDE to estimate the structural landscape of sequential datasets with 
less than 50 residues. The coupled method represents an excellent alternative to 
PEP2D, particularly for peptide or protein sequences with 50 or more residues.  
 

Considering the rapid implementation of PEP2D, we explored the structural 
landscape of GRAMPA, the giant yet vastly uncharted repository of antimicrobial 
peptides (AMPs). Our analysis showed that most 5,980 peptide sequences would 
adopt helical structures (65.1%), random coils (17.8%), and β-stranded and mixed 
structures accounted for the rest. We observed similar structural compositions across 
three strain-specific GRAMPA subsets against E. coli, S. aureus or P. aeruginosa. 
Removing cysteine-rich sequences further enriches the subset with helical and coiled 
structures. Finally, we introduced a new classification system for peptide structures 
based on their secondary structure composition, which provided a convenient way to 
visualize and compare the diversity of AMP folds. The abundance of helical structures 
may be due to evolutionary forces that have preferred them, but it may also stem from 
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specific studies that skew their sequence-based predictive and generative models 
towards this structural class. Early peptide/protein structure prediction of medium-
large training datasets becomes crucial prior to building predictive or generative ML 
models. 

 

Data availability  

The FASTA files, secondary structure predictions and R script for ternary plot used to 
reproduce the computational experiments are available at 
https://github.com/plissonf/GRAMPA_structural_landscape.  

Figure S1, Tables S1 and S2 are available in Supplementary Information. 
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