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Abstract

Organic light-emitting diodes (OLEDs) have gained widespread commercial use, yet

there is a continuous need to identify innovative emitters that offer higher efficiency and

broader color gamut. To effectively screen out promising OLED molecules that are yet

to be synthesized, we perform a representation learning aided high throughput virtual

screening (HTVS) over millions of Ir(III) complexes, a prototypical type of phosphores-

cent OLED material, constructed via a random combination of 278 reported ligands.
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We successfully screen out a decent amount of promising candidates for both display

and lighting purposes, which are worth further experimental investigation. The high

efficiency and accuracy of our model are largely attributed to the pioneering attempt

of using representation learning to organic luminescent molecules, which is initiated

by a pre-training procedure with over 1.6 million 3D molecular structures and frontier

orbital energies predicted via semi-empirical methods, followed by a fine-tune scheme

via the quantum mechanical computed properties over around 1500 candidates. Such

workflow enables an effective model construction process that is otherwise hindered by

the scarcity of labeled data, and can be straightforwardly extended to the discovery of

other novel materials.

Introduction

First demonstrated by C. W. Tang and S. A. Vanslyke in 1987,1 organic light-emitting diodes

(OLEDs) have gradually become a mainstream display technology in consumer electronics

due to their superior color properties and the capability of being made flexible.2 Despite

the fact that OLEDs have been commercialized for years, challenges still remain in terms

of higher efficiency and wider color gamut, which require the discovery of novel molecules

with desired luminescence properties.3–7 The conventional way to design new materials rely

on expertised intuition and sufficient amount of experimental validations, of which the trial-

and-error cost is usually burdensome.

The rapid development of massive computational resources with advanced simulation

and theoretical algorithms has made high-throughput virtual screening (HTVS) a ground-

breaking tool in the design of new materials.8–11 By comprehensively exploring the chemical

space with tailored properties, HTVS succeeds in predicting the most promising candidates

for experimental validation, and the trial-and-error cost can be remarkably reduced. Recent

applications of this approach include the search for both organic and inorganic materials

in the field of batteries,12–17 2D materials,18–20 alloys,21,22 semiconductors,23,24 catalyst,25,26
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light-emitting devices,27,28 and photovoltaics,29,30 etc..31–34 The central part of HTVS is the

screening criteria, of which the generation relies on sufficient existing experimental data

and/or accurate yet efficient quantum mechanical (QM) calculations. Unfortunately, ex-

perimental data under consistent conditions are rather limited, and highly accurate QM

calculations are usually computationally demanding and even prohibitive to large realistic

systems.35–37 Both of these experimental and theoretical obstacles pose practical challenges

to the application of HTVS.

One of the machine learning (ML) algorithms that successfully tackles this issue for

molecular systems is called molecular representation learning (MRL), or pre-training, self-

supervised learning.38–42 In such algorithm, the property-predicting model is constructed

with a pre-training learning process of tremendous unlabeled data, followed by the appli-

cation of fine-tuning schema with labeled data on multiple downstream tasks. Proposed in

2022, Uni-Mol is an advanced MRL scheme that directly takes the 3D structures (instead of

the 2D or 1D representation) of interested molecules as input, making it a competitive tool in

predicting structural-related properties of various materials.43 In fact, by taking advantage

of enormous 3D conformations of the target systems, Uni-Mol rivals the performances of the

state-of-the-art (SOTA) methods in predicting energetic properties of open-source organic

and medical molecules.43

In this work, we expand the application of Uni-Mol to the HTVS of organic luminescent

molecules, of which the light-emitting properties are closely related to their 3D conforma-

tions. We demonstrate that with the accurately benchmarked QM calculations on a limited

amount of systems combined with the Uni-Mol training process over millions of automat-

ically constructed and semi-empirically optimized structures, photophysical properties of

Ir(III) complexes, which are prototypical phosphorescent molecules, can be efficiently pre-

dicted, enabling the screen-out of presumably outstanding candidates. Most importantly,

such computational protocol can be effortlessly transferred to other organic materials such

as thermally activated delayed fluorescence (TADF) molecules and organic photovoltaic,
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enabling an efficient means of material design in a variety of fields.

Theory and computational details

The overall workflow of our HTVS process is schematized in Figure 1. With 278 bidentate

ligands collected from previously published experimental studies on Ir(III) complex,44 mil-

lions of candidate molecules are constructed using stk45 and further optimized via density

functional tight binding approach (GFN2-xTB).46 A structure rationality filter is then intro-

duced to filter out unphysical structures based on atomic distances and/or ligand angles. As

such, around 1.6 million candidates are constructed, of which the coordinates and symbols

are served as Uni-Mol inputs as well as the initial guesses for QM calculations, while the

energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular

orbital (LUMO) at GFN2-xTB level are served as labels for Uni-Mol pre-training task.

Uni-Mol
prediction

QM 
calculation 

Structure filter

Targets

Ir(III)

Combination of 
ligands

Pretrain

Finetune
QM Data

Figure 1: Schematic HTVS workflow for Ir(III) complex emitters.

Due to the high computational cost of QM calculations, they are only carried out on 1468
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randomly selected molecules with less than 61 heavy atoms from the candidate pool. The

number of heavy atoms of the whole candidate pool ranges from 22 to 157, and the over-

all distribution can be seen in Figure S2. Four QM predicted properties, HOMO, LUMO,

the adiabatic excitation energy of T1, and the photoluminescence quantum yield (PLQY),

are utilized to fine-tune the pre-trained model. All electronic structure calculations are

performed with quantum chemistry packages Gaussian1647 and ORCA,48,49 while the pho-

tophysical properties including emission spectra and various rate constants are calculated

via the thermal vibration correlation function (TVCF) method in the molecular material

property prediction package MOMAP.50–52 The accuracy of our QM calculation process is

validated by comparing the theoretical predicted adiabatic excitation energy and PLQY with

the corresponding experimental values on ten selected molecules (as listed in Table 1). The

molecular structures of these ten molecules are provided in Figure S3.

After the pre-training and fine-tuning process, the established Uni-Mol model is applied

to single out potentially outstanding candidates, followed by further QM validation on these

molecules. Target molecules for displaying and lighting purposes are then screened out with

corresponding criteria (as detailed in the next section). Additional details of our HTVS work-

flow (Figure S1) and the applied electronic structure theory are provided in the Supporting

Information.

Results and discussion

Performance of Uni-Mol on open-source OLED dataset

The capability of Uni-Mol in predicting electronic structure properties for organic optical

molecules is first validated on an open-source solvated organic fluorescent dyes dataset,62

of which the 3D information required by Uni-Mol training is generated from 2D simplified

molecular-input line-entry system (SMILES) via Rdkit. Note that the solvent effect is not

taken into consideration in our training process and hence molecules solvated with different
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Table 1: PLQY and adiabatic excitation energy of ten OLED molecules predicted by QM
calculation and the corresponding experimental values.

Molecule ID
PLQY Ead (eV)

QM Exp. QM Exp.a

(ppy)2Ir(oz)
53 0.30 0.55 2.60 2.58

Ir(dpt)3
3 0.99 0.64 3.14 3.13

Complex 254 0.39 0.35 2.62 2.44
(mdp)2Ir(acac)

55 0.76 0.85 2.40 2.37
Complex 156 0.78 0.78 2.97 3.12
IrS-5F57 0.67 0.95 2.47 2.35
Ir158 0.99 0.93 2.46 2.75

2FBNO59 0.83 0.71 2.37 2.45
Complex 260 0.90 0.73 2.63 2.94

Ir5b61 0.99 0.69 2.91 2.96
aThe experiment values are estimated from the average of the absorption and emission

energies.

solvents are removed. The scaffold splitting is applied to divide the dataset into training,

validation, and test sets in the ratio of 8:1:1. As shown in Figure 2, our Uni-Mol model

is able to provide accurate ML predictions for absorption and emission wavelengths. The

correlation coefficient (R) and the MAE on test set are 0.991 and 7.3 nm for the absorption

wavelength and 0.960 and 16.4 nm for the emission wavelength, which outperforms the

previously reported results.63 Therefore, Uni-Mol model can be rationally applied to our

constructed candidate pool to initiate an accurate and cost-effective approach that connects

3D information of molecules and their optical properties.

Uni-Mol performance on Ir(III) complex emitters

Next, we examine the performance of Uni-Mol on the constructed Ir(III) complexes pool.

The pre-training process of Uni-Mol is performed over the whole candidate pool, with the

energy of the frontier orbitals at GFN-xTB level as labels. By dividing the dataset into

training, validation, and test sets with the ratio of 8:1:1, the R for HOMO and LUMO on

the test set is 0.995 and 0.934, respectively, which evinces the consistency between Uni-Mol

prediction and GFN-xTB calculations. Such pre-training process is followed by the fine-
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Figure 2: Correlation between the Uni-Mol predicted values [(a) absorption and (b) emission
wavelength] and the experimental values on an open-source database. The blue and yellow
dots represent the train and test set, respectively. The color bar represents the density of
data points in the absorption and emission train set.

tuning with four QM predicted properties, i.e., HOMO, LUMO, adiabatic excitation energy

of T1, and PLQY, and the ratio of training, validation and test set is also set to 8:1:1.

The performance of the established Uni-Mol model on predicting these four optical prop-

erties is shown in Figure 3. It can be seen that accurate predictions of HOMO (MAE = 0.067

eV, R = 0.95), LUMO (MAE = 0.114 eV, R = 0.87), and Ead (MAE = 0.043 eV, R = 0.96)

on test set are achieved, while the prediction on PLQY is less satisfactory. This is aroused

from the fact that the former three are pure electronic structure properties that only depend

on electronic structure calculation, while PLQY is obtained by calculating the radiative and

nonradiative decay rate constants via rate formalism. These two quantities are closely re-

lated to both electronic structure and photophysical properties of the light-emitting state

and are intrinsically difficult to be accurately computed and predicted. That being said, the

MAE and R for PLQY are 9.4% and 0.87, respectively, which are still acceptable for high

throughput screening.
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Figure 3: Correlation between the Uni-Mol predicted values [(a) HOMO, (b) LUMO, (c)
adiabatic excitation energy, and (d) PLQY] and QM counterparts. The blue and yellow dots
represent the train and test set, respectively. The color bar represents the density of data
points in the HOMO, LUMO, adiabatic excitation energy and PLQY train set.

Screen-out of novel emitters

To search for potentially outstanding emitters, we apply Uni-Mol model to our candidate

pool and perform the screening according to four screening criteria, i.e., PLQY, Ead, the

number of ligand types, and the number of heavy atoms. First, we screen out red, yellow,

green, and blue emitters based on the Uni-Mol predicted emission energy of all 1.6 million

candidates. Note that the experimental counterpart of the theoretically computed Ead is

close to the crossing point of the absorption/fluorescence spectra, of which the wavelength
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is shorter compared to the maximum emission wavelength. Therefore, as shown in Table 2,

Ead ranges that applied to screen out four different colors are set a bit higher compared to

the normal emission energy of corresponding emitters. Based on these energy ranges, 9772,

90664, 384170, and 61329 candidates are singled out, corresponding to red, yellow, green,

and blue emitters, respectively. Next, molecules with PLQY larger than 40% are selected

from the red and yellow set, and molecules with PLQY larger than 80% are selected from

the green and blue set, ensuring a favored high quantum efficiency. From a practical point

of view, candidates that are difficult to be synthesized and/or further processed are elim-

inated, such as those with three different types of ligands and/or with unreasonably large

molecular weights. The screened-out candidates according to all aforementioned criteria are

summarized in the Supporting Information. It can be seen that our search is able to re-

cover some well-known phosphorescent emitters, such as Ir(Fppy)2(acac), FIrpic
64 and a few

(dfppy)2Ir(NHC) complexes,61 which essentially validates the rationality of our theoretical

protocol.

Table 2: The adiabatic excitation energy ranges that are applied to filter out four different
colors.

Color Red Yellow Green Blue
Ead min. (eV) 2.00 2.32 2.55 2.84
Ead max. (eV) 2.21 2.40 2.63 3.27

Molecular structures of the most promising candidates for both display and lighting pur-

poses, which have not been previously reported, are shown in Figure 4, with the theoretically

predicted spectra and CIE coordinates. Three candidates with red, green, and blue emis-

sion are predicted with high performance for display as shown in Figure 4(a) and (b). For

display purpose, narrower full-width at half-maximum (FWHM) of the emitter, especially

for green and blue emitters, is desired to cover a wider color gamut and provide more vivid

hue. Based on our screening procedure, the green emitter 89 89 228 and the blue emitter

152 189 189 stand out, with remarkably narrower FWHM (38 nm and 52 nm, respectively)

compared to common green and blue phosphorescent emitters. The CIE coordinates of these
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two emitters are (0.22, 0.66) and (0.15, 0.05), respectively. The screened out red emitter

41 41 75, though with slightly broader FWHM, has the main emission peak at 611 nm,

which corresponds to a satisfactory CIE coordinate (0.66, 0.34) for red emitters. It can be

seen in Figure 4(b) that the color gamut covered by these three emitters is close to that

defined by DCI-P3 and significantly wider than that defined by sRGB.65

Contrary to displays, white lighting devices require broader emission spectra to achieve

higher lighting quality, which could be quantified by color rendering index (CRI). Dual-

color based on blue and yellow light is widely applied as a low-cost white lighting protocol.

According to our HTVS workflow, two candidates are screened out for lighting purpose, i.e.,

the sky blue emitter 197 197 210 and the yellow-orange emitter 44 44 229. As shown

in Figure 4(c), the predicted emission spectra of these two molecules exhibit main peaks

at 474 nm and 574 nm, respectively, both of which acquire broad FWHM larger than 85

nm. The corresponding CIE coordinates of these two candidates read (0.18, 0.27) and (0.56,

0.44), respectively. By tuning the mixing proportion of these two colors, pure white emission

with CIE coordinate (0.32, 0.33) can be achieved as shown in the inset of Figure 4(c). The

corresponding CRI2012 index66 is calculated as 85, which could be attractive for daily light

source with balanced quality and cost. Based on our theoretical analysis, we foresee good

performance of these selected candidates that are yet to be experimentally synthesized and

explored for both display and lighting.

Conclusion

In this work, we have applied Uni-Mol, an advanced MRL algorithm, combined with ac-

curately benchmarked QM calculations to perform HTVS over millions of Ir(III) complex

emitters. The whole screening process consists of three automatized workflows, (i) the gen-

eration of tremendous candidates with Ir atom and a random combination of 278 reported

ligands, (ii) the generation of 3D inputs and labels for Uni-Mol, which is accomplished via
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Figure 4: Theoretical predicted emission spectra and CIE coordinates of screened out can-
didates for both display [(a) and (b)] and lighting [(c) and (d)] purposes.

the semi-empirical method on all candidates with rational structures and the high-level QM

calculation over around 1500 molecules, and (iii) the pre-train and fine-tune process of Uni-

Mol. Based on this cascade of automatic workflows, we are able to screen out a decent

amount of promising Ir(III) complexes for both display and lighting purposes, which are

worth further experimental investigation. To the best of our knowledge, this is the first work

that applies MRL to organic luminescent materials, and our screening protocol can be effort-

lessly transferred to other organic materials, impulsing the design of novel materials that are

otherwise shielded by conventional mindset and/or limited computational and experimental

resources.
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