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ABSTRACT: Carbon–heteroatom bonds, most often amide and ester bonds, are the standard method to link together two complex fragments 
because carboxylic acids, amines, and alcohols are ubiquitous and the reactions are reliable. However, C–N and C–O linkages are often a met-
abolic liability because they are prone to hydrolysis. While C(sp2)–C(sp3) linkages are preferable in many cases, methods to make them require 
different starting materials or are less functional-group compatible. We show here a new, decarbonylative reaction that forms C(sp2)–C(sp3) 
bonds from the reaction of activated carboxylic acids (via 2-pyridyl esters) with activated alkyl groups derived from amines (via N-alkyl pyri-
dinium salts) and alcohols (via alkyl halides). Key to this process is a remarkably fast, reversible oxidative addition/decarbonylation sequence 
enabled by pyridone and bipyridine ligands that, under reaction conditions that purge CO(g), lead to a selective reaction. The conditions are 
mild enough to allow coupling of more complex fragments, such as those used in drug development, and this is demonstrated in the coupling 
of a typical Proteolysis Targeting Chimera (PROTAC) anchor with common linkers via C–C linkages.
 Chemical biology and drug discovery rely upon a small suite of re-
actions capable of joining together two functionalized molecules. Of 
the strategies available, carbon–heteroatom bond formation, espe-
cially amide bond formation, is by far the most common (Scheme 
1A).1 Reactions to form amides (and esters) are favored because of 
the ubiquity of carboxylic acids, alcohols, and amines in bioactive 
molecules and the tolerance of these reactions for complex function-
ality.2-5 However, the instability of esters and amides to hydrolysis 
and metabolism can be limiting, as can the propensity of the amide 
to unpredictably alter binding properties (Scheme 1B). In a system-
atic survey of linkages used in PROTACs, it was found that C–N, C–
O, and C(sp2)–C(sp) bonds had stability issues.6 These challenges 
have motivated the exploration of C(sp2)–C(sp3) linkages in 
PROTACs, despite extra steps often needed in the synthesis of these 
structures.7  
 A method to access C(sp2)–C(sp3) bonds directly from starting 
materials used for amide bond formation is highly desirable, but suit-
able reactions have not yet been reported. Coupling aryl carboxylic 
acids and their derivatives with aryl halides8 or aryl boron reagents9 
can be high yielding and general, but translation to C(sp2)–C(sp3) 
bond formation has been challenging. Couplings with alkylzinc,10 or-
ganosilicon, 11  and alkyl organoboron reagents9d, 12  have been re-
ported, but these reagents have limited stability, low commercial 
availability, and their syntheses have limited functional group com-
patibility. The need for better approaches has partially driven explo-
ration of methods to convert aryl carboxylic acids to aryl halides13 or 
arylboron reagents.14 
 A potential solution is the coupling of a carboxylic acid ester with 
an amine-derived (via N-alkyl pyridinium salts15) or alcohol-derived 
(via alkyl halide) alkyl radical source under nickel-catalyzed condi-
tions (Scheme 1C).16 Cross-electrophile coupling reactions of aryl 
halides with various alkyl radicals to form C(sp2)–C(sp3) bonds 
have the broad generality needed,17 but the use of aryl carboxylic acid 
esters under these conditions has been demonstrated to make ke-
tone products, not alkylated arenes (Scheme 2A).18 The mechanistic 
challenge to be solved is how to convert an aroyl electrophile to an 

aryl electrophile; if this could be overcome, coupling to a wide array 
of alkyl electrophiles should be possible (Scheme 2).19,20,21 
Scheme 1. A New Approach to the Utilization of Carboxylic Acid 
and Amine Substrate Pools in Synthesis. 

 
We conducted mechanistic studies on the feasibility of key steps in 
the proposed catalytic cycle to better understand how to favor cross-
product formation over ketone formation (Scheme 2). While 
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decarbonylation of aroylnickel(II) intermediates is a known side re-
action in ketone synthesis, avoiding ketone formation entirely can be 
challenging, because oxidative addition and radical addition are usu-
ally faster than decarbonylation (Scheme 2A).14f, 18 First, we studied 
the rate of decarbonylation by reacting equimolar amounts of 
(dtbbpy)Ni0(COD) (1) and 4-trifluoromethylbenzoic acid 2-
pyridyl ester (2) in THF at rt (Scheme 2B). Within 15 min, we ob-
tained a 56% isolated yield of (dtbbpy)Ni(Ar)(OPy) (3), formed as 
the major product, along with (dtbbpy)Ni(CO)2 (4) (33% NMR 
yield). The identity of the decarbonylated species (3) was confirmed 
by single-crystal X-ray diffraction, revealing the pyridone ligand to 
be N-bound. The bond angles and lengths were otherwise not re-
markable.22  In contrast, the reaction of 4-methylbenzoyl bromide 
with 1 resulted in an 89% NMR yield of the corresponding 
acylnickel(II) species (similar to 5, Br instead of 2-pyridone).14f,23,24 
 Second, we tested the reversibility of the oxidative addition and de-
carbonylation steps, by exposing 3 (100 mM, 1.0 equiv) to 13C-la-
belled CO(g) (20 mM, 0.2 equiv) and monitoring the reaction by 
NMR (Scheme 2C). We observed formation of a new 13C-labelled 
acylnickel(II) complex (5). Upon exposure to additional 13CO(g), 5 
was further transformed into nickel(0) complex 4 (6% NMR yield 
with 0.2 equiv CO, 15% NMR yield with 1.0 equiv CO, along with 

51% of Ni(13CO)4, 25 , 26  see SI for details) and 13C-labelled 2 (7% 
NMR yield with 0.2 equiv CO, 24% NMR yield with 1.0 equiv CO, 
see SI for details). This demonstrates that the decarbonylation and 
oxidative addition steps are fast and reversible at rt.27 This finding 
implies that 1) CO must be efficiently removed from the system to 
avoid ketone formation and 2) nickel(0) binds CO with high affin-
ity.28 We surmised that heating the reaction and maximizing reaction 
headspace may be required to liberate bound CO from the nickel 
catalyst and to dilute the concentration of CO in the reaction flask, 
respectively.29 
 Third, to study the reactivity of the new pyridone-ligated ar-
ylnickel(II) species in cross-electrophile coupling, we combined 3 
with protected alkyl iodide 6 (1 equiv) under reducing conditions at 
rt, 60 °C, and 110 °C (Scheme 2D). We observed good yields of 
cross-product at all three temperatures, with a 93% yield in 20 min 
at 110 °C.  
 These results show that the pyridone ligand accelerates decar-
bonylation of an acylnickel(II) complex compared to a bromide, and 
the pyridone ligand may stabilize the resultant arylnickel complex.30 
These findings are in agreement with previous reports, where more 
basic ligands, such as fluoride and imide anions, are less likely

Scheme 2. Mechanistic Proposal for Decarbonylative Coupling of 2-Pyridyl Aryl Carboxylic Acid Esters with Alkyl Radical Donors.a 

 
aFor experimental details, see Supporting Information page S19. 
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to generate a cationic nickel complex, instead favoring CO release 
from a putative nickel(II) complex.14f,24c  
 Optimization of the nickel-catalyzed coupling of 2-pyridyl 1-naph-
thoate (12) with N-(3-phenylpropyl) 2,4,6-triphenylpyridinium tet-
rafluoroborate (13) illustrated three key points (Table 1). First, 2-
pyridyl esters provided the highest yield of cross-product and were 
better at avoiding ketone than acid fluorides9 and more reactive than 
phenyl esters10,12 (entries 1–3). 2-pyridyl esters are also more stable 
and more functional-group compatible than acid fluorides.31  Sec-
ond, ligand identity had a profound effect on the reaction outcome: 
bipyridines provided primarily the decarbonylation product and ter-
pyridines provided primarily ketone (entries 1, 4–5, For additional 
ligand data, see Supporting Information Figure S3). Third, lower 
temperatures resulted in larger amounts of ketone side-product (en-
try 6) unless an N2 sweep was used (entry 7).32 The yield was im-
proved by using 1.5 equiv of the alkyl pyridinium salt (entry 9). Be-
sides ketone, the majority of the aryl mass-balance was Ar–H. 
Table 1. Optimization of the Catalytic Reaction.a 

 

aFor further optimization and side products, see supporting information 
figures S3-6.  bAryl ester (0.125 mmol), N-alkyl pyridinium salt (0.125 
mmol), Mn (0.25 mmol), NiI2 (0.0125 mmol), and ligand (0.0125 
mmol) were stirred in THF/DMA (1:1, 1 mL) at 110 °C for 1 h. cGC 
yield using 1,3,5 trimethoxybenzene as internal standard. dQuantitative 
recovery of aryl ester starting material after reaction. eReaction on 0.5 
mmol scale.32 fUnreacted CO2Py observed as majority of mass balance.  

 The substrate scope of the resulting reaction is broad (Scheme 3). 
Electron-rich (16, 20, 28-30, 32), electron-poor (15, 17, 19, 21-
26), and sterically hindered (16, 20, 27) aryl and heteroaryl carbox-
ylic acid esters worked similarly well. The coupling of aryl carboxylic 
acid pyridyl esters with electrophiles derived from amines (N-alkyl 

pyridinium salts) and from alcohols (alkyl bromides and iodides) 
work comparably for primary alkyl groups, but alkyl iodides give the 
best results with secondary alkyl groups (25, 29–30, 32). Func-
tional-group compatibility is high, despite the higher temperature, 
and esters, acetals, nitriles, tertiary amines, -Cbz, -Boc, and -BPin 
groups were all tolerated. A few functional groups were not toler-
ated, such as isoxazole and a terminal epoxide, due to ring opening 
(see Figure S9). Very hindered carboxylic acids, such as 2,4,6-trime-
thylbenzoic acid, provided only ketone product. The abundance of 
amines, carboxylic acids, and alcohols allowed for easy access to 
products derived from complex starting materials, such as advanced 
pieces of mosapride (17), an atorvastatin side chain (21), and sub-
strates derived from glucose (30), uridine (31), hydroxyproline (29, 
32), telmisartan (27) and febuxostat (28–30). Major side products 
observed in cases with lower yields were aryl dimer and ketone. For 
these preparative scale reactions (0.5 mmol), we found that sweep-
ing the headspace with N2(g) and using a condenser to avoid solvent 
loss reduced the amount of ketone formed.32 
 PROTACs are a rapidly growing area of interest in biomedical re-
search and drug development with at least 15 PROTACs entering 
clinical trials recently.33 , 34 These heterobifunctional molecules are 
comprised of an E3 ligase anchor that recruits the human proteo-
some, a warhead that targets a protein of interest, and a linker of ap-
propriate conformational flexibility that joins these two components 
together (Scheme 3B, left). Due to ease of synthesis, the linker junc-
tion points are most commonly carbon–heteroatom bonds,6a which 
can present issues with hydrolytic and enzymatic stability, such as in 
amide bonds.6b The introduction of C(sp2)–C(sp3) bond linkages in 
PROTACs has been shown to improve their stability and protein 
degradation ability35 but is less explored due to limited synthetic ap-
proaches to access this motif.34 We sought to evaluate the compati-
bility of this new decarbonylative carbon–carbon bond forming re-
action with typical PROTAC fragments (Scheme 3B). 
 The most common anchor in PROTACs is immunomodulatory 
imide drugs (iMiDs) that recruit the cereblon (CRBN) E3 ligase, of 
which thalidomide is the most representative example.36  Notably, 
approximately 1% of published CRBN anchors contain a C(sp2)–
C(sp3) bound linker,37 which are generally prepared through Son-
gashira coupling, followed by reduction of the alkyne.34 In a more di-
rect approach, Novartis applied cross-electrophile coupling to le-
nalidomide-derived aryl bromides with alkyl tosylates,7 but the anal-
ogous thalidomide scaffolds were not assessed. 
 We prepared the 4- and 5- carboxylic acid substituted thalido-
mide6a,38 2-pyridyl esters and coupled them to common linkers to 
form carbon–carbon linked PROTAC anchor fragments (Scheme 
3C). We recognized the acidic imide N–H could present issues with 
formation of Ar–H from protonation of the intermediate ar-
ylnickel(II). Under modified reaction conditions, thalidomide car-
boxylic acid derivatives were coupled to linker fragments bearing a 
protected amine (33, 37), carboxylic acid (34, 38), alcohol (35, 
39), and piperidinyl (36, 40) functionality, which provide a handle 
to further link a variety of relevant warheads. These results enable a 
complementary, single-step approach in PROTAC development to 
access more stable analogues of common amine/amide-based link-
ages. This decarbonylative strategy is rapid and could be applied to 
library synthesis of PROTACs.39 We anticipate that this new chem-
istry will expand the types of synthetically accessible linkages in 
PROTAC development, potentially leading to greater clinical suc-
cess.

 

Entryb Change in conditions from 
scheme 

G 14 (%)c 14'(%)c 

1 None OPy 65 <2 

2 Different G on 12 F 56 4 

3d Different G on 12 OPh 0 0 

4 L2 instead of L1 OPy 66 <2 

5 L3 instead of L1 OPy <2 47 

6 90 °C instead of 110 °C OPy 56 11 

7e 80 °C, N2 sweep OPy 50 4 

8f Zn instead of Mn OPy 11 4 

9 1.5 equiv of 13 OPy 79 <2 



Scheme 3. Substrate Scope for the Cross-Coupling of 2-Pyridyl Aryl Carboxylic Acid Esters with Alkyl Radical Donors. 

 
aReaction conditions: X = Br, I: Ar-CO2Py (0.5 mmol), Alk-X (0.5 mmol), NiI2

 (50 µmol), bpy (50 µmol), DMAP (50 µmol), Mn (1 mmol), TMSCl 
(62.5 µmol), 1:1 THF/DMA (3.0 mL), 110 °C, 1 h. X = [N+]: Alk-[N+] (0.6 mmol, 1.2 equiv) was used in place of alkyl-Br/I; DMAP and TMSCl 
were omitted. bReaction conditions: thalidomide-CO2Py (125 µmol), Alk-I or Alk-[N+] (1.5 equiv), NiI2 (25 µmol), L2 (25 µmol), Mn (0.25 mmol), 
1:1 DMA/THF (1.0 mL), 110 °C, 2 h. Yields are isolated unless otherwise noted. cNMR yield with CH2Br2 internal standard. Samples of analytically 
pure cross-product were obtained by reverse phase preparative HPLC. 

 In conclusion, we have reported how controlling a remarkably fac-
ile decarbonylation step has enabled the development of a reaction 
that might otherwise seem impossible: the coupling of activated car-
boxylic acids with activated amines that “edits out” the amide bond. 
We anticipate further advancements in activation strategies, cata-
lysts, and coupling partners will allow a wide variety of new reactions 

to be developed based upon this work. As this system represents a 
facile method to produce an arylnickel(II) intermediate from an un-
common aryl source, we anticipate that reactions that couple 2-
pyridyl aryl carboxylic acid esters with additional radical coupling 
partners (e.g., redox active esters, sulfones), alkyl organometallic 



reagents, and alkenes are now all possible. Further work in this area 
is ongoing in our group and will be reported in due course. 
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