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Abstract 
Chemical space maps help visualize similarities within molecular sets. However, there are many 

different molecular similarity measures resulting in a confusing number of possible comparisons. 

To overcome this limitation, we exploit the fact that tools designed for reaction informatics also 

work for alchemical processes that do not obey Lavoisier’s principle, such as the transmutation of 

lead into gold. We start by using the differential reaction fingerprint (DRFP) to create tree-maps 

(TMAPs) representing the chemical space of pairs of drugs selected as being similar according to 

various molecular fingerprints. We then use the Transformer-based RXNMapper model to 

understand structural relationships between drugs, and its confidence score to distinguish between 

pairs related by chemically feasible transformations and pairs related by alchemical transmutations. 

This analysis reveals a diversity of structural similarity relationships that are otherwise difficult to 

analyze simultaneously. We exemplify this approach by visualizing FDA-approved drugs, EGFR 

inhibitors, and polymyxin B analogs.       
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Introduction 

Mapping molecular databases in a chemical space where distances represent similarities between 

molecules helps to understand their structural similarities and identify relationships that can provide 

critical insights for drug development and related fields.1–15 However, molecular similarity can be 

computed in multiple ways,16,17 typically using various molecular fingerprints,18 resulting in a 

confusing multiplicity of possible chemical space representations.19,20  

To overcome this limitation and create a chemical space map considering various similarity 

measures simultaneously, we report a new approach of applying reaction informatics tools to map 

and analyze drug pairs, namely the differential reaction fingerprint (DRFP)21 and the Transformer-

based RXNMapper model,22–24 respectively (Figure 1). These tools were initially designed to 

analyze chemical reactions. However, they can also be applied to processes that do not obey 

Lavoisier’s principle, the conservation of mass, such as the alchemical transmutation of lead into 

gold.25,26 Here, we apply them to transmutations between pairs of molecules selected for their 

similarity according to various molecular fingerprints as similarity measures, an approach related to 

the recent development of transformer models for drug optimization.27,28  

We start by using DRFP, which encodes chemical reactions by storing the symmetric 

difference of two sets containing the circular molecular n-grams generated from the molecules of 

the molecular pair as a binary fingerprint,21 to represent the chemical space of drug pairs as a 

TMAP (tree-map).29 A TMAP lays out the minimum spanning tree of the nearest neighbor graphs 

according to a selected similarity measure, here DRFP, and represents a remarkably efficient 

dimensionality reduction method for high-dimensional datasets. The DRFP TMAP visualization 

provides a global similarity perspective across drug pairs combining the selected similarity 

measures. We then use RXNMapper,22  a model trained on one million reactions documented in the 

USPTO dataset30 to pair corresponding atoms between reactants and products in a chemical 

reaction, to identify the structural relationship between drugs. The confidence score of this 
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transformer appears not to correlate with any of the molecular similarity measures used. It allows us 

to distinguish drug pairs related by feasible chemical processes, such as matched molecular pairs 

corresponding to substituent exchanges,31,32 from those related by more esoteric, alchemical 

transmutations including scaffold-hopping changes.33,34 We demonstrate this approach with the 

example of FDA-approved drugs as a diversity set, as well as for a series of EGFR inhibitors and 

polymyxin B analogs as two high similarity sets chosen among small molecule drugs and peptide 

macrocyclic drugs, respectively. 

 

 

Figure 1. Principle of alchemical analysis of molecular sets at the example of FDA approved drugs. 1) Drugs 
pairs passing a similarity threshold according to eight different molecular fingerprints are selected. 2) The set 
of selected pairs is mapped in a TMAP computed using the differential reaction fingerprint (DRFP), color 
coded by the RXNmapper confidence distance (amcd). 3) the amcd distinguishes pairs of drugs related by a 
possible reaction (amcd ® 0) from those related by an alchemical transmutation (amcd ® 1).  
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Methods 

Datasets 

The set of  FDA-approved drugs was downloaded from ZINC15,35,36 the SMILES were 

canonicalized and kekulized and duplicates were removed to obtain a set of 1,213 unique chemical 

structures. For the EGFR set, all compounds binding to the tyrosine kinase erbB1 with a molecular 

weight <700 and an annotated IC50 value were downloaded from ChEMBL-31.37 After SMILES 

canonicalization and kekulization, duplicates were removed and the 1,500 molecules with the 

highest ECFP4 Tanimoto similarity to afatinib were selected for the final set. The polymyxin B 

similarity set was downloaded from ChEMBL-31 by selecting compounds above the 55% 

ChEMBL similarity threshold with annotated MIC values. The SMILES were canonicalized and 

kekulized, and duplicates were removed resulting in a final set of 274 structures. 

Molecular fingerprints and similarity calculations 

Chemical structures were encoded as eight different fingerprints, namely extended connectivity 

fingerprints ECFP4 and ECFP6,38,39 the MinHashed Fingerprint MHFP6,40 the RDKit Atom-Pair 

Fingerprint (AP),41 the Macromolecule Extended Fingerprint (MXFP),42 the MinHashed Atom-Pair 

fingerprint MAP4,43 the Molecular ACCess System keys (MACCS),44 and Molecular Quantum 

Numbers (MQNs).45 ECFP4, ECFP6, AP, MACCS and MQN were calculated using the 

implementation in the RDKit package (2022.3.4. , https://www.rdkit.org). ECFPs were calculated 

as 2048-bit vectors. MHFP6 and MAP4 were calculated as 2048-bit vectors using the code 

described in https://github.com/reymond-group/mhfp and https://github.com/reymond-group/map4. 

MXFP was calculated using a new open-source version available at https://github.com/reymond-

group/mxfp_python. The differential reaction fingerprint (DRFP)21 was calculated as 2048-bit 

vectors using the code available at https://github.com/reymond-group/drfp. 
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Pairwise distances for every possible molecular pair were calculated and stored as a matrix 

for each fingerprint. Distances were calculated as Jaccard distances (dJ) for ECFP4, ECFP6, 

MHFP6, AP, MAP4 and MACCS keys, and as Taxicab distances (dT) for MXFP and MQNs, with 

values min-max standardized. We selected similar pairs by applying the following distance 

threshold:  dJ < 0.6 for ECFP4, ECFP6, MHFP6, dJ < 0.5 for AP, dJ < 0.2 for MACCS, dJ < 0.8 for 

MAP4, dT < 0.1 for MXFP and dT < 0.05 for MQN (Taxicab distances after rescaling) for the FDA 

set and dJ < 0.2 for ECFP4, ECFP6, MHFP6, AP, dJ < 0.0125 for MACCS, dJ < 0.3 for MAP4, dT < 

0.1 for MXFP and dT < 0.05 for MQN for the EGFR and PMB sets.  

Additionally, the ranking of molecular pairs for every compound and fingerprint was 

calculated, resulting in 1,213 ranked lists of 1,213 pairs each for the FDA set, 1,500 ranked lists of 

1,500 ranked pairs for the EGFR set and 274 ranked lists of 274 pairs for the polymyxin B 

similarity set for each fingerprint.  

Violin plots to display the distribution of distances for every fingerprint and heatmaps to 

visualize correlations between fingerprints were generated using the seaborn (0.11.2) package. The 

pairwise distance distributions were balanced out by calculating the ranking of molecular pairs for 

every compound, resulting in 1,213 ranked lists of 1,213 pairs each for the FDA set, 1,500 ranked 

lists of 1,500 ranked pairs for the EGFR set and 274 ranked lists of 274 pairs for the polymyxin B 

similarity set.  

Reaction informatics 

A reaction SMILES in the form “SMILES1>>SMILES2” (forward reaction) as well as 

“SMILES2>>SMILES1” (backward reaction) was generated for every selected molecular pair. The 

forward reaction SMILES was generated to always have the molecule with the lower heavy atom 

count as a reactant and the molecule with the higher heavy atom count as a product. The reaction 

SMILES for each drug pair was then encoded using DRFP.21 The 20 nearest neighbors (NNs) in the 
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DRFP feature space were extracted and the minimum spanning tree layout calculated using the 

TMAP package.29 The resulting layout was displayed interactively using Faerun.46 In addition, the 

atom-mapping and the corresponding atom-mapping confidence scores were computed for each 

drug pair reaction SMILES using the published model described in the rxnmapper22 GitHub 

repository https://github.com/rxn4chemistry/rxnmapper.  

Results and Discussion 

Datasets and selection of drug pairs 

To test our reaction informatics approach to map drug space, we selected 1,213 FDA-approved 

drugs as a representative high diversity set. As examples of a more focused series, we accessed the 

ChEMBL database37 and retrieved 1,500 analogs of the small molecule drug afatinib, a kinase 

inhibitor blocking the endothelial growth factor receptor (EGFR) and used to treat non-small cell 

lung carcinoma (NSCLC),47 as well as 274 analogs of polymyxin B (PMB), an FDA-approved 

macrocyclic peptide natural product considered as a last resort antibiotic against multidrug-resistant 

bacteria.48 

To represent molecular similarities, we considered three types of molecular fingerprints. 

First, we selected the classical Morgan fingerprint,38 also called extended connectivity fingerprint 

(ECFP),39 which is a binary fingerprint encoding the presence of specific atom-centered circular 

substructures up to a diameter of four (ECFP4) and six (ECFP6) bonds, as well as our recently 

reported MinHashed fingerprint MHFP6,40 which similarly encodes circular substructures up to a 

diameter of six bonds using shingling and MinHashing to compress information.49 These circular 

substructure fingerprints are particularly efficient in virtual screening benchmarks40,50 and off-target 

prediction tasks.51,52 Second, we considered three pharmacophore fingerprints encoding the relative 

positions of atoms in a molecule and representing molecular shape, namely the RDKit atom-pair 

fingerprint AP,41 our recently reported macromolecule extended atom-pair fingerprint MXFP,42 and 
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the MinHashed Atom-pair fingerprint up to a diameter of four bonds MAP4.43 Finally, we also 

included two composition fingerprints, namely MACCS keys44 and molecular quantum numbers 

(MQN),45 which encode the presence and number of features present in a molecule.  

To identify relevant pairs in each of our three drug sets (FDA, EGFR and PMB), we 

computed all pairwise distances in each fingerprint as either Jaccard distance dJ (ECFP4, ECFP6, 

MHFP6, AP, MAP4, MACCS keys) or Taxicab distance dT (MXFP, MQN). For all fingerprints, 

distance zero indicates highest similarity. For each molecule in each set, we then selected the NN 

for each of the eight fingerprints, as well as any molecule appearing in at least seven of the eight 

lists of top-20 nearest neighbors. In addition, we selected all drug pairs having a certain similarity in 

each fingerprint by applying a maximum Jaccard distance (dJ ) threshold (see Methods for details).  

This selection corresponded to 6,406 (0.87 %) of the 735,078 possible drug pairs in the FDA 

set, 8,932 (0.79 %) of the 1,124,250 possible drug pairs in the EGFR set, and 8,464 (22.63 %) of the 

37,401 possible drug pairs in the PMB set. Each drug was represented in the selected pairs between 

1 and 193 times in the FDA approved set, between 1 and 870 times in the EGFR set, and between 4 

and 1,031 times in the PMB set (Figure S1). Compared to the exhaustive list of drug pairs, the 

selected drug pairs were enriched in high similarity pairs with lower values of Jaccard distance (dJ). 

They spanned the entire similarity range in each fingerprint, reflecting the fact that the different 

fingerprints captured different similarity features (Figure 2a/3a/4a). Distances were correlated 

between ECFP4, ECFP6, MHFP6, MAP4, which all encode circular substructures around atoms (r2 

~ 0.8, Figure 2b/3b/4b). AP and MACCS, which both encode atomic features, were weakly 

correlated with each other and to a lesser extent with circular fingerprints (r2 ~ 0.5). Finally, MQN 

and MXFP distances were partly correlated with each other (r2 ~ 0.5) but not with any other 

fingerprints, probably because both fingerprints are size-dependent and count similar features in 

molecules.  
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DRFP chemical space maps 

To gain a closer insight into the pairwise relationships among the selected drug pairs, we 

represented each pair in the form of a reaction SMILES considering the conversion of one drug into 

the other. Form the reaction SMILES, we then computed the differential reaction fingerprint 

(DRFP),21 which encodes the circular substructures that occur only in either the reactant or the 

product. To represent the DRFP chemical space illustrating the similarities between different drug 

pairs, we then computed a tree-map (TMAP) providing an overview of drug pairs in each of the 

three datasets, using various color codes to visualize pair properties (Figure 2c/3c/4c). The TMAP 

of DRFP similarities organized pairs by structural types, often series of close analogs of a reference 

drug. Furthermore, in the FDA-approved drug set, different compound families such as amino 

acids, steroids, β-lactams, catecholamines, benzodiazepines or prostaglandins appeared in different 

regions of the map. This was visible upon close inspection of the interactive TMAPs and is 

illustrated here for the FDA drug set with the color FCsp3 (Figure 2c).  

Interactive browsing of the TMAPs made it very easy to inspect drug pairs with specific 

properties. For example, with the EGFR set, color-coding by activity differences pointed to the few 

similar drug pairs representing activity cliffs (Figure 3c). Inspection of TMAPs was also key to 

identifying interesting pairs from the point of view of their transformations, as discussed below. 

Atom mapping 

To estimate whether paired drugs were interconvertible by a feasible chemical reaction or required a 

more esoteric transmutation, we subjected the drug pair reaction SMILES to the Transformer-based 

RXNMapper model,22 which returns an atom-to-atom comparison illustrating the structural 

relationships within pairs, as well as an atom-mapping confidence score. Atom-mapping confidence 

scores were determined for the forward and backward reactions and converted to atom-mapping 

confidence distances (amcd), defined here as one minus the confidence score. In most cases the 

amcd values were similar for forward and backward reactions, however since the difference was 
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sometimes substantial (Figure S2), we used the mean amcd of forward and backward reactions for 

our analysis. The mean amcd value spanned the entire range between low and high distance (last 

entry, Figure 2a/3a/4a) except for the PMB set, which mainly contains high confidence distances 

as the structures are too big for the model to map with high confidence. Further, the amcd was not 

correlated with any of the selected molecular similarities (last entry, Figure 2b/3b/4b).  

Low amcd values indicated drug pairs related by a simple and usually feasible chemical 

transformation, usually a functional group change or addition as those found in matched molecular 

pairs,31,32 illustrated in the FDA set for the hydroxylation of L-tyrosine to L-DOPA (Figure 2d), 

and in the EGFR set for a Suzuki coupling resulting in a large activity change (Figure 3d). In the 

case of the PMB set, low amcd values indicated pairs related by single amino acid exchange often 

potentially corresponding to a reaction, for example mutation of a glycine to a phenylalanine 

residue corresponding formally to an α-alkylation of glycine with benzyl bromide (Figure S6).  

On the other hand, high amcd values indicated alchemical transmutations that cannot be 

realized easily, such as scaffold-hopping changes.33,34 Note that the RXNMapper assigned 

corresponding atoms mostly in a correct manner even for pairs giving high amcd values. For 

example, tetrabenazine is paired with hydrocodone by seven of the eight molecule fingerprints used 

for pairing. The transformation features an exotic double-ring formation accompanied by a 

reshuffling of the 23 atoms (Figure 2e). A similarly exotic alchemical change relates afatinib with 

osimertinib, an analog matched by all eight fingerprints used for pairing (Figure 2f). In the EGFR 

set, a double linker modification preserving activity relates CHEMBL469997 to CHEMBL181275, 

whereby the benzyl ether linker is obtained by combining an oxygen atom of the sulfone with a 

methylene group of the aminobutanol second linker group (Figure 3e). In another scaffold hopping 

change between CHEMBL469997 and CHEMBL181275, an aniline substituent is incorporated into 

the adjacent bicyclic system to form a condensed tricyclic heteroaromatic group, resulting in an 

interesting activity increase (Figure 3f).  
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In the case of the PMB set, many pairs were generally related by high amcd values, probably 

because the changes corresponded to multiple amino acid exchanges, which cannot be realized on 

the complete molecules since each sequence analog requires a separate synthesis. Interestingly, one 

of the high amcd changes corresponds to a simple exchange of four aromatic aldehyde imines 

attached to the four diaminobutanoic acid residues, a reaction which would seem to be feasible 

(Figure 4d). This imine exchange is however accompanied by a mutation of a leucine residue to a 

phenylalanine.   

Taken together, the analysis of the TMAP of similar drug pairs guided by DRFP similarity 

and amcd values allowed a rapid insight into multiple interesting comparisons between molecules in 

each of the three sets analyzed. Further examples of interesting pairs in the FDA approved set are 

provided in the Supporting information (Figure S7).  

Conclusion 

In summary, we have shown that borrowing tools from reaction informatics provides an opportunity 

to map multiple similarity relationships between molecules simultaneously and gain insights into 

interesting drug pairs that are otherwise difficult to identify. Specifically, we used DRFP to map the 

chemical space of multiple drug pairs selected as being similar according to eight different 

molecular fingerprints simultaneously in the form of TMAPs. We then used RXNMapper to 

visualize the structural changes between drugs and identify pairs of drugs related by feasible 

chemical transformation from pairs related by alchemical changes corresponding to multiple and 

complex structural rearrangements. These tools should generally be applicable to analyze drug sets 

from multiple angles in the context of drug discovery.  

Code availability 

The source codes and datasets used for this study are available at https://github.com/reymond-

group/alchemical_pairs.  
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Figure 2. FDA-approved drugs as drug pairs. (a) Violin plot of dJ values in each of the fingerprints for all 
pairs (left, orange) or for selected pairs (right, blue), and for atom mapping confidence distance (amcd) of 
selected pairs (blue, last entry). (b) Heat map of correlation coefficients r2 between dJ values of different 
fingerprints, and between dJ values and amcd, calculated across all selected pairs. (c) TMAP of DRFP 
similarities for selected drug pairs. Each point is a different drug pair, color-coded by the fraction of sp3 
atoms (Fsp3). See supporting information and https://tm.gdb.tools/map4/DRFP_FDA/ for additional color 
codes and for the interactive version of the map. (d) Atom-mapped drug pair L-tyrosine and L-DOPA related 
by a hydroxylation reaction. (e) Atom-mapped drug pair tetrabenazine and hydrocodone related by an 
alchemical double cyclization. (f) Atom-mapped drug pair afatinib and osimertinib related by a series of 
substituent and ring system changes. Atoms highlighted in blue are lost during the forward reaction, while 
atoms highlighted in yellow are gained. Interesting atom rearrangements as predicted by the RXNMapper are 
highlighted with their respective atom-mapping number. The full atom-mapping can be found in Figure S3. 
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Figure 3. EGFR inhibitor drug pairs. (a) Violin plot of dJ values in each of the fingerprints for all pairs (left, 
orange) or for selected pairs (right, blue), and for atom mapping confidence distance (amcd) of selected pairs 
(blue, last entry). (b) Heat map of correlation coefficients r2 between dJ values of different fingerprints, and 
between dJ values and amcd, calculated across all selected pairs. (c) TMAP of activity differences. Each 
point is a different drug pair, color-coded by the activity difference. See supporting information and 
https://tm.gdb.tools/map4/DRFP_EGFR/ for additional color codes and for the interactive version of the 
map. (d) Atom-mapped drug pair CHEMBL35820 and CHEMBL126974 related by a Suzuki coupling 
resulting in an activity cliff. (e) Atom-mapped drug pair CHEMBL460732 and CHEMBL14952 related by 
an alchemical double linker exchange preserving activity (f) Atom-mapped drug pair CHEMBL469997 and 
CHEMBL181275 related by an alchemical scaffold hopping preserving activity. Atoms highlighted in blue 
are lost during the forward reaction, while atoms highlighted in yellow are gained. Interesting atom 
rearrangements as predicted by the RXNMapper are highlighted with their respective atom-mapping number. 
The full atom-mapping can be found in Figure S4. 
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Figure 4. PMB analogs drug pairs. (a) Violin plot of dJ values in each of the fingerprints for all pairs (left, 
orange) or for selected pairs (right, blue), and for atom mapping confidence distance (amcd) of selected pairs 
(blue, last entry). (b) Heat map of correlation coefficients r2 between dJ values of different fingerprints, and 
between dJ values and amcd, calculated across all selected pairs. (c) TMAP of amcd values. Each point is a 
different drug pair, color-coded by the amcd value. See supporting information and 
https://tm.gdb.tools/map4/DRFP_PMB/ for additional color codes and for the interactive version of the map. 
(d) Atom-mapped drug pair CHEMBL1090265 and CHEMBL2372545 related by an imine exchange and a 
leucine®phenylalanine mutation. Atoms highlighted in blue are lost during the forward reaction, while 
atoms highlighted in yellow are gained. Interesting atom rearrangements as predicted by the RXNMapper are 
highlighted with their respective atom-mapping number. The full atom-mapping can be found in Figure S5. 
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Figure S1. Count of molecules by number of occurrences in selected pairs for the a) FDA, b) EGFR 
and c) PMB set. In all sets, most of the molecules appear sporadically in the selected pairs. Only a 
limited number of compounds appears more often.  
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Figure S2. Count of molecular pairs by difference in atom-mapping confidence score between the 
forward and backward reactions in selected pairs for the a) FDA, b) EGFR and c) PMB set. 
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Figure S3. Full atom mapping of the examples selected from the FDA set. The shown atom-
mapping is the one of the backwards reactions.    
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Figure S4. Full atom mapping of the examples selected from the EGFR set. The shown atom-
mapping is the one of the backwards reactions.    
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Figure S5. Full atom mapping of the example selected from the PMB set. The shown atom-
mapping is the one of the backwards reaction.    
 

 
Figure S6: Full atom-mapping of mutation of a glycine to a phenylalanine residue (amcd: 0.32), 
corresponding to a feasible α-alkylation reaction of glycine with benzyl bromide.  
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Figure S7: Additional interesting pairs selected from the drug pairs in the FDA-approved subset and 
the determined atom-mapping confidence distance of the reaction. a) Trospium and Umeclidinium, 
two anticholinergic drugs acting on the muscarinic receptor. The structures contain common 
elements, such as the diphenylmethanol and tropane-like moieties, which are completely rearranged 
between the two structures. b) Valrubicin and Cabazitaxel, two anticancer drugs acting on 
topoisomerase II and tubulin stabilization respectively. Although the two compounds act on different 
targets, these targets are part of the same pathway and their inhibition leads to cell death. c) 
Benztropine and Paroxetine, two unrelated drugs acting on serotonin uptake inhibition. d) (R)-
Sulconazole and (S)-Econazole, two imidazole antifungals differing from each other by a single atom 
mutation from S to O. e) (+)-Paredrine and L-Tyrosine, two closely related structures separated by 
an alchemical condensation of a carboxylic acid to a methyl and stereo-inversion. f) Stavudine and 
Zidovudine, two HIV reverse transcriptase inhibitors separated by an azidation. g) Clocortolone and 
Halobetasol, two steroid drugs used for the treatment of inflammatory and itching skin diseases. h) 
EDTA and EDTMP, both highly related chelating agents. i) Alanine and Pyruvic Acid, two highly 
related compounds separated by a N to =O mutation.  


