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ABSTRACT:	The	development	of	chiral	catalysts	that	can	provide	high	enantioselectivities	across	a	wide	assortment	of	sub-
strates	or	reaction	range	is	a	priority	for	many	catalyst	design	efforts.	While	several	approaches	are	available	to	aid	in	the	
identification	of	general	catalyst	systems	there	is	currently	no	simple	procedure	for	directly	measuring	how	general	a	given	
catalyst	could	be.	Herein,	we	present	a	catalyst-agnostic	workflow	centered	on	unsupervised	machine	learning	that	enables	
the	rapid	assessment	and	quantification	of	catalyst	generality.	The	workflow	uses	curated	literature	data	sets	and	reaction	
descriptors	to	visualize	and	cluster	chemical	space	coverage.	This	reaction	network	can	then	be	applied	to	derive	a	catalyst	
generality	metric	through	designer	equations	and	interfaced	with	other	regression	techniques	for	general	catalyst	prediction.	
As	validating	case	studies,	we	have	successfully	applied	this	method	to	identify-through-quantification	the	most	general	cat-
alyst	chemotype	for	an	organocatalytic	asymmetric	Mannich	reaction	and	predicted	the	most	general	chiral	phosphoric	acid	
catalyst	for	the	addition	of	nucleophiles	to	imines.	The	mechanistic	basis	for	catalyst	generality	can	then	be	gleaned	from	the	
calculated	values	by	deconstructing	the	contributions	of	chemical	space	and	enantiomeric	excess	to	the	overall	result.	We	
conclude	that	broadly	applicable	catalysts	may	be	more	adaptative	to	changes	in	reactant	structure	because	enantioinduction	
does	not	rely	on	a	single	set	of	noncovalent	interactions.	In	contrast,	some	systems	work	by	engaging	in	robust	noncovalent	
contacts	that	do	not	change	significantly	in	nature	when	the	structure	of	the	reaction	component	is	altered.	Finally,	our	gen-
erality	techniques	permitted	the	development	of	mechanistically	informative	catalyst	screening	sets	that	allow	experimen-
talists	to	rationally	select	catalysts	that	have	the	highest	probability	of	achieving	a	good	result	in	the	first	round	of	reaction	
development.	Overall,	our	findings	represent	a	framework	for	interrogating	and	predicting	catalyst	generality,	and	this	strat-
egy	should	be	relevant	to	other	catalytic	systems	widely	applied	in	asymmetric	synthesis.

Chiral	catalysts	that	can	be	applied	to	facilitate	enantiose-
lective	bond	constructions	between	diverse	reaction	com-
ponents	are	prioritized	in	new	synthetic	campaigns.	Asym-
metric	organocatalysis	exemplifies	this	where	a	small	sub-
set	of	catalysts	has	proven	to	be	remarkably	accommodat-
ing	to	changes	in	reaction	component	structure.1–3	To	this	
extent,	the	privileged	status	of	several	catalyst	chemotypes	
has	narrowed	 the	 focus	of	asymmetric	 catalyst	discovery,	
with	 most	 modern	 developments	 falling	 within	 certain	
boundaries	 of	 catalyst	 space.	While	 this	 approach	 of	 em-
ploying	broadly	applicable	catalysts	largely	drives	reaction	
optimization	efforts,	it	can	be	especially	disadvantageous	to	
underutilized	catalytic	systems.	This	issue	is	very	common	
in	enantioselective	reaction	development	where	practition-
ers	are	generally	not	willing	to	explore	recently	reported	or	
unfamiliar	catalysts	where	considerable	synthetic	effort	is	
required	to	generate	materials	and	the	results	are	less	cer-
tain.	Even	in	cases	where	extensive	reaction	surveys	have	
been	performed,	they	rarely	include	the	information	neces-
sary	 to	 reach	 reliable	 conclusions	 about	 catalyst	 general-
ity.4,5	 In	 other	 words,	 while	 employing	 different	 catalyst	
structures	to	facilitate	a	reaction	on	the	same	substrate	is	
possible,	it	is	seldom	performed,	thus	diminishing	the	data	
available	 for	 the	 direct	 comparison	 of	 catalyst	 perfor-
mances.	This	issue	is	exasperated	when	selections	are	to	be	
made	 across	multiple	 catalyst	 chemotypes	 as	 conclusions	
must	 be	 drawn	 from	 fragmented	 datasets	 derived	 from	

unique	catalyst	 types.	Accordingly,	 the	most	general	cata-
lyst	structure	or	chemotype	can	remain	 largely	unknown,	
hindering	 catalyst	design	and	application	 in	diverse	 reac-
tion	space.	It	is	for	these	reasons	that	the	identification	and	
development	 of	 general	 catalyst	 structures	 is	 both	neces-
sary	and	difficult	(Figure	1).		
	 Despite	this,	only	recently	have	research	efforts	recog-
nized	 generality	 as	 a	 target	 property	 to	 be	 optimized	 for	
(i.e.,	yield,	selectivity,	etc.)	with	few	examples	in	transition	
metal-,6,7	bio-,8	and	photocatalysis.9	Regarding	asymmetric	
catalysis,	recent	works	have	focused	on	using	high-through-
put	 techniques	allowing	 for	direct	 comparative	 studies	of	
catalyst	 performance.10,11	 While	 such	 protocols	 assess	 an	
important	aspect	of	generality,	they	do	not	capture	the	im-
pact	 of	 the	 catalyst	 structure	 in	 high-dimensional	 search	
space.	Importantly,	even	in	these	situations	where	relevant	
data	is	supplied,	it	may	not	always	be	clear	which	catalyst	is	
the	most	general	and,	in	some	cases,	the	most	widely	appli-
cable	catalyst	may	not	be	included	in	the	original	screening	
set.	To	this	end,	our	group	has	focused	on	utilizing	compre-
hensive	 statistical	models	 that	 encompass	many	 reaction	
types	and	conditions	to	provide	information	about	the	nec-
essary	catalyst	features	for	high	enantioselectivity	across	a	
broad	reaction	range.12	 Similar	cheminformatically-driven	
workflows	for	general	catalyst	development	have	also	been	
reported	but	have	 focused	on	 single	 reaction	 types.13	Alt-
hough	 highly	 enabling,	 these	 workflows	 are	 typically	



 

limited	 to	 one	 catalyst	 chemotype	 which	 constrains	 the	
breadth	of	structures	that	can	be	analyzed	in	the	process.	
While	these	existing	approaches	probe	generality,	they	typ-
ically	do	not	return	outcomes	that	can	be	interpreted	as	a	
value;	 therefore,	 an	expert	 chemist	 is	 required	 to	analyze	
the	 data	 generated	 either	 experimentally	 or	 virtually	 to	
draw	conclusions	about	the	most	general	catalyst	structure.	

Figure	1.		Our	approach	to	quantifying	catalysts	generality	
accounts	for	the	extent	of	the	chemical	space	applicable	to	
catalysis	in	addition	to	the	enantioselectivity	values.	Values	
in	Figure	1	are	shown	for	illustrative	purposes	only.	
	
	 A	second	limitation	in	applying	these	workflows	is	that	
the	reaction	space	to	be	interrogated	is	not	rigorously	de-
fined.	Therefore,	it	is	difficult	to	compare	catalyst	structures	
that	perform	well	for	a	large	breadth	of	substrates	to	those	
that	proceed	with	high	enantioselectivities	for	a	set	of	simi-
lar	reactions.	Clearly,	a	new	approach	that	solves	the	chal-
lenging	 problem	 of	 calculating	 a	 standalone	 normalized	
generality	value	for	a	given	catalyst	chemotype	or	structure	
is	 needed	 to	 allow	 comparisons	 to	made	 in	 such	 difficult	
cases.						
	 Considering	this,	we	envisioned	that	deriving	a	quanti-
tative	generality	metric	would	not	only	provide	a	physical	
organic	tool	 for	mechanistically	assessing	general	catalyst	
performance	but	also	allow	for	the	development	of	a	statis-
tical	means	to	optimize	general	catalyst	structures.	Herein,	
we	provide	a	catalyst-agnostic	workflow	that	leverages	un-
supervised	machine	learning	to	capture	the	breadth	of	sub-
strates	and	 reactions	amenable	 to	a	particular	 catalyst	or	
chemotype	 (Figure	 1).	 This	work	 represents	 a	 new	 tech-
nique	in	asymmetric	catalyst	assessment	and	will	prove	val-
uable	 in	 applying	 and	 developing	 general	 catalyst	 struc-
tures	for	enantioselective	synthesis.	

General	Approach	
	 As	a	synthetic	tool,	catalysts	that	encompass	many	di-
verse	substrates	are	more	valuable	than	those	systems	that	
facilitate	reactions	with	substrates	possessing	similar	mo-
lecular	 features.14	 Accordingly,	 our	 approach	 to	 deriving	
quantitative	generality	values	focuses	on	accounting	for	the	
extent	of	the	chemical	space	covered	by	the	system	in	addi-
tion	to	the	enantioselectivity	values	(Figure	2).	We	realized	
that	 a	 flexible	 approach	 that	 permits	 end	 users	 to	 define	
how	 enantioselectivity	 and	 chemical	 space	 would	 be	
weighted	within	the	workflow	would	be	most	useful.	To	this	
end,	we	pursued	a	method	 that	allows	 the	practitioner	 to	
assign	an	enantioselectivity	value	that	they	would	consider	
successful.	We	postulated	that	if	the	catalyst	was	very	gen-
eral,	this	enantioselectivity	value	could	be	achieved	across	
a	wide	range	of	reactions	displaying	unique	structural	fea-
tures.	Conversely,	if	the	catalyst	was	not	generalizable	the	
system	 would	 provide	 desirable	 enantioselectivities	 only	
within	a	narrow	portion	of	reaction	space	(Figure	2A).		
	

Figure	2.	(A)	Overview	of	the	workflow	to	assign	generality	
scores.	(B)	Insights	gained	from	generality	values	including	
providing	mechanistic	insight	into	the	features	that	contrib-
ute	 to	 catalyst	 generality,	 a	 statistical	 means	 to	 optimize	
general	catalyst	structures,	and	the	application	of	the	metric	
to	reaction	development.		
	 	To	reveal	distinct	reaction	types	within	a	dataset,	reac-
tions	with	a	similar	distribution	of	properties	were	defined	
using	 non-linear	 dimensionality	 reduction	 and	 unsuper-
vised	 clustering.15	 In	 principle,	 this	 step	 can	 be	
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implemented	with	different	numerical	descriptors	and	di-
mensionality	 reduction	 algorithms,	 with	 the	 ideal	 choice	
likely	dependent	on	the	problem	at	hand.	In	this	study,	we	
utilized	either	RDKit	or	quantum	mechanical	descriptors	to	
efficiently	transform	the	reaction	components	into	numeri-
cal	descriptors	and	determined	each	individual	reaction	by	
the	 linear	 combination	 of	 nucleophile	 and	 electrophile	
properties.	 The	 reaction	 space	 expressed	 by	 these	 de-
scriptors	was	reduced	by	Uniform	Manifold	Approximation	
and	Projection	(UMAP)	to	provide	a	way	of	visualizing	the	
high-dimensional	data.	UMAP	was	chosen	as	the	preferred	
dimensionality	reduction	algorithm	due	to	its	ability	to	elu-
cidate	clusters	in	complex,	non-linear	data	sets	compared	to	
linear	 algorithms	 like	 PCA.16	 The	 supporting	 information	
shows	 PCA	 applied	 to	 our	 data	 sets	 exhibited	 increased	
overlap	 and	 ill-defined	 clusters	 compared	 to	 UMAP.	 This	
may	suggest	an	inferior	ability	to	capture	important	reac-
tion	features	necessary	for	a	reliable	analysis.	Importantly,	
the	 chemically	 relevant	 separation	 observed	 from	 UMAP	
visualization	also	serves	as	a	validation	for	the	descriptors	
chosen.	Reducing	the	dimensionality	of	the	reaction	space	
also	functions	as	a	crucial	preprocessing	step	for	achieving	
high	 performance	when	 clustering	 (i.e.,	 produce	well	 de-
fined	and	meaningful	partitions)	given	the	noted	challenges	
in	 clustering	 high-dimensional	 data.17	 Specifically,	 it	 has	
been	 shown	 that	 clustering	 accuracy	 can	 drastically	 in-
crease	when	first	reducing	the	number	of	dimensions	with	
UMAP.18		
	 While	 there	 are	 unsupervised	 learning	methods	 that	
identify	 the	natural	 clustering	present	 in	 the	data	 set,	we	
specifically	choose	k-means	as	it	allows	setting	the	number	
of	clusters	via	the	hyperparameter	k.	Although	the	number	
of	clusters	is	determined	by	the	elbow	and	silhouette	meth-
ods,	it	does	provide	some	degree	of	flexibility,	affording	the	
ability	to	adapt	and	update	distinct	reaction	space	without	
compromising	the	statistical	validity	of	the	approach.	Spe-
cifically	with	non-ideal	data	 sets	where	enantioselectivity	
values	and	chemical	space	are	not	distributed	evenly,	such	
as	literature	only	databases,	the	choice	of	number	of	clus-
ters	poses	an	initial	trade-off	decision	for	the	user.	With	a	
large	number	of	clusters,	one	can	be	more	confident	in	the	
homogeneity	of	the	cluster;	however,	a	lack	of	comparative	
data	may	lead	to	a	stronger	correlation	with	the	popularity	
of	a	catalyst.	In	contrast,	a	lower	number	of	clusters	more	
adequately	adjusts	 for	popularity	bias	though	the	clusters	
may	include	reactions	that	are	less	similar.	We	show	below	
that	an	effective	approach	is	to	augment	experimental	data	
sets	with	virtual	data	(i.e.,	predicted	values)	that	can	be	ob-
tained	from	well	validated	regression	models.	 In	this	con-
text,	 it	 is	 well	 known	 that	 enantioselectivity	 often	 shows	
complex	nonlinear	dependencies	on	the	identity	of	the	re-
action	 components	 and	 conditions.19,20	 This	 factor	 com-
bined	with	the	ability	of	machine	learning	models	to	eluci-
date	 non-linear	matching	 effects	 between	 input	 variables	
are	the	reasons	for	why	we	utilize	these	methods	to	account	
for	imbalanced	literature	data	–	though	having	this	option	
is	not	very	common	or	necessary.	Many	of	the	reactions	that	
we	 consider	 later	 can	 be	 catalyzed	 by	 multiple	 catalyst	
chemotypes	 and	 the	 diversity	 of	 these	 structures	 is	 im-
mense.	Accordingly,	 it	 is	not	straightforward	to	build	well	
performing	regression	models	that	can	be	used	to	augment	
experimental	data	sets	of	this	type.	We	were	therefore	very	
interested	 in	 developing	 a	 methodology	 for	 generality	

assignment	using	unsupervised	ML	that	can	also	be	applied	
to	these	situations	where	the	data	sets	are	 less	than	ideal	
and	structurally	unique	catalyst	structures	are	being	inter-
rogated.											
	 The	grouping	of	similar	reactions	is	an	inherent	feature	
of	 dimensionality	 reduction	 methods,	 however,	 reaction	
boundaries	are	often	difficult	to	define.21	In	other	words,	we	
are	working	within	the	assumption	that	the	reaction	space	
as	 given	 by	 the	 set	 dimensions	 is	 relatively	 continuously	
populated	without	clusters	 that	are	separated	by	“empty”	
space.	Consequently,	the	implementation	of	clustering	is	a	
necessary	 requirement.	 Taken	 these	 steps	 together,	 the	
generality	 of	 a	 catalyst	 is	 described	 as	 the	 proportion	 of	
clusters	with	an	average	performance	higher	than	the	user	
set	threshold.	This	can	be	formulated	as:	
(1)	

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =
1
𝐾	.

(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)!

"

!#$

	

		
where	K	is	the	total	number	of	clusters,	and	successes	are	
defined	 as	 clusters	 wherein	 the	 average	 performance	 is	
higher	 than	 the	 set	 threshold.	 The	 implicit	 supposition	
taken	in	this	approach	is	that	a	reaction	point	defined	within	
that	cluster	is	representative	of	all	the	other	reaction	points.	
This	is	important	as	it	allows	generality	scores	to	be	derived	
and	 compared	 even	 in	 cases	 where	 overlapping	 reaction	
space	between	catalyst	systems	is	reduced.		
	 The	 implementation	 of	 our	 equation	 does	 require	 a	
suitable	success	value	to	be	determined	-	if	this	value	is	too	
high,	mildly	selective	catalysts	may	not	be	counted	in	any	
cluster	and	the	resulting	generality	scores	will	show	little	
variation.	If	the	value	is	too	low,	catalysts	with	very	poor	en-
antioselectivity	 values	 would	 not	 be	 differentiated	 from	
highly	enantioselective	catalysts.	Evidently,	this	set	value	is	
system	dependent	 and	users	 of	 the	method	 should	 test	 a	
range	of	values	before	applying	the	generality	scores.		
	 In	considering	this	value	further,	it	is	important	to	rec-
ognize	the	factors	that	would	impact	its	reliability.	Inclusion	
of	reactions	that	operate	under	suboptimal	conditions	could	
significantly	influence	the	average	enantioselectivity	values	
such	that	they	do	not	meet	or	exceed	the	user	set	success	
threshold.	Although	we	determined	in	our	case	studies	that	
including	 this	 data	 does	 not	 change	 the	 final	 conclusions	
sufficiently,	this	may	not	always	be	the	case.	We	anticipate	
that	the	recorded	average	enantioselectivity	will	be	particu-
larly	altered	by	the	extensiveness	of	experiments	performed	
during	reaction	optimization	and	this	will	vary	widely.	Ac-
cordingly,	we	suggest	that	such	bias	can	be	minimized	by	in-
cluding	only	reactions	that	appear	in	scope	tables.	Of	note,	
the	inclusion	of	data	pertaining	to	optimization	campaigns	
is	necessary	 in	cases	where	 less	general	catalysts	are	also	
being	interrogated	in	the	process.	Using	data	from	scope	ta-
bles	 only	will	 remove	 the	 ability	 to	 identify	 catalysts	 that	
have	not	yet	been	shown	to	be	the	best	choice	for	any	one	
reaction.	 Again,	 users	 of	 the	methodology	 should	 identify	
when	using	or	combining	certain	data	types	would	be	prob-
lematic.		
	 The	steps	necessary	for	calculating	catalyst	generality	
closely	mirror	those	involved	in	building	machine	learning	
models	for	predicting	enantioselectivity.22	Considering	this,	



 

and	the	significant	research	activity	in	the	field,	we	expect	
our	metric	can	be	simply	integrated	into	these	well-estab-
lished	 workflows	 and	 will	 find	 broad	 applicability	 in	 as-
sessing	catalyst	structures.	
	
Results	and	Discussion	
	 In	 this	 study,	 we	 applied	 our	metric	 to	 two	 different	
case	 studies	which	 interrogate	 unique	 aspects	 of	 catalyst	
generality.	In	describing	these	results,	we	surmised	that	it	
would	be	beneficial	to	use	the	first	case	study	as	a	lesson	in	
assigning	 the	generality	values	by	outlining	 the	necessary	
steps	to	be	taken.	This	process	is	then	repeated	for	the	sec-
ond	study,	however	most	of	the	technical	discussion	is	rele-
gated	to	the	supporting	information	for	this	example.		
	
Reaction	 selection	 and	 analysis.	The	most	 common	 as-
sessment	 of	generality	 in	 asymmetric	 catalysis	 is	 demon-
strated	through	high	enantioselectivity	across	a	diverse	set	
of	substrates	for	a	given	reaction	(herein	referred	to	as	sub-
strate	 generality,	 also	 termed	as	broad	 substrate	 scope	 in	
the	literature).	Indeed,	for	many	widely	explored	asymmet-
ric	reaction	types,	different	catalyst	chemotypes	have	been	
applied	 and	 in	 some	 cases	 to	 include	 the	 same	 substrate.	
However,	ranking	the	different	catalyst	designs	for	effective	
enantiocontrol	is	difficult	to	achieve	retrospectively	as	the	
comparative	data	required	for	this	direct	evaluation	is	small	
and	the	diversity	of	catalyst	structure	makes	 it	difficult	 to	
trace	any	differences	in	superior	performance.	It	is	for	these	
reasons	that	many	mechanistic	investigations	focus	on	eval-
uating	a	single	catalyst	chemotype.	Yet,	information	on	how	
different	structures	with	unique	catalytic	modes	of	activa-
tion	compare	with	each	other	is	necessary	to	determine	the	
catalysts	that	allow	access	to	the	greatest	diversity	of	prod-
ucts.		
	 In	this	first	stage	of	developing	an	unsupervised	learn-
ing	platform,	we	sought	 to	 identify	a	 “privileged”	reaction	
type	 in	 catalysis	 wherein	 many	 different	 catalyst	 chemo-
types	had	been	employed.	As	 imine	electrophiles	and	car-
bonyl	 nucleophiles	 are	 amenable	 to	 a	 variety	 of	 catalytic	
modes	of	activation,	we	identified	the	organocatalytic	Man-
nich	 reaction	 as	 the	 unifying	 reaction	 platform	 (Figure	
3A).23–26	This	reaction	 type	provides	a	wide	range	of	both	
substrate	 and	 catalyst structures	 from	published	 sources.	
We	curated	a	dataset	consisting	of	3003	reactions	from	106	
publications	wherein	diverse	chiral	H-bonding	(1418	reac-
tions),	 Brønsted	 acid	 (256	 reactions),	 covalent	 catalysts	
(1182	 reactions),	 and	 miscellaneous	 catalysts	 (147	 reac-
tions)	had	been	employed	(Figure	3).	Considering	the	large	
numbers	of	electrophile	and	nucleophile	structures	under	
evaluation	(858	structures),	we	first	implemented	RDKit	de-
scriptors	because	these	feature	sets	do	not	require	any	cal-
culation.	 Following	 the	 rapid	 assembly	 of	 the	 nucleophile	
and	 electrophile	 descriptor	 sets	with	RDKit,	we	 deployed	
UMAP	to	segregate	the	reaction	types	for	further	analysis.	
Essentially	 this	permitted	 the	reaction	space	 to	be	visual-
ized	by	reducing	the	total	number	of	descriptors	from	416	
to	just	two	(see	SI	for	more	details).	It	should	be	noted	that	
because	we	are	interrogating	enantioselective	catalysts,	we	
only	visualize	reactions	with	enantioselectivities	measured	
to	 be	 80%	ee	 or	 higher.	 These	 reaction	 examples	 encom-
passed	 systems	 traditionally	 included	 in	 the	 optimization	
table	(changing	solvent,	catalyst,	loadings,	temperature,	and	
time)	and	those	included	in	the	reaction	scope	(Figure	3B).		

	 To	reveal	which	set	of	starting	materials	can	effectively	
undergo	 different	 types	 of	 catalysis,	 the	 points	 were	
branded	by	catalyst	chemotype	allowing	a	straightforward	
analysis	of	 these	vast	reaction	networks.	Figure	3B	shows	
that	 these	 were	 visualized	 as	 either	 covalent,	 H-bond,	
Brønsted	 acid	 (BA),	miscellaneous	 (misc)	 (a	 catalyst	 that	
doesn’t	naturally	fit	into	the	previous	categories),	and	com-
binations	of	catalyst	structures	to	reveal	overlapping	reac-
tion	space.	Generally,	examples	from	the	literature	cover	the	
bottom	portion	of	the	reaction	space	well,	while	the	top	de-
picts	more	unique	reactions	and	is	sparsely	sampled.	Within	
this	populated	space,	it	is	immediately	obvious	that	the	var-
ious	 reaction	 types	 are	 reasonably	 separated	 by	 catalytic	
mode	of	activation,	demonstrating	the	ability	for	mechanis-
tic	classification	with	UMAP.	This	also	implies	that	the	RDKit	
descriptor	set	contains	chemically	relevant	information	that	
is	 required	 to	differentiate	distinct	 reaction	 types	respon-
sive	to	alternative	modes	of	catalysis	despite	the	simplified	
nature	of	the	parameters.	Figure	3B	shows	that	UMAP	es-
sentially	 segregates	 the	 reaction	 network	 into	 three	 im-
portant	reaction	types,	those	that	are	amenable	to	catalysis	
with	H-bond	donors	(left	and	upper),	Brønsted	acid	catalyst	
(middle),	and	those	that	 facilitate	reactivity	through	cova-
lent	bonds	(lower	right).		

Figure	 3.	 (A)	 The	 organocatalytic	 Mannich	 reaction.	 (B)	
UMAP	visualization	of	 the	 substrate	 space	 represented	as	
RDKIT	 descriptors.	 Examples	 of	 catalysts	 included	 in	 the	
analysis	are	shown	above.	BA	refers	 to	Brønsted	acid	and	
Misc	denotes	miscellaneous	catalysts.	
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Applying	k-means	 to	 identify	 and	 interrogate	 general	
catalyst	chemotypes.	Having	demonstrated	that	UMAP	in	
combination	with	RDKit	 descriptors	 can	 generate	mecha-
nistically	relevant	reaction	networks,	we	set	out	 to	deter-
mine	the	most	general	catalyst	chemotype	(i.e.,	phosphoric	
acid,	cinchona	alkaloid,	secondary	amine,	and	so	on)	for	the	
organocatalytic	 Mannich	 reaction.	 The	 correct	 identifica-
tion	of	the	current	most	general	catalyst	scaffold	would	give	
unique	 insight	 in	 deriving	 features	 that	 lead	 to	 substrate	
generality	for	this	reaction.	Such	identification	from	the	lit-
erature	is	currently	not	possible,	with	proxy	measures	like	
popularity	or	average	selectivity	of	a	catalyst	not	being	reli-
able	metrics.		
	 To	 simplify	 the	 visualization	 of	 the	 reaction	 space	 in	
Figure	3,	 the	H-bond	catalysts	 included	cinchona	alkaloid,	
squaramide,	 and	 urea-based	 catalysts.	 However,	 such	 a	
broad	binning	of	catalyst	structures	by	catalytic	mode	of	ac-
tivation	does	not	readily	allow	generality	values	to	be	de-
rived	 from	 chemotypes	 of	 similar	 structure.	 Accordingly,	
with	the	exception	of	urea	and	thioureas	which	are	termed	
collectively	as	urea-based	catalysts,	these	have	been	subdi-
vided	 into	 their	 own	 distinct	 category	 for	 the	 generality	
analysis	shown	in	Figure	4.	For	the	same	reasons,	covalent	
catalysts	have	been	further	arranged	as	primary	(1o)	or	sec-
ondary	(2o)	amines.	
	 Prior	 to	assigning	a	generality	score	 for	each	catalyst	
chemotype,	the	data	set	was	restructured	to	ensure	a	com-
parison	of	only	 ideal	 reaction	conditions.	As	noted	above,	
this	is	important	in	removing	bias	as	incorporating	results	
from	 optimization	 campaigns	 could	 have	 disproportional	
influence	on	the	final	result.	The	use	of	only	scope	data	will	
remove	 catalysts	 that	 only	 appear	 during	 optimization;	
however,	 this	 should	not	affect	 the	 final	generality	scores	
for	catalyst	chemotypes	given	that	the	same	catalyst	chemo-
types	 are	 typically	 used	 for	 both	 optimization	 and	 scope	
studies	(see	above).	Accordingly,	only	reactions	that	applied	
the	 optimized	 conditions	 (i.e.,	 appeared	 in	 the	 reaction	
scope	tables)	were	included	in	this	portion	of	the	analysis.	
Following	UMAP	reduction	to	10	dimensions,	the	substrate	
space	was	clustered	with	 the	k	means	algorithm	(k	=	12)	
and	the	average	ee	corresponding	to	each	catalyst	chemo-
type	was	acquired	from	each	cluster.	Generality	scores	were	
calculated	according	to	equation	(1)	with	a	success	deter-
mined	by	an	80%	ee	value.	Figure	4	summarizes	the	results	
along	with	extended	information	 like	the	number	of	reac-
tions	present	in	the	database	and	average	ee.		
	 Although	our	designer	metric	is	inherently	influenced	
by	 the	 reported	 selectivities,	 there	 is	minimal	 correlation	
between	the	generality	score	and	the	average	enantioselec-
tivity	value	calculated	for	a	catalyst	class	(Pearson	r	=	-0.26).	
Because	the	generality	value	is	derived	from	chemical	space	
coverage	and	popular	catalysts	are	typically	linked	to	wider	
application,	 naturally,	 there	 is	 a	 correlation	 between	 our	
generality	score	and	popularity	(Pearson	r =	0.65).	As	noted	
above,	we	expect	this	correlation	to	fluctuate	depending	on	
the	users	set	cluster	value	with	higher	clusters	 leading	 to	
stronger	correlations	between	the	two	metrics.	There	are,	
however,	notable	differences	between	the	two	values	mean-
ing	the	generality	metric	reads	out	a	different	fundamental	
feature	of	catalysis.	Secondary	amines	would	be	considered	
the	most	general	for	this	reaction	based	on	their	high	enan-
tioselectivity	values	(a	measure	of	catalyst	performance)		

	
Figure 4. Generality scores obtained for the organocatalytic 
Mannich reaction with the scaled average ee and min-max nor-
malized popularity of each catalyst chemotype. CA refers to 
cinchona alkaloid catalysts and urea-based includes both urea 
and thiourea moieties. 
	
and	substantial	popularity	(how	many	times	a	catalyst	type	
has	been	used	for	a	particular	reaction),	the	traditional	re-
action	 metrics	 for	 gauging	 generality.	 In	 contrast,	 urea-
based	and	cinchona	alkaloid-based	(CA)	catalysts	measure	
higher	 in	generality	according	to	our	equation.	These	dis-
parities	can	be	attributed	to	the	breadth	of	unique	reaction	
space	the	different	catalysts	are	applied	(Figure	5).	For	ex-
ample,	according	to	the	clustering,	many	secondary	amine	
catalyzed	Mannich	reactions	are	being	reported	with	simi-
lar	 substrates,	 though	 high	 enantioselectivity	 is	 observed	
within	the	clusters.		
	 Conversely,	urea-based	catalysts	proceed	with	gener-
ally	 lower	 enantioselectivities	 in	 overlapping	 clusters	 but	
can	 catalyze	 a	 much	 larger	 breadth	 of	 reactions.	 Intri-
guingly,	 cinchona	alkaloid	derived	catalysts	can	also	cata-
lyze	a	greater	diversity	of	substrates	than	secondary	amines	
despite	 far	 less	 reactions	 reported	with	 this	 catalyst.	 The	
structural	modularity	afforded	by	the	catalyst	framework	is	
clearly	a	key	feature	that	accounts	for	the	broad	applicabil-
ity	of	privileged	structures	across	this	reaction	type.	While	
a	large	scope	for	catalyst	modularity	can	be	construed	as	a	
possible	 limitation,	 it	 is	evident	 that	catalyst	optimization	
requires	some	level	of	structural	feature	tuning.	Indeed,	H-
bonding	 catalysts	 like	 thioureas	 and	 cinchona	 alkaloids	
have	multiple	points	for	introducing	a	broad	set	of	groups	
encompassing	 different	 steric	 and	 electronic	 properties.27	
In	contrast,	secondary	amines	have	witnessed	significantly	
less	structural	diversity	at	the	chiral	framework.	This	can	be	
demonstrated	by	the	number	of	unique	catalysts	present	in	
the	database	that	correspond	to	a	particular	chemotype.	We	
recorded	27	urea-based	catalysts	that	were	good	for	at	least	
one	Mannich	reaction	which	is	greater	than	the	number	of	
secondary	amines	(21)	although	more	reactions	have	been	
performed	with	secondary	amines.	Similarly,	the	number	of	
unique	cinchona	alkaloids	(16)	is	high	despite	a	much	lower	
number	of	reactions	reported.	



 

	
Figure 5. Performance within each cluster for secondary amine 
(dark cyan) and urea-based (red) catalysts. The success cutoff 
at 80% ee is shown as a grey dashed line. 
 
		 Mechanistically,	 the	 ability	 to	 synthesize	 many	 well	
performing	but	 structurally	unique	 catalysts	may	provide	
opportunities	to	establish	different	types	of	noncovalent	in-
teractions	between	the	catalyst	and	various	reactants.	Es-
sentially,	 H-bonding	 catalysts	may	 be	more	 adaptative	 to	
changes	 in	 reactant	 structure	 because	 enantioinduction	
does	not	rely	on	a	single	set	of	noncovalent	interactions.28	
Overall,	we	reason	that	the	privileged	nature	of	such	cata-
lysts	can	be	explained	by	this	important	factor	that	relates	
structure	to	mechanism.	We	expect	this	effect	could	account	
for	 the	 enhanced	 generality	 in	 scope	 for	 other	 systems,	
however,	 insight	 into	 the	 precise	 structural	 features	 con-
tributing	 to	 the	 broad	 solicitation	 of	 certain	 catalysts	 re-
mains	limited.	Consequently,	we	next	questioned	if	our	gen-
erality	metric	could	be	used	directly	as	a	target	output	for	
data	science	tools	traditionally	used	to	quantitatively	corre-
late	catalyst	attributes	to	experimentally	obtained	outputs	
such	as	yield	and	enantioselectivity.29–31		
				
Revealing	 structural	 features	 important	 to	 generality.	
To	 further	 interrogate	 the	 structural	 effects	 that	 permit	 a	
chiral	catalyst	to	be	impervious	to	changes	in	the	reaction	
component	structure,	multivariate	linear	regression	(MLR)	
modeling	was	 used	 to	 complement	 our	 generality	metric.	
Specifically,	we	anticipated	that	the	subtle	differences	in	cat-
alyst	generality	could	be	related	through	the	steric	and	elec-
tronic	properties	of	the	catalyst.	By	analyzing	the	physical	
organic	 properties	 utilized	 in	 the	mathematical	 equation,	
precise	 structural	 insight	 into	 the	molecular	 features	 that	
provide	high	enantioselectivity	for	a	broad	set	of	reactions	
could	be	realized.	To	probe	this	idea,	we	decided	to	limit	our	
analysis	 to	 one	 catalyst	 chemotype	 that	 has	 been	 applied	
across	 multiple	 reactions	 (herein	 referred	 to	 as	 reaction	
generality,	also	termed	as	the	privileged	catalysts	in	the	lit-
erature).	This	would	not	only	provide	the	necessary	struc-
tural	changes	to	the	reaction	component	for	generality	anal-
ysis	but	also	incorporate	sufficient	overlapping	catalyst	fea-
tures	for	modeling.	Excitingly,	this	would	allow	us	to	vet	our	
techniques	 in	 assessing	 reaction	 generality	 (diversity	 in	

substrate	structure	and	bond	formation)	a	unique	aspect	of	
catalyst	generality	that	have	not	witnessed	any	application	
of	screening	or	cheminformatic	tool	sets.		

Considering	 these	 constraints,	we	decided	 to	 interro-
gate	the	nucleophilic	additions	to	imines	catalyzed	by	chiral	
phosphoric	acids.32	Earlier	studies	from	our	lab	established	
that	 the	 enantioselectivity	 afforded	 by	 distinct	 reaction	
types	 can	be	 connected	 through	 a	mathematical	 equation	
that	describes	the	structure	of	the	imine,	nucleophile,	cata-
lyst	 and	 solvent.33	 Although	 this	 data	 set	 is	 extensive	 and	
achieves	substantial	coverage	of	reaction	space,	the	number	
of	 occurrences	 a	 particular	 catalyst	 is	 used	 varies	widely	
which	may	 impact	 the	reliability	of	 the	generality	metrics	
derived	from	this	literature	curated	dataset	(see	above	dis-
cussion).	Consequently,	and	to	explore	different	substrate-
catalyst	 combinations	 more	 comprehensively,	 we	 investi-
gated	several	robust	non-linear	machine	learning	(ML)	re-
gression	 techniques	 for	 correlating	 the	 enantioselectivity	
outcomes	represented	as DDG‡	to	the	structure	of	the	reac-
tion	 components.34,35	 The	 resulting	models	 could	 then	 be	
deployed	to	create	a	virtual	dataset36	by	predicting	the	en-
antioselectivity	for	every	combination	of	imine,	nucleophile	
and	catalyst	contained	in	the	experimental	database.		

Unlike	our	previous	work	in	correlating	and	predicting	
enantioselectivity	values,	interpolation	rather	than	extrap-
olation	is	the	overarching	goal	–	this	distinction	is	important	
as	 some	 non-linear	models	 cannot	 extrapolate	 outside	 of	
the	ranges	of	training	data.	To	choose	the	regressor	for	vir-
tual	data	set	construction,	random	forest,	XGBoost,	k-near-
est	neighbors,	and	support	vector	regression	models	were	
tested	on	the	experimental	dataset.33	This	included	a	total	of	
364	 reactions	 that	proceed	 through	an	E(+ee)	or	a	Z(-ee)	
imine	 transition	 state.	 Distinguishing	 between	 the	 two	
imine	 forms	 is	 important	 in	understanding	 the	enantiose-
lectivity	outcome	as	nucleophile	addition	to	the	same	face	
will	lead	to	different	enantiomers.37,38	Therefore,	the	sign	of	
the	enantioselectivity	value	corresponds	to	a	certain	imine	
geometry	and	 this	 information	can	be	used	 to	predict	 the	
absolute	product	stereochemistry.	
	 The	training	set	(80%	of	the	entire	dataset)	was	corre-
lated	to	the	structure	of	the	catalyst,	nucleophile,	and	imine	
represented	 by	 71	 computed	 parameters.	 These	 DFT	 ac-
quired	 structural	 descriptors	 describe	 the	 size	 and	 elec-
tronic	features	of	the	molecules	through	Sterimol	values,39,40	
IR	vibrations,41	NBO	charges,	energies	of	molecular	orbitals	
and	polarizability.	Including	parameters	to	describe	the	sol-
vent	structure	here	would	require	significant	additional	de-
scriptors	and	this	may	lead	to	poor	model	performance	(i.e.,	
overfit).	We	assume	that	any	subsequent	decreases	in	accu-
racy	in	correlating	and	predicting	the	DDG‡	values	will	affect	
both	 the	 training	 and	 test	 fits	 equally,	 and	 thus	 will	 not	
change	the	final	conclusions	sufficiently	to	warrant	their	in-
clusion.	Hyperparameters	for	each	model	were	tuned	using	
sequential	 random	and	grid	 search	 algorithms	and	evalu-
ated	by	10-fold	cross-validation.	Based	on	its	high	cross-val-
idation	and	 test	set	statistics,	we	chose	 the	XGBoost	algo-
rithm	shown	in	Figure	6A	to	predict	the	virtual	data	set	(see	
SI).	The	high	Q2	and	low	test	MAE	demonstrate	model	ro-
bustness	and	considering	that	every	component	included	in	
the	virtual	data	 set	has	 in	 some	way	been	 represented	 in	
model	training,	the		errors	in	predicting	the	virtual	data	can	
be	expected	to	be	similar	to	the	training	set.42,43	



 

	 Next,	the	XGBoost	model	was	applied	to	predict	the	en-
antioselectivity	arising	from	each	permutation	of	imine,	nu-
cleophile,	and	catalyst	contained	in	the	experimentally	cu-
rated	 data	 set	 (125460	 reactions	 consisting	 of	 15	 cata-
lysts×8,364	 reactants).	 The	 differences	 in	 structure	 be-
tween	tested	(experiment)	and	untested	(virtual)	reactant	
combinations	is	minor	(e.g.,	switching	one	imine	protecting	
group	 for	 another).	 For	 example,	 hemiaminals	 have	 been	
generated	from	the	addition	of	alcohols	to	N-Bz	protected	
imines,44	 although	 mechanistically	 N-Boc	 imines	 should	
also	work	well	and	have	been	employed	as	a	substrate	for	
reaction	with	other	nucleophile	 types.45	Therefore,	 in	 this	
data	augmentation	tactic	we	are	assuming	that	the	capabil-
ities	of	the	known	reactions	could	be	reasonably	extended	
to	include	other	similar	electrophile	and	nucleophile	struc-
tures	 that	 have	 been	 successfully	 applied	 in	 at	 least	 one	
other	reaction.	This	straightforward	approach	may	not	al-
ways	 be	 successful	 (i.e.,	 some	 reactant	 combinations	may	
not	lead	to	a	reaction),	but	it	does	allow	us	to	significantly	
increase	the	variety	of	the	reaction	partners	considered	for	
prediction	by	the	statistical	model	and	ultimately,	the	reac-
tion	space	from	which	the	generality	value	will	be	derived.	
Because	reaction	space	will	be	either	active	or	inactive	for	
all	chiral	phosphoric	acids,	this	will	not	affect	the	final	gen-
erality	score	and	thus	provides	a	strong	incentive	for	imple-
menting	this	approach.	The	UMAP	plot	in	Figure	6B	shows	
the	greater	coverage	of	chemical	space	now	covered	by	the	
virtual	data	set.	The	virtual	data	points	shown	in	light	blue	
appear	 in	 local	neighborhoods	 to	 the	experimental	points	
shown	 in	 grey,	 showing	 that	our	 augmentation	method	 is	
simply	 used	 to	 populate	 the	 empty	 space	 between	 the	
known	 experimental	 points	 rather	 than	 create	 genuinely	
new	reaction	space	where	the	applicability	of	our	catalysts	
will	be	less	certain.	Importantly,	this	reaction	space	now	has	
an	enantioselectivity	value	associated	with	all	tested	cata-
lysts	 and	 limits	 the	 impact	 of	 the	 initially	 imbalanced	da-
taset.	

To ensure the generality scores displayed sufficient varia-
tion, a predicted success value of 60% ee was set for this case 
study. Higher values here led to less selective catalysts not be-
ing counted for any cluster.  Following UMAP reduction to 10 
dimensions, the substrate space was clustered with the k means 
algorithm (k = 50) and the generality values were determined 
from the virtual data for the 15 CPA catalysts. The resulting 
values showed that Ar = 2,4,6-iPr (TRIP) is assigned as the most 
general catalyst with a value of 0.93 (meaning TRIP will pro-
vide on average at least 60% ee in 93% of the clusters), while 
9-phenanthryl and 9-anthryl derived chiral phosphoric acids 
were predicted to be slightly less applicable (Figure 7). This is 
surprising given the large structural differences between the cat-
alyst systems. Accordingly, we were motivated to understand 
these results better by deconstructing the contributions of chem-
ical space and enantioselectivity values to the generality score. 
Figure 8 shows this data simultaneously, where each point rep-
resents a cluster of unique reaction space branded by the cata-
lyst.  
	 Inspection	of	 this	data	shows	significant	catalyst-sub-
strate	matching	effects	of	two	superficially	structurally	sim-
ilar	catalysts:	9-anthryl	and	9-phenanthryl	(Figure	8A).	In-
terestingly,	most	substrate	clusters	provide	greater	enanti-
oselectivities	with	one	of	these	catalyst	structures.	This	il-
lustrates	that	similar	catalysts	can	engage	in	unique	interac-
tions	with	substrates.	The	generality	values	for	each	catalyst		

Figure 6. (A) XGBoost model predicting the ΔΔG‡
 of the CPA 

catalyzed nucleophilic addition to imines shown in the reaction 
scheme above. (B) UMAP visualization of the reactions present 
in the original dataset (grey) and virtual dataset (light blue).  
	
are	 comparable	 (9-anthryl	 =	 0.78,	 9-phenanthryl	 =	 0.8)	
which	can	be	explained	by	 the	similar	number	of	clusters	
showing	enhanced	enantioselectivity	with	one	catalyst.	Fig-
ure	8B	shows	the	two	catalysts	with	the	highest	generality	
scores:	TRIP	and	9-phenanthryl.	While	there	are	some	sub-
strates	where	9-phenanthryl	is	the	more	selective	catalyst,	
it	is	clear	that	TRIP	is	better	for	a	larger	range	of	substrates,	
explaining	 the	higher	 generality	 score.	However,	 this	data	
set	reveals	no	intuitive	global	trends	regarding	the	features	
that	impact	generality.	For	example,	while	higher	generality	
scores	 were	 generally	 associated	 with	 larger	 aromatic	
groups,	increasing	the	steric	bulk	did	not	always	produce	a	
more	general	catalyst	(compare	2,4,6-MeC6H2	(0.66)	to	2,6-
MeC6H3	(0.74).	

A. Correlating the enantioselectivity to the reaction component with XGBoost

B. Reaction network created by UMAP

CPA
N Nu

Solvent

H

O
O

Ar

P
O
OH

Ar

H
Nu

N



 

	 	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
Figure 7. Obtained generality scores for the CPA catalyzed nu-
cleophilic addition to imines. 
	
To	reveal	the	precise	structural	features	that	contribute	to	
certain	catalysts	broad	applicability,	we	correlated	the	mo-
lecular	features	of	the	catalyst	to	their	associated	generality	
value	using	MLR.	In	this	approach	the	catalyst	structure	rep-
resented	 by	 a	 parameter	 set	 of	 steric	 and	 electronic	 de-
scriptors	 and	 a	 forward	 stepwise	 linear	 regression	 algo-
rithm	was	applied	to	the	data	set.	Prior	to	correlation	build-
ing,	the	data	set	was	partitioned	80:20	into	training	and	val-
idation	sets.	A	good	relationship	was	determined	using	two	
parameters	revealing	a	simple	model	consisting	of	a	single	
steric	(Sterimol	B5)	and	electronic	(P	NMR)	term	(R2	=	0.75)	
as	shown	in	Figure	9.	Mechanistically,	this	is	consistent	with	
the	theory	that	enantioinduction	from	CPA	catalysts	gener-
ally	stems	from	repulsive	steric	 interactions	between	sub-
strates	and	catalyst	and	attractive	hydrogen-bonding	con-
tacts.32	These	 features	and	the	analysis	shown	in	Figure	8	
could	suggest	 that	generally	applicable	catalysts	 like	TRIP	
engage	in	robust	non-covalent	contacts	that	do	not	change	
significantly	 in	 nature	when	 the	 structure	 of	 the	 reaction	
component	is	altered.	This	mode	of	generality	which	relies	
on	transferable	non-covalent	interactions	appears	to	lead	to	
the	 highest	 generality	 scores.46	 Generality	 can	 also	 be	
achieved	 through	 adaptable	 non-covalent	 contacts	 where	
structures	like	9-phenanthryl	and	9-anthryl	may	be	able	to	
engage	in	various	interactions	leading	to	substrate	depend-
ent	 enantioinduction.	 These	 two	 different	 modes	 can	 be	
read	out	as	more	consistent	catalyst	performance	vs	signifi-
cant	substrate-catalyst	matching	as	shown	in	Figure	8.		
 A major challenge in the development of our generality 
metric involved implementing ways to assess the efficacy of the 
workflow. As generality is not necessarily a physical property 
that can be measured, it is not straightforward to compare the 
generality assigned to a catalyst with an experimental value. 
Accordingly, a final set of studies focused on predicting a more 
general catalyst for this reaction class. As described above, such 
prediction tasks are more suited for linear models given the dif-
ficulties of extrapolation with decision-tree based models. Our 
previous work using different statistical tools and experimental 
methodology had demonstrated that TCYP, a structurally simi-
lar but more recently discovered and significantly less utilized 
catalyst than TRIP, provides higher enantioselectivities across 
a broader set of reactions than TRIP.12 Therefore, we were  
 

  
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Predicted performance within each cluster for the 3 
catalysts with the highest generality scores. (A) Comparison of 
structurally similar catalysts (9-anthryl shown in blue and 9-
phenanthryl shown in red). (B) Comparison of structurally dis-
similar catalysts (TRIP and 9-phenanthryl, displayed in green 
and red, respectively).  
 
curious to see if our new workflow would lead to the same con-
clusions. To utilize all available data, all catalysts except for 
TRIP were added back to the training set and the model re-
trained. The MLR model was then applied to predict the gener-
ality of TRIP and TCYP given the corresponding B5 and NMR 
terms. Notably, TCYP was not included in any regression 
model prior to this prediction task.  In agreement with our pre-
vious study, TCYP is predicted to be a general catalyst with a 
generality score slightly larger than TRIP (Figure 9B). Alt-
hough the generality value is predicted to be higher than the 
maximum of 1 (a consequence of the low cut-off value and 
boundless linear model), these results demonstrate that new cat-
alysts can be screened for generality using this workflow.  
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Figure 9. (A) MLR model relating structural parameters de-
rived from the chiral phosphoric acid to the obtained generality 
values. “Measured Generality” values are generality scores 
from virtual data generated using a XGBoost model. (B) Utiliz-
ing the model to predict a more general catalyst structure. 
 
 
Application	 to	 reaction	 design.	 Finally,	 we	 aimed	 to	
demonstrate	the	direct	practical	applicability	of	our	metric	
to	identify	the	optimal	catalyst	structure	with	the	least	num-
ber	of	 experiments.	During	an	optimization	 campaign	 the	
choice	of	which	reactions	to	carry	out	is	critical,	especially	
at	 the	beginning	when	little	 is	known	about	the	 impact	of	
the	catalyst	structure.	A	rational	selection	of	initial	experi-
ments	would	shorten	timelines	of	reaction	optimization	and	
promote	a	 sustainable	approach	 to	 reaction	development.	
We	envisioned	that	the	resulting	information	from	the	gen-
erality	computation	can	be	employed	to	prioritize	the	cata-
lysts	to	be	tested	in	the	development	of	new	reactions.	Fig-
ure	7	shows	the	results	of	applying	the	workflow	to	chiral	
phosphoric	 acids	 in	which	 the	 catalysts	 are	 ranked	 (1-15,	
most	to	least	general).	The	next	step	is	to	assess	whether	the	
ranking	 correctly	mirrors	 the	 order	 of	 experiments	 to	 be	
performed.	In	other	words,	the	most	general	catalyst	struc-
ture	should	be	applied	first	as	it	has	the	greatest	chance	of	
achieving	a	good	result.	If	the	desired	result	is	not	obtained,	
the	second	most	general	catalyst	should	be	tested	and	so	on,	
until	broadly	applicable	catalysts	structures	have	been	eval-
uated.		

	 As	a	first	assessment,	we	validated	our	general	catalyst	
findings	 in	 the	development	of	 a	new	 reaction	 containing	
similar	 structural	 features	 to	 the	 systems	 from	which	 the	
generality	values	are	derived.	In	considering	this	further,	we	
evaluated	five	highly	ranked	catalysts	in	the	addition	of	ben-
zamide	to	aryl-substituted	N-Boc	imines	–	a	transformation	
which	has	not	yet	been	achieved	with	high	enantioselectiv-
ity.47	To	show	that	high	enantioselectivities	with	less	general	
catalysts	 are	 not	 probable	 we	 also	 assessed	 the	 lowest	
ranked	catalyst	structure	in	the	reaction.	The	targeted	sur-
vey	allowed	us	to	achieve	92%	ee	in	a	small	set	of	reactions	
(Table	1),	demonstrating	that	this	ranking	approach	can	be	
applied	to	guide	the	development	of	genuinely	new	enanti-
oselective	reactions	in	addition	to	analyzing	the	broad	liter-
ature.		

Table	1.	 Using	 catalyst	 generality	 scores	 to	 guide	 the	 ra-
tional	selection	of	chiral	phosphoric	acid	catalystsa		

	

	
 

aReactions were run with the following conditions: Imine sub-
strate (0.1 mmol), benzamide (0.11 mmol), (R)-chiral phos-
phoric acid (5 mol%), toluene (1 mL), rt, 48 h. bGenerality pre-
dicted by the MLR model given. cIsolated yields given. dEnan-
tioselectivities (ee) were measured by SFC. See the Supporting 
Information for further details.  
 
These	conditions	were	evaluated	with	a	small	set	of	addi-
tional	substrates	to	demonstrate	the	general	applicability	of	
the	reaction	conditions	found	in	the	first	round	of	reaction	
screening	 (Scheme	 1).	 Several	 substrates	 proceeded	with	
very	high	enantioselectivities	(>90%	ee)	but	two	products	
bearing	methyl	groups	were	obtained	in	much	lower	enan-
tiomeric	excess	(<80	%	ee).	When	faced	with	these	reaction	
scenarios,	chemists	typically	re-optimize	the	catalyst	struc-
ture	to	achieve	an	improvement	in	selectivity;	however,	this	
approach	can	be	unsuccessful	as	it	is	not	clear	if	the	maxi-
mum	level	of	selectivity	has	already	been	reached.	In	other	
words,	enantioselectivities	can	remain	low	even	after	multi-
ple	rounds	of	iterative	changes	to	the	catalyst	structure	as	
the	substrate	is	simply	less	amenable	to	the	reaction	condi-
tions.	
	 Considering	these	difficulties,	we	questioned	if	our	gen-
eral	catalyst	rankings	would	be	useful	in	quickly	determin-
ing	if	satisfactory	enantioselectivity	could	be	achieved	with	
a	particular	catalyst	class.	We	tested	highly	general	catalysts	
that	had	been	omitted	from	the	previous	assessment	of	the		
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Scheme	1.	Various	imine	substrates	tested	with	the	optimal	
catalyst.a		
	
	

	
	
aReaction	 conditions:	 Imine	 substrate	 (0.1	 mmol),	 ben-
zamide	(0.11	mmol),	(R)-chiral	phosphoric	acid	(5	mol%),	
toluene	(1	mL),	rt,	48	h.	Isolated	yields	given.	Enantioselec-
tivities	(ee)	were	measured	by	SFC.	Absolute	configurations	
confirmed	 by	 the	 X-ray	 crystallographic	 analysis	 after	 re-
crystallization	of	3b.	The	stereochemistry	of	the	remainder	
of	the	entries	is	assigned	by	analogy.	
	
moderately	performing	substrates	(Table	2).	Although	these	
did	not	provide	an	 improvement	 in	enantioselectivity,	our	
general	catalyst	 rankings	suggested	 that	 the	optimal	cata-
lyst	had	already	been	discovered,	 thus	 allowing	 costly	 re-
sources	to	be	conserved.	This	test	establishes	that	this	tech-
nique	allows	for	terminating	a	reaction	optimization	strat-
egy	if	extrapolation	seems	unobtainable.	
	
Table	2.	Moderately	selective	imine	substrates	tested	with	
various	catalysts.a		
	

	
	
aReactions were run with the following conditions: Imine sub-
strate (0.1 mmol), benzamide (0.11 mmol), (R)-chiral phos-
phoric acid (5 mol%), toluene (1 mL), rt, 48 h. bIsolated yields 
given. cEnantioselectivities (ee) were measured by SFC.  
	

To	further	understand	the	benefit	of	our	catalyst	rankings	
for	rational	experiment	selection,	we	extended	this	analysis	
to	literature	reported	transfer	hydrogenations	of	N-hetero-
cycles	using	Hantzsch	esters	where	both	general	and	non-
general	 catalysts	were	screened.48–53	 Likewise,	 these	 reac-
tions	 are	 not	 included	 in	 the	model	 training	 but	 proceed	
through	a	mechanism	similar	to	reactions	that	were	used	to	
derive	 the	generality	values.	Consequently,	we	would	also	
expect	 the	catalyst	 trends	 to	 translate	well	 to	 this	system.	
We	find	that	for	many	reported	reactions,	one	of	the	three	
top	ranked	catalysts	are	high-performing	when	used	(Figure	
10,	left)	
Conversely,	 the	 least	 selective	 catalyst	 systems	 correctly	
corresponded	to	the	catalysts	that	scored	low	in	generality	
(generality	<	0.6)	(Figure	10,	right).	These	trends	were	also	
found	when	our	literature	analysis	was	expanded	to	the	ad-
dition	of	nucleophiles	to	structurally	related	electrophiles,	
azo	compounds54–58	and	fully	substituted	iminium	interme-
diates	(Figure	S29,	S30).59–66	These	findings	are	encouraging	
and	 showcase	 how	 the	 general	 catalyst	 findings	 could	 be	
broadly	applied	to	streamline	reaction	development	efforts.		
	 The	use	of	these	generality	values	for	accelerating	cata-
lyst	application	are	manifested	in	similar	ways	when	we	an-
alyze	key	reactions	employed	in	the	synthesis	of	natural	and	
complex	 molecules.67,68	 Again,	 optimal	 catalyst	 structures	
used	 in	 these	 synthetic	 campaigns	were	 regarded	as	 very	
general	using	our	metric	(Figure	10B).	Encouragingly,	in	iso-
lated	cases	where	less	general	catalyst	were	found	to	be	op-
timal,	top	ranked	catalysts	were	also	selective	(Figure	10B,	
right),	 thus	suggesting	that	exhausting	the	entire	 list	after	
obtaining	 a	 good	 result	 is	 not	 necessary.69	 	 Accordingly,	
these	catalysts	can	be	applied	to	include	new	and	complex	
substrates	with	greater	confidence.	
	
Conclusions	
We	have	developed	a	new	measure	 centered	on	unsuper-
vised	machine	learning	to	quantify	catalyst	generality.	This	
approach	was	 evaluated	 as	 a	method	 to	 assess	 both	 sub-
strate	(broad	substrate	scope)	and	reaction	generality	(ap-
plied	to	construct	different	bonds)	of	catalysts.	Our	metric	
accounts	for	the	diversity	of	substrates	amenable	to	cataly-
sis	in	addition	to	the	recorded	enantioselectivity	values	ra-
ther	than	traditionally	subjective	measures	like	popularity	
or	performance.	We	show	that	our	statistical	approach	can	
be	applied	to	identify	the	most	general	catalyst	chemotype	
for	the	organocatalytic	Mannich	reaction	by	evaluating	the	
impact	of	diverse	organocatalyst	structures.		Continued	ex-
pansion	of	our	approach	to	diverse	bond	forming	reactions	
catalyzed	by	chiral	phosphoric	acids	demonstrates	MLR	as	
a	statistical	means	to	optimize	general	catalyst	structures.	
In	each	example,	comparing	and	deconstructing	the	gener-
ality	 values	 reveals	 several	 interesting	 features	 about	 the	
mechanistic	 basis	 for	 generality.	Most	 importantly,	 robust	
and	 adaptable	non-covalent	 interactions	 are	proven	 to	be	
particularly	critical	for	broad	spectrum	success	with	highly	
diverse	substrates	and	bond	forming	reactions.	We	envision	
that	 this	 workflow	 should	 facilitate	 the	 assessment	 and	
mechanistic	studies	of	other	enantioselective	catalytic	reac-
tions	and	enable	 the	optimization	of	new	general	 catalyst	
structure	through	prediction.	Finally,	we	show	how	the	gen-
erality	values	enable	synthetic	chemists	to	make	better	in-
formed	decisions	about	which	catalysts	to	test	first	both	in	
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reaction	 development	 and	 in	 the	 application	 of	 transfor-
mations	to	complex	molecule	synthesis.		
	

 
Figure	10.	 (A)	 Literature	 reported	Hantzsch	 ester	 hydro-
genations	of	N-heterocycles.	General	catalysts	refer	to	any	
of	the	top	3	most	general	catalysts	according	to	our	rankings	
(TRIP,	9-anthryl,	9-phenanthryl).	Non-general	catalysts	are	
those	with	a	generality	score	below	0.6.	(B)	Complex	mole-
cules	synthesized	with	a	key	CPA	catalyzed	step.	
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