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Abstract 

The computational design of chiral organic catalysts for asymmetric synthesis is a promising technol-

ogy, which may significantly reduce the material and human resources required for the preparation of 

enantiopure compounds. Herein, for the modelling of catalysts’ enantioselectivity, we propose to use 

the Multi-Instance Learning (MIL) approach accounting for multiple catalyst conformers and requiring 

neither conformers selection nor their spatial alignment. A catalyst was represented by an ensemble of 

conformers, each encoded by 3D pmapper descriptors. A catalyzed chemical transformation was con-

verted into a single molecular graph - Сondensed Graph of Reaction (CGR) - encoded by 2D fragment 

descriptors. A whole chemical reaction was finally encoded by concatenated 3D catalyst and 2D trans-

formation descriptors. The performance of the proposed method was demonstrated in the modelling of 

enantioselectivity of homogeneous and phase-transfer reactions and compared with some state-of-the-

art approaches.  

 

Introduction 

Synthesis of enantiopure compounds is a hot topic of modern organic chemistry because highly effec-

tive drugs can be chiral, and enantiomers often have different biological activities. List and McMillan 

demonstrated that chiral organic molecules can effectively catalyze asymmetric reactions leading to 

enantiopure compounds1,2. Since their seminal publications, numerous chiral catalysts have been de-

signed3. In most cases, the pursuit of perspective catalysts was conducted by iterative trials and errors 

approach, in which chemists relied on their professional experience, chemical intuition, and available 

experimental data. This approach, albeit often culminated in the desired result, still depends on the 

professional background of the researcher. At the same time, theoretical calculations may suggest the 
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chemical structure of promising catalysts before their synthesis and experimental tests, thus, reducing 

the time and material costs.  

A perspective computational approach to the discovery of new catalysts is Quantitative Structure-

Selectivity Relationship (QSSR) analysis, in which machine learning algorithms are applied to estab-

lish a relation between experimental enantioselectivity and a catalyst structure encoded by numerical 

descriptors. If such a relationship is established, the obtained predictive model can be used for the 

virtual screening of catalysts’ candidates. The first notable example of QSSR application was reported 

by Norrby et al.4, who used some geometry parameters of the metal complex (bond lengths, bond 

angles, and dihedral angles) and multivariate regression to analyze palladium-catalyzed allylation. 

Most other early studies were based on the Molecular Interaction Fields (MIF)5 approach in which 

interaction energies between a given molecule with a probe species (atoms, point charges, small mol-

ecules, etc) are used as descriptors. In MIF, molecules represented by their low-energy conformers are 

aligned inside a rectangular box, whereas the probes are fixed in nodes of the 3D grid superposed with 

the box. The earliest and most popular MIF technique is the Comparative Molecular Field Analysis 

(CoMFA), in which steric and electrostatic energies with a probe (a neutral carbon atom and a proton, 

respectively) are correlated with experimental activities 6. Lipkowitz et al.7 reported the first applica-

tion of CoMFA to the prediction of catalyst enantioselectivity in Diels-Alder reactions. Melville et 

al.8,9 studied the glycine imine alkylation with quaternary ammonium ion catalysts in asymmetric 

phase-transfer catalysis (APTC), first considering a single catalyst conformer within CoMFA8, then 

using Boltzmann-weighting of selected catalyst conformers. They demonstrated that accounting for 

the conformation diversity of catalysts led to some improvement in enantioselectivity predictions com-

pared to the conventional CoMFA model. The addition of thiols to imines catalyzed by phosphoric 

acids was analyzed by Denmark group10,11 using a CoMFA-like approach. Instead of interaction ener-

gies between the studied molecule and probe, they introduced novel Average Steric Occupancy (ASO) 

descriptors assessing the occupancy of nodes for an ensemble of aligned catalyst conformers. The ASO 

descriptors displayed better performance compared to single conformer descriptors10,11.  

Besides the selection of relevant conformers, another important limitation of MIF is the conformers’ 

alignment. If considered molecules share a common scaffold, alignment is a rather simple process 

whereas for structurally diverse data sets it becomes problematic. This motivated development of MIF-

based alignment-independent descriptors - GRid INdependent Descriptors (GRIND)12 resulted from 

the transformation of interaction fields with the help of the autocorrelation function. GRIND applica-

tions to asymmetric catalysis were first reported by Sciabola et al.13 for asymmetric reactions previ-

ously studied in references 7,14 and 15. In general, GRIND-based models performed similarly to MIF 
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alignment-dependent ones13. On the other hand, compared to the MIF approach, GRIND models are 

hardly interpretable, which may explain relatively rare applications of this method.  

Asahara and Miyao16 benchmarked different 2D (ECFP6 and Mol2vec) and 3D descriptors (Dragon 

and MOE) in the modeling of enantioselectivity of chiral Brønsted acid catalysts. The 3D descriptors 

generated for the lowest energy conformers of reactants, products, and catalysts performed worse than 

the ECFP6 descriptors. Sandfort et al.17 achieved a reasonable accuracy of predictions using reactants 

and catalysts' multiple fingerprint features (MFFs) resulting from the concatenation of 24 fingerprint 

sets calculated with RDKit. 

Tsuji et al. 18 reported a computer-aided design of new highly enantioselective imidodiphosphorim-

idate catalysts for tetrahydropyran (THP) and tetrahydropyran (THP) synthesis. They used ISIDA and 

CircuS descriptors which provided a wide range of alternative 2D structure representations, varying 

by both topology (linear or atom-centered fragments, atom pairs, triplets) and fragment size, allowing 

for fine-tuning to the particular modeling task. Such descriptors' tunability allowed us to reach a rea-

sonable model’s performance and to propose the catalysts more enantioselective than those used for 

the model training.  

The above studies revealed three main drawbacks of existing 3D-QSSR approaches to the model-

ling of catalyst enantioselectivity: (i) selection of catalyst conformers, (ii) their alignment, and (iii) 

relevance of 3D descriptors with respect to the enantioselectivity problem. The modeling complexity 

raises when a set of catalysts is applied to a set of reactions because in that case, one needs to consider 

the entire reaction profile10, i.e., a pair catalyst(i)*reaction(j). For this purpose, Zahrt et al. 10 suggested 

calculating the ASO and electronic descriptors for reactants and products and concatenating them with 

the ASO and electronic descriptors of a catalyst. Notice that models obtained in the above workflow 

are difficult to reproduce because ASO descriptors depend on both the position of the reference struc-

ture and the alignment algorithm. 

Recently, we have reported an alternative approach that used Multi-Instance Learning (MIL) algo-

rithms 18 accounting for all low-energy conformers of catalysts encoded by alignment-independent 3D 

pmapper descriptors 19 in combination with the compact representation of chemical reactions by their 

Condensed Graph of Reaction 22. This approach provided with models performance similar to Zahrt et 

al. 10. Unfortunately, the short communication format of publication 19 did not allow us to describe the 

modeling workflow in detail.  

In this study, we demonstrate that the MIL-based 3D modelling approach successfully predicts the 

enantioselectivity of homogeneous and phase-transfer reactions catalyzed by structurally different cat-

alyst families. In both cases, the obtained models outperform traditional 2D models and previously 
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reported 3D state-of-the-art approaches. The suggested computational protocol is reproducible and 

publicly available at https://github.com/Laboratoire-de-Chemoinformatique/3D-MIL-QSSR 

 

1. Data sets 

Two data sets were considered in this study: (i) asymmetric addition of thiols to imines catalyzed by 

chiral phosphoric acid catalysts (PAC data set) 10 and (ii) asymmetric alkylation of glycine-derived 

Schiff bases catalyzed by cinchona alkaloid-based ammonium salts (APTC data set) 8. We have used 

both structures and enantiomeric excess (ee %) values reported in the original publications.  

For a given reaction, the enantiomeric excess (ee %) measuring catalyst enantioselectivity is defined 

as the difference between the amount of each enantiomer: 

 

𝑒𝑒 % = %𝑅 − %𝑆 𝑜𝑟 𝑒𝑒 % = %𝑆 − %𝑅 (1) 

 

Predictive models were built for ΔΔG (kcal/mol) - a difference of activation free energies of com-

peting reactions leading to different enantiomers: 

 

∆∆𝐺 = −𝑅𝑇𝑙𝑛
[𝑅]

[𝑆]
= 𝑅𝑇𝑙𝑛

100 − 𝑒𝑒%

100 + 𝑒𝑒%
(2) 

 

The phosphoric acid catalysts (PAC) dataset reported by Zahrt et al.10 contains 43 catalysts used in 

25 reactions of asymmetric addition of imine to thiol (Figure 1a) resulting in 43 × 25 = 1075 data 

points. Reported ee % values (in favor of R enantiomer) ranged from -34 to 99 and was converted to 

∆∆𝐺 using eq. 2. A detailed description of the catalyst and reactants structures can be found in the 

original paper10. This data set was divided into training and several test sets, as suggested by Zahrt et 

al.10 (Figure S2 in SI). The training set consisted of 24 catalysts combined with 16 reactions resulting 

in 24 × 16 = 384 training catalyst/reaction pairs. Then, three test sets simulating different scenarios of 

the potential application of the models in real campaigns of catalyst design were prepared. The reac-

tion-out test set containing 216 data points (24 training catalysts combined with 9 new reactions) was 

used to predict the enantioselectivity of new reactions with known (presented in the training set) cata-

lysts. The catalyst-out test set containing 304 data points (19 new catalysts combined with 16 training 

reactions) examined the model potential to predict the enantioselectivity of known reactions with new 

catalysts. The both-out test set represents the most challenging scenario where the model was used to 
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predict the enantioselectivity of new reactants with new catalysts. This test set consisted of 171 data 

points corresponding to a combination of 19 test catalysts and 9 test reactions. 

 

 

 

Figure 1. Data sets considered in this study: (a) asymmetric addition of thiols to imines catalyzed by 

chiral phosphoric acid catalysts (PAC data set) and (b) asymmetric alkylation of glycine-derived Schiff 

bases catalyzed by cinchona alkaloid-based ammonium salts (APTC data set). 

 

Asymmetric phase transfer catalysis (APTC) enables reactions between reactants located in two 

immiscible phases with chiral catalysts to produce enantiopure substances. A classic example of APTC 

is the alkylation of α-amino acid derivatives catalyzed by cinchona alkaloid-based quaternary ammo-

nium salts reported by Melville et al.8 (Figure 1b). The COMFA model in publication 8 was built on 

70 catalysts and validated on a set of 18 catalysts. The reported ee ranged from 16 to 93 % (in favor 

of the S enantiomer) and was converted to ∆∆𝐺 using eq. 2. 
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Figure 2. (a) Preparation of pmapper 3D descriptors for a given catalyst conformer: (1) given 2D 

catalyst structure; (2) generation of 3D catalyst conformer; (3) generation of a 3D fully connected 

graph of atoms (for demonstration, the graph of four atoms is chosen); (4) enumeration of all atom 

triplets; (5) counting of enumerated atom triplets in given conformer; (b) addition of thiols to imines 

and related Condensed Graph of Reaction (CGR) 22. A CGR contains one created bond between the 

atoms S3 and C2 and one double bond transformed into a single one between the atoms N1 and C2. 

 

2. Computational details 

2.1 Reaction and catalyst descriptors 

Catalyst conformers generation. Each catalyst was represented by an ensemble of conformers gener-

ated using the distance geometry algorithm implemented in the RDKit package23. If the RDKit algo-

rithm failed to generate the conformers, we used a systematic conformer generator from the Open 

Babel package24 and then recalculated the full energies of conformers using RDKit. For each catalyst, 

up to 50 conformers within an energy window of 50 kcal/mol were generated.  

Catalyst 3D descriptors. Each generated catalyst conformer was encoded by pmapper descriptors25 

representing various combinations of 3D pharmacophore quadruplets. 20,21 In this work, instead of 

pharmacophore features used in our early study19, we used quadruplets and triplets enumerating en-

sembles of individual atoms and/or centers of 5- and 6-membered aromatic rings. Notice that applica-

tion of atoms triplets significantly reduces the number of descriptors, and related models perform sim-

ilarly to those built on stereosensitive atoms quadruplets. However, if a data set contains catalysts in 

both R and S configurations - the application of atom quadruplets is mandatory to distinguish the two 
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enantiomers. In this study, atom triplets were applicable because all catalysts in the considered data 

sets had the same stereoconfiguration. 

Atom triplets were specified by (i) the list of the individual atoms (C, N, O, S, P, F, Cl, Br, I) or 

centers of the 5-membered and 6-membered aromatic ring and (ii) the distances between atoms and/or 

center of rings in a triplet. The list of encoded atoms can be customized depending on the task. To 

enable fuzzy matching of atom triplets, the distances between atoms were binned with the step of 1Å 

(Figure 2a). Then the number of occurrences of each unique atom triplet is counted for each con-

former, resulting in an integer descriptor matrix (Figure 2a).  

 

 

Figure 3. Modeling workflow used in this work. A chemical reaction is encoded by m CGR/ISIDA 

fragment descriptors. A catalyst is represented by its N conformers, each encoded by n 3D pmapper 

descriptors. The concatenation of m 2D reaction descriptors and n 3D catalyst descriptors results in a 

set of vectors of (m + n) size. The Python 3 libraries used in the modeling workflow are indicated in 

bold near the arrows. 

 

2D descriptors for chemical reactions. Each chemical transformation was represented by a related 

Condensed Graph of Reaction (CGR)22 using CGRtools and CIMtools package 26. CGR represents a 

chemical reaction as a single molecular graph (Figure 2b) describing both conventional chemical 

bonds (e.g. single, double, triple, aromatic, etc.) and so-called “dynamic” bonds characterizing chem-

ical transformations, i.e. breaking or forming a bond or changing bond order. Then, obtained CGRs 

were processed with ISIDA-Fragmentor tool 27 to generate 2D fragment descriptors. In each CGR, 

fragment descriptors count the occurrence of particular subgraphs (structure fragments). ISIDA-Frag-

mentor provides several strategies for molecule fragmentation. In this study, we used atom-centered 
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subgraphs (atoms with first, second, etc. coordination spheres) where the radius varied from 2 to 5 

atoms. For CircuS descriptors we used atom-centered fragments with radii from 2 to 5. 

Reaction profile descriptors. Vectors of 2D fragment descriptors for reactions and 3D atom triplets 

for catalysts were then concatenated to form reaction profile descriptor vectors (Figure 3). If the data 

set contained a single reactant transformation, there is no concatenation of catalyst and reactant de-

scriptors.  

Model availability. The final models were built using reaction profile descriptor vectors and our 

implementations of multi-instance learning algorithms (https://github.com/Laboratoire-de-Chemoin-

formatique/3D-MIL-QSSR/tree/main/miqssr/estimators). A Graphical User Interface (GUI) for pre-

dicting the catalyst enantioselectivity with the built MIC multiconformers models is available at 

https://chematlas.chimie.unistra.fr/Predictor/qscer.php. 

 

2.1 Multi-instance learning algorithms 

The building of 3D models with multiple catalyst conformers requires the application of special MIL 

algorithms. In MIL, any object (i.e., a molecule) is represented by a bag of instances (i.e., a set of 

conformers). All the considered MIL algorithms can be divided into two groups – instance-based and 

bag-based. Instance-based algorithms consider each conformer as a separate training instance. Bag-

based algorithms, on the contrary, represent a molecule by a single vector of descriptors, which is 

produced from the vectors of conformer descriptors. 

The learning process in instance-based algorithms occurs at the instance level. Instance-level learn-

ing is applicable if it is possible to assign a label to individual instances in a bag. Also, it is assumed 

that there is a rule that aggregates the predictions for each instance to get the prediction for the entire 

bag. The simplest instance-based machine learning (ML) algorithm is Instance-Wrapper ( 

Figure 4), where each training instance of a bag is assigned the same label as the whole bag. As a 

result, one obtains a data set where each conformer is an individual training object, and any conven-

tional ML algorithms can be applied to build the model. Given a new catalyst, the enantioselectivity 

is predicted for each conformer, and predictions are averaged to obtain the final prediction of the en-

antioselectivity of the catalyst ( 

Figure 4). This approach can potentially bring some additional noise into the learning process be-

cause of assigning the same enantioselectivity to all catalyst conformers in a training set.  

The learning process of bag-based algorithms occurs at the bag level. In bag-based algorithms, 

there is no need to identify a label for each instance in a bag. Instead, there is an operation that 

https://github.com/Laboratoire-de-Chemoinformatique/3D-MIL-QSSR/tree/main/miqssr/estimators
https://github.com/Laboratoire-de-Chemoinformatique/3D-MIL-QSSR/tree/main/miqssr/estimators
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aggregates the instances to get a single vector representing the entire bag. Our implementation of the 

Bag-Wrapper algorithm ( 

Figure 4) averages the descriptor values across all conformers and supplies this single vector of 

descriptors to a conventional Single-Instance Learning (SIL) method - a three-layer fully connected 

neural network. The Bag-Wrapper algorithm has a similar drawback as the Instance-Wrapper – ag-

gregation of the descriptor vectors of all conformers the resulting vector may be noised by the contri-

bution of irrelevant conformers. 

 

Instance Wrapper 

 

Bag Wrapper 

 

Instance Net 

 

Bag Net 

 

Attention Net 
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There exist two types of MI neural networks: Instance-Net and Bag-Net. In Instance-Net ( 

Figure 4), the instances are running through fully connected layers and an output neuron. Then, 

instance predictions are averaged in the pooling layer to obtain a bag prediction, its error is calculated 

and backpropagated to adjust model weights. Bag-Net ( 

Figure 4) consists of three fully connected layers followed by one pooling layer. The pooling layer 

averages the instance representations learned by previous layers into a single embedding vector as a 

bag representation. The last fully connected layer takes the embedding vector as input and outputs the 

bag prediction.  

The Bag-Net uses an unlearnable mean pooling function and, therefore, the irrelevant conformers 

can contribute noise to the prediction and reduce model performance. This drawback can be eliminated 

by using more flexible types of pooling, such as weighted averaging pooling, known as attention. This 

type of pooling was proposed in publication 28, where an additional two-layered neural network was 

used to obtain the weights of instances. In the Bag-AttentionNet ( 

Figure 4), all instances are first fed to three fully connected layers. Then, the learned instance rep-

resentations are used by the attention network with a single hidden layer. In the attention network, the 

number of output neurons is equal to the number of instances. The output layer of attention has the 

Softmax activation function and predicts instance weights. Finally, the instance weights given by the 

attention network are used for weighted averaging of instance representations to get the embedding 

vector that is used to produce the bag prediction. Implementation of weighted pooling enables the Bag-

AttentionNet to automatically identify probable reactive conformers. 

 

 

 

Figure 4. Multi-instance learning algorithms 
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2.2 Generation of 2D models 

As an alternative to the MIL-3D approach, we also considered 2D models where the reactants and 

catalyst structures were encoded by different fingerprints and fragment 2D descriptors. The following 

fingerprints were generated using the RDKit library: Atom-Pairs (1024 bits)29,  Avalon (1024 bits)30, 

and Morgan fingerprints of radius 2 (1024 bits)31. Fragment ISIDA27 and CircuS18 descriptors can be 

calculated with different fragmentation strategies. For ISIDA, both atom-centered and linear fragments 

were used. CircuS are similar to ISIDA atom-centered fragments, but explicitly consider encountered 

branching or cyclical structures, which makes them more efficient for catalyst structures enriched with 

cyclical groups and reduces the noise in the training data. 

For a PAC dataset containing multiple reactant transformations, there were two encoding strategies: 

(a) reactant transformations were converted to CGR and then encoded by ISIDA or CircuS fragment 

descriptors (Imine/Thiol CGR, Table 1) or (b) imine and thiol were encoded by fingerprints or frag-

ment descriptors and then concatenated to a single descriptor vector (Imine/Thiol concatenation, Table 

1). Then the resulting reactant transformation vectors were concatenated with fingerprint or fragment 

descriptor vectors of the catalysts. 

Fragment-based descriptors can be calculated using different strategies and fragment lengths, gen-

erating multiple sets of descriptors. In order not to be biased towards specific descriptor sets, we ap-

plied a consensus method to calculate the final predictions. First, for each descriptor type (ISIDA, 

CircuS, or fingerprints), we selected models with determination coefficient R2
Train > 0.7 to discard 

descriptor sets that poorly describe the training set. Then the predictions of the filtered models for the 

test set were averaged to obtain final consensus predictions of enantioselectivity. For model training, 

the same fully connected neural network was used as in the Instance-Wrapper algorithm in multi-

instance models.   

The following metrics were used to assess the performance of the models: Root-Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), determination coefficient (R2), Spearman correlation 

coefficient measuring the correlation between predicted and experimental catalyst ranks (ranking ac-

curacy, RA). 

 

2.3 Quantile loss function 

A new round of catalyst screening is expected to reveal more efficient catalysts. In this context, it is 

desirable to prevent under-estimation of enantioselectivity compared to its actual value. Incorrect be-

havior of the model in these cases can lead to ignorance of most perspective structures, which may not 

be chosen for experimental testing at the next rounds of screening. Thus, the predictive model should 
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be specially configured to avoid under-estimation (𝑦𝑝𝑟𝑒𝑑 < 𝑦𝑜𝑏𝑠) of enantioselectivity. This can be 

provided with a help of a special quantile loss function for the model training: 

 

𝐿 = 𝑚𝑎𝑥[𝑞 × (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠), (𝑞 − 1) × (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠)] (3) 

 

Quantile loss function (3) asymmetrically penalizes overestimation (𝑦𝑝𝑟𝑒𝑑 > 𝑦𝑜𝑏𝑠) and underesti-

mation (𝑦𝑝𝑟𝑒𝑑 < 𝑦𝑜𝑏𝑠). For 𝑞 = 0.5, they both are penalized equally. The lower the value of 𝑞 < 0.5, 

the more underestimation is penalized compared to overestimation. In this study, 𝑞 was fixed at 0.1 

which means that overestimation is penalized by a factor of 0.1, and underestimation by a factor of 

0.9, and, thus, the model tries to avoid underestimation. 

 

3. Results and Discussion 

Using the described data sets and modelling protocols, various 2D and 3D models for enantioselectiv-

ity prediction were generated. The 3D single-conformer model was built on the lowest-energy catalyst 

conformers, while the 3D multi-conformer model included all the generated conformers.  

 

3.1 Benchmarking of molecular descriptors and MIL algorithms 

MIL algorithms benchmarking. For the benchmark of five MIL algorithms, we used the pmapper de-

scriptors and the PAC data set, which was divided into 25 subsets according to the number of reactant 

transformations. Each subset contained 43 catalysts with experimental ΔΔG measured in a given reac-

tion. The mean Absolute Error (MAE) of ΔΔG predictions was evaluated in a 5-fold cross-validation 

repeated 5 times (5×5-CV). The following values of median MAE (in kcal/mol) over 25 reactions 

(5×5-CV) were obtained: Instance-Wrapper (MAE = 0.28 kcal/mol), Bag-Wrapper (0.31 kcal/mol), 

Instance-Net (0.31 kcal/mol), Bag-Net (0.32 kcal/mol) and BagAttention-Net (0.35 kcal/mol). Based 

on these results, Instance-Wrapper was chosen as the main algorithm for further experiments. 

The basic machine learning algorithm in Instance-Wrapper represented a fully connected neural 

network with three hidden layers of 256, 128, and 64 neurons and a ReLU activation function. The 

optimized hyperparameters were weight decay (0.0001, 0.001, 0.01, 0.1) and learning rate (0.001 or 

0.01). The maximum number of learning epochs was 1000. 

Descriptors benchmarking. Different popular descriptors were benchmarked on the same data sets 

as the MIL algorithms (see above). Namely, we considered ISIDA27 and CircuS18 fragment descriptors, 

2D fingerprints, and 3D descriptors available in RDKit, as well as pmapper 3D atom triplets and quad-

ruplets descriptors. A set of 3D RDKit descriptors RDF, MoRSE, WHIM, GETAWAY, and 
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AutoCorr3D descriptors. 3D descriptors were benchmarked in a multi-instance setting, i.e., the pmap-

per and RDKit 3D descriptors were generated for multiple conformers. The Instance-Wrapper MIL 

algorithm was used as a machine learning method to build 3D models. In the case of 2D descriptors, 

the MIL bag contained only one instance. The performance of the obtained models was compared to 

that of the baseline null model which predicts enantioselectivity always as an average value of the 

training experimental enantioselectivities corresponding to median MAE = 0.47 kcal/mol 

 

 

Figure 5. Performance of ΔΔG (kcal/mol) models involving 2D and 3D catalyst descriptors. Each 

boxplot describes a 5×5-CV-validated MAE for 43 catalysts obtained with 25 models, each corre-

sponding to an individual chemical reaction. The red horizontal line shows the accuracy of the null 

model, which constantly predicts ΔΔG as the average experimental ΔΔG across all catalysts.  

 

The benchmarking results show that the pmapper 3D triplets (median MAECV = 0.27 kcal/mol) 

performed better than pmapper 3D quadruplets (0.31 kcal/mol) and all studied 2D descriptors (0.30-

0.35 kcal/mol) (Figure 5). The 3D RDKit descriptors were found unsuitable for modelling the catalyst 

enantioselectivity because they performed worse than the baseline null model. Thus, the proposed 3D 

atom triplets demonstrated the best performance in combination with the Instance-Wrapper MIL algo-

rithm although their number for a set of 43 catalysts (2886) was significantly smaller than that of atom 

quadruplets (42824). 
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3.2 Asymmetric addition of thiols to imines 

Table 1 reports the performance of Instance-Wrapper MIL models on three test sets described in Sec-

tion 1. These results were compared with those early reported by Sandfort et al.17, Zahrt et al. 10, and 

Asahara et al.16  

In the reaction-out test set, all generated 2D and 3D models demonstrated good results. The 2D 

models predict enantioselectivity with MAE = 0.14-0.18 kcal/mol, which is even better than the 3D 

single-conformer model (0.21 kcal/mol). Consideration of multiple conformers significantly increases 

the prediction accuracy (0.13 kcal/mol).  

 

a 2D modelling approach published by Sandfort et al.17, b 2D and 3D models published by Asahara and 

Miyao16, and c 3D conformer-dependent approach published by Zahrt et al10. R2 and Ranking Accuracy 

(RA) are reported in Table S1 and Table S2 in Supporting Information. In “Alternative approaches” 

reaction transformations were encoded with the same type of descriptors used for Catalyst representa-

tion. 

 

On the catalyst-out test set the 3D multi-conformer model also performs significantly better (0.22 

kcal/mol) than the 3D single-conformer model (0.38 kcal/mol) and 2D models (0.26-0.36 kcal/mol). 

A similar trend was observed for the both-out test set the 3D multi-conformer model (0.21 kcal/mol) 

outperformed the 3D single-conformer model (0.48 kcal/mol) and 2D models (0.28-0.34 kcal/mol).  

Table 1. Mean Absolute Error (MAE, kcal/mol) of ΔΔG predictions obtained for test sets generated 

from phosphoric acid catalysts (PAC) data set.  

Reactions  

representation 

Catalyst 

representation 
Reaction-out Catalyst-out Both-out 

Imine/Thiol  

concatenation 

2D Morgan fingerprints 0.18 0.29 0.33 

2D Avalon fingerprints 0.15 0.26 0.28 

2D Atom-Pairs fingerprints 0.16 0.36 0.33 

2D ISIDA fragments 0.14 0.27 0.28 

2D CircuS fragments 0.14 0.31 0.33 

Imine/Thiol  

CGR 

2D ISIDA fragmnets 0.15 0.27 0.30 

2D CircuS fragments 0.14 0.32 0.34 

3D Atom triplets (single conformer) 0.21 0.38 0.48 

3D Atom triplets (multiple conformers) 0.13 0.22 0.21 

Alternative  

approaches 

2D Sandfort’s MFFs fingerprints a 0.14 0.25 0.28 

2D Mol2vec descriptors b 0.13 0.34 0.40 

2D ECFP6 descriptors b 0.14 0.22 0.21 

3D Dragon descriptors (single conformer) b 0.14 0.42 0.47 

3D MOE descriptors (single conformers) b 0.15 0.48 0.55 

3D ASO descriptors (multiple conformers) c 0.16 0.21 0.24 
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Our best 3D multi-conformer models performed similarly to the best previously reported models 

by Asahara et al.16 based on ECFP6 descriptors and by Zahrt et al. 10 based on ASO descriptors (Table 

1).      

 

3.3 Enantioselectivity prediction beyond the training set 

To examine the potential of the models to predict enantioselectivity values beyond the training set, we 

followed the validation strategy proposed by Zahrt et al10. Following the above publication, the PAC 

data set on 1075 reactions was divided into a training set of 718 reactions with ee < 80% and a test set 

of highly selective 357 reactions with ee > 80%. Then, the 2D and 3D MIL models were built applying 

both conventional mean squared error loss (MSE) and suggested here quantile loss (see Computational 

details section). 

All 2D models built with MSE loss failed to predict enantioselectivity beyond the training set (R2
Test 

< 0), while the 3D single-conformer model (R2
Test = 0.36) and 3D multi-conformer model (R2

Test = 

0.44) performs significantly better. On the other hand, training with the quantile loss function consid-

erably improved both the 3D single-conformer model (R2
Test = 0.59) and the 3D multi-conformer 

model (R2
Test = 0.74). The 2D models built with the quantile loss function were still worse than the 

null model (R2
Test < 0) (Figure 6). Notice that on the beyond training test set the proposed 3D MIL 

multi-conformer model trained with the quantile loss (MAETest = 0.19 kcal/mol) outperformed Zahrt 

et al. approach (0.33 kcal/mol)10. 

 

 

Figure 6. Predicted and observed catalyst enantioselectivity (ΔΔG, kcal/mol) for (a) 2D model, (b) 3D 

single-conformer model, and (c) 3D multi-conformer model trained with quantile loss. The training 

set included reactions with ee < 80% and the test set with ee >= 80%. 
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To summarize, for the PAC dataset, the 3D multi-conformer model always outperforms the 3D 

single-conformer models, especially in the prediction of enantioselectivity for new test catalysts, which 

proves the importance of accounting for conformational flexibility. We believe that the difference in 

the performance of 3D single-conformer and 3D multi-conformer models may still increase with the 

increasing flexibility of modeled catalysts. The 3D multi-conformer model outperforms the 2D mod-

els, generated with popular fingerprints and fragment descriptors, which highlights the importance of 

3D information in enantioselectivity modelling.  

It should also be noted that in a computational screening of candidate catalysts, the predictive model 

should effectively identify potentially highly selective catalysts, i.e. the model should rank them higher 

than the other candidates. The ranking accuracy (RA) estimated by the Spearman ranking correlation 

coefficient provided in Table S2 shows that despite large prediction error (MAE) the 2D models 

achieve high RA > 0.80, i.e., they reasonably well capture the general trend in enantioselectivity vari-

ation.  

 

3.4 Asymmetric phase transfer catalysis 

For asymmetric alkylation (APTC data set), Melville et al8 reported a CoMFA model for ee built on 

the training set containing 70 catalysts. This model was validated on a test set of 18 catalysts with 

RMSE = 13.4 %. In our calculation, the original enantioselectivities were converted to ΔΔG, then the 

predictions on the test set were converted to ee % to be compared with the Melville et al8 results. Our 

3D multi-conformer model (RMSE = 8.8%) performed significantly better than the related 3D single-

conformer (18.0%) and the original COMFA model. The significant difference in the performances of 

3D single- and multi-conformer models can be explained by the high conformation flexibility of the 

catalysts – the average number of rotatable bonds in the data set was 10. The 2D models built on ISIDA 

and CircuS descriptors demonstrated poor performance with RMSE of 15.6 and 18.5 %, respectively 

(Figure 7).  
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Figure 7. Observed and predicted ee % for 18 test catalysts from the APTC dataset comparing the 

performance of the 3D-CoMFA model by Melville et al8 with: (а) 2D model (ISIDA fragments), (b) 

model (CircuS fragments), and (c) 3D multi-conformer model (atom triplets). 

 

Conclusions 

It has been demonstrated that the multi-instance learning approach can successfully be used to model 

the enantioselectivity of chiral molecules catalyzing a particular chemical reaction. Concatenation of 

3D pmapper descriptors representing conformers of catalysts and 2D fragmental descriptors represent-

ing transformations resulted in highly predictive models. The approach was applied to two different 

catalyst systems (BINOL derivatives and ammonium salts) with several validation scenarios. The de-

veloped models performed similarly or better than single-instance models based on popular finger-

prints or the state-of-the-art 2D or 3D descriptors. Our approach demonstrated substantial specific 

advantages in cases where catalysts were represented by very flexible molecules because 3D pmapper 

descriptors do not require spatial alignment of conformers which reduces ambiguity in catalyst repre-

sentation and descriptor calculation. We demonstrated the importance of accounting for multiple con-

formers of a catalyst rather than its single conformer. In fact, selection of a chemically relevant con-

former of a catalyst is a non-trivial task and may be a reason for degradation of the model’s perfor-

mance. Another improvement in the prediction of enantioselectivity can be achieved by applying a 

quintile loss function to penalize underestimated predictions. This greatly improves the extrapolation 

ability of models. 

The developed modelling protocol is automatized and reproducible. The proposed pmapper 3D de-

scriptors for the catalyst and ISIDA/CGR descriptors for the chemical reaction are easily customizable.  
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Data availability. 

The Python 3 source code for model building is available at https://github.com/Laboratoire-de-
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antioselectivity with the developed MIC multi-conformers models is available at https://chemat-
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1. Conformer generation 

The catalyst conformers were generated using the distance geometry algorithm implemented in RDKit. 

In the default configuration of the modelling protocol, we generated a maximum of 50 conformers 

within an energy window of 50 kcal. We also tested other values of the maximum number of conform-

ers per catalyst and the energy window. For the experiment, we chose a data set on the reaction of 

asymmetric alkylation of α-amino acid derivatives.  The data set contains 88 cinchona-based catalysts. 

This data set was chosen because it contains flexible catalysts with an average number of rotatable 

bonds of 10.1. 

 

Figure S1. Prediction accuracy of catalyst enantioselectivity on the validation and test set vs. the max-

imum number of conformers (a) and the size of the energy window (b). 
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In the first experiment (Figure S1a), we fixed the energy window at 50 kcal and varied the maxi-

mum number of conformers from 10 to 200 with the step of 10. The results show that the prediction 

accuracy on the validation set increases rapidly from 10 to 20 conformers and reaches a plateau of 40 

conformers. 

In the second experiment (Figure S1b), we fixed the maximum number of conformers at 50 and 

varied the energy window values from 10 to 200 kcal with a step of 10 kcal. We observed that the 

prediction accuracy on the validation set remains constant in the range from 10 to 100 kcal, but then 

decreases dramatically. 

 

 

2. Test and training set design 

Recently, Denmark and co-workers published a data set on the enantioselectivity of phosphoric acid 

catalysts (PAC) for the reaction of the asymmetric addition of thiols to imines. This data set reports 

the enantioselectivity of 43 catalysts with 25 imine and thiol reactant combinations resulting in 43 × 

25 = 1075 data points. Hereinafter we refer to this data set as the «PAC data set».  Reported ee % (in 

favor of R enantiomer) ranged from -34 to 99 and for modelling were converted to ΔΔG (kcal/mol). A 

detailed description of the catalyst and reactant structures can be found in the original paper11. 

 

 

Figure S2. Training and test sets generated from phosphoric acid catalysts (PAC) data set. 

 

Each combination of 43 catalysts and 25 reactants formed an individual reaction profile. The con-

catenation of reactants and catalyst descriptors in the training process produces models that can be 

utilized in different scenarios for the prediction of (a) enantioselectivity of known reactions with new 
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catalysts, (b) enantioselectivity of new reactions with known catalysts, and (c) enantioselectivity of 

new reactions with new catalysts.  

This data set was divided into training and test set, exactly as in the original paper11. The training 

set consisted of 24 catalysts combined with 16 reactants resulting in 24 × 16 = 384 training reactions. 

Then, three test sets simulating different scenarios of the potential application of the models in real 

campaigns of catalysts design were prepared (Figure S2). The reaction-out test set simulates a scenario 

where the generated model is used to predict the enantioselectivity of new reactants with known (pre-

sented in the training set) catalysts. To this end, 24 training catalysts were combined with 9 new test 

reactants resulting in 24 × 9 = 216 test data points. The catalyst-out test set examines the potential of 

the model to predict the enantioselectivity of known reactants with new catalysts. For this purpose, 16 

training reactants were combined with 19 new catalysts for a total of 16 × 19 = 304 test data points. 

The both-out test set represents the most challenging scenario where the model is used to predict the 

enantioselectivity of new reactants with new catalysts. This test set consists of 9 test reactants com-

bined with 19 test catalysts providing 9 × 19 = 171 test data points. 

 

 

3. Models’ performance 

 

 

 

 

 

 

Table S1 Coefficient of determination (R2) of ΔΔG predictions obtained for test sets generated from 

phosphoric acid catalysts (PAC) data set. 

Reactants  

representa-

tion 

Model (descriptors) Reaction-out Catalyst-out Both-out 

Imine/Thiol  

concatena-

tion 

2D model (Morgan fingerprints) 0.86 0.63 0.53 

2D model (Avalon fingerprints) 0.92 0.73 0.71 

2D model (Atom-Pairs fingerprints) 0.90 0.41 0.61 

2D model (ISIDA fragments) 0.92 0.69 0.66 

2D model (CircuS fragments) 0.92 0.66 0.61 

Imine/Thiol  

CGR 

2D model (ISIDA fragments) 0.91 0.68 0.61 

2D model (CircuS fragments) 0.92 0.62 0.57 

3D single-conformer model (Atom triplets) 0.84 0.55 0.38 

3D multi-conformer model (Atom triplets) 0.93 0.83 0.86 
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Table S2 Ranking accuracy (RA) of ΔΔG predictions obtained for test sets generated from phos-

phoric acid catalysts (PAC) data set. 

Reactants  

representa-

tion 

Model (descriptors) Reaction-out Catalyst-out Both-out 

Imine/Thiol  

concatena-

tion 

2D model (Morgan fingerprints) 0.92 0.85 0.82 

2D model (Avalon fingerprints) 0.94 0.85 0.83 

2D model (Atom-Pairs fingerprints) 0.94 0.63 0.58 

2D model (ISIDA fragments) 0.94 0.85 0.88 

2D model (CircuS fragments) 0.94 0.83 0.82 

Imine/Thiol  

CGR 

2D model (ISIDA fragments) 0.94 0.86 0.88 

2D model (CircuS fragments) 0.94 0.82 0.81 

3D single-conformer model (Atom triplets) 0.91 0.76 0.71 

3D multi-conformer model (Atom triplets) 0.94 0.90 0.90 

Table S3  Determination coefficient (R2) and Mean Absolute Error (MAE) of ΔΔG predictions ob-

tained for test sets for APTC data set. 

Model (descriptors) 

 
RMSE (ee %) R2 (ΔΔG) MAE (ΔΔG) 

2D model (ISIDA fragments) 15.6 0.63 0.20 

2D model (CircuS fragments) 18.5 0.38 0.28 

3D single-conformer model 

(Atom triplets) 
18.0 0.42 0.24 

3D CoMFA model 13.4 0.68 0.19 

3D multi-conformer model 

(Atom triplets) 
8.8 0.82 0.13 


