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Abstract 

Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at 

universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound 

libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the 

development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, 

bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process 

of drug candidates. The prospects for growth in drug discovery and development processes in chemical, 

biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with 

artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by 

regulatory agencies shortly. 
 

Keywords: artificial intelligence; chemical libraries; chemoinformatics; chemical space; compound databases; natural 
products. 

 

1. INTRODUCTION 

 Since the last century, research groups and commercial 
companies in the field of pharmaceuticals but also the agri-
food industry and biotechnological products have been 
generating, collecting, and storing a large amount of 
chemical information in large chemical libraries [1–3]. These 
chemical libraries and collections of virtual compounds can 
be an exact reproduction of substances that exist in the 
scientist's laboratory or that can be acquired commercially, 
either natural products or synthetic compounds. Chemical 
libraries can also contain feasible virtual molecules 
according to simple chemical stability and synthetic 
feasibility rules generated by enumeration algorithms. The 
latter databases have the advantage of being able to 
synthesize substances on demand in case of need, for 
example after a virtual high-throughput screening.  

Chemical libraries of real compounds are characterized by a 
large structural diversity. They contain not only their 
structural data and stereochemical information, but also their 
associated physicochemical, spectroscopic, and 

spectrometric properties. Some of this chemical information 
has been used in the drug discovery process [2, 3]. 

Chemical databases are very heterogeneous in terms of size, 
types of information, and organization. This means that the 
information stored in them on the properties of the 
substances is not the same, nor repeatable from one library to 
another due to the type of format in which the data is filed. 
This causes researchers to follow different guidelines or 
workflows in the design of chemical libraries, for which 
there are multiple facets in their scope of interpretation, 
analysis, and application in different computational studies 
[3, 4]. 

In recent years, we have witnessed an explosion in the 
number of chemical databases with quite different purposes. 
In addition to corporate, private, and commercial databases, 
there are many freely accessible databases on the web. These 
databases, in addition to containing a wealth of chemical 
information, are equipped with chemoinformatics and 
bioinformatics tools that enhance their usefulness in drug 
discovery processes. [5]. Table 1 summarizes some 
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companies that offer the service of designing virtual 
chemical libraries and syntheses on demand. 

 
Name Services Reference 

ChemDiv 3D-

Biodiversity 

Library 

Virtual Library on-demand. 

Stock 1.6M screening 

compounds and 75K 

building blocks. 

https://www.chemdiv.c

om/catalog/sets/3d-

biodiversity-library/. 

Accessed February, 

03,2022 

Greenpharma This has developed 

synthesis routes and offers 

chemical services and 

solutions to develop 

focused libraries based on 

scaffolds and synthesis is 

made on-demand. 

https://www.greenphar

ma.com/home/. 

Accessed February, 

03,2022 

TargetMol 

 

 

This offers over 120 types 

of compound libraries, 

10,000 small molecules, 

and 16,000 natural 

products. Chemical 

synthesis, virtual screening, 

pharmacophore-based 

virtual screening, and 

molecular docking-based 

virtual screening on 

demand. 

https://www.targetmol.

com/home/. Accessed 

February, 03,2022 

Enamine This is a leader in the 

market of building blocks 

on demand. Stock 210 

million of novel building 

blocks make on demand. 

Screening dataset of 2.9 

million small molecules. 

https://enamine.net/ho

me/. Accessed 

February, 03,2022 

Table 1 Examples of chemical companies that offer services 
of construction of virtual libraries and on-demand synthesis. 

 

2. DESIGN OF CHEMICAL LIBRARIES 

Chemical libraries can be generated using an approach based 
on selecting data subsets from large libraries and performing 
a partition and selection of various data subsets. Another 
way of designing chemical libraries is by constructing 
compound libraries based on a set of chemical fragments, 
which can be obtained through retrosynthetic analysis of a 
dataset of original compounds [6]. 

Different parameters have been used in the development of 
chemical libraries based on diversity [7–10]. Some of the 
concepts and representations used to generate these libraries 
are based on physicochemical properties (drug-like or lead-
like) [11–13], 2D descriptors and molecular fingerprints (14), 
chemical space [15–17], molecular shape [18, 19], and 
pharmacophore models [20]. 

Virtual chemical libraries can be generated using a scheme 
of known synthetic reactions and reagents available [2, 4], 
molecular graph model [21], diversity-oriented synthesis 
library [22–24], target-focused libraries [25–26], and 
chemical libraries designed de novo.  

A wide range of artificial intelligence (AI) techniques have 
been used in the design of de novo libraries to obtain various 
libraries of organic compounds [27–32]. Many companies 
have generated organic compound libraries focused on low 

molecular weight molecules for a wide range of 
computational chemistry applications [33]. 

Target-focused libraries have made it possible to obtain a 
broad variety of chemical libraries developed "in-house" by 
commercial companies against multiple biological targets. 
These types of libraries currently have a remarkable interest 
in drug discovery and development processes. An example is 
the company TargetMol Chemicals Inc. [3]. 

On-demand virtual chemical libraries contain a certain 
number of compounds synthesized by well-known chemical 
reactions and carried out in a stock building block and that 
are tailored to a specific biological target [34] Within the 
virtual chemical libraries, one of the most important is the 
in-house compound libraries (generated by universities, 
institutes, and chemical companies), which have had an 
exponential increase in their use and number of citations by 
the scientific community, since the beginning of the 

COVID19 pandemic. 

A few libraries of organic compounds with 1H/13C 
spectroscopic [35–38] or spectrometric (MS) [39–41], 
information that can be of great utility in metabolomics and 
replication during the structural elucidation processes of 
natural products have been developed. 

2.1 Data information in chemical libraries 

The chemical libraries contain distinct types of compounds 
that, depending on their primary source and/or obtention 
method, can be classified as synthetic or semi-synthetic 
compounds, natural products, and virtual compounds. The 
properties of these several types of compounds differ 
significantly. In general, naturally occurring substances, with 
a larger number of stereocenters, are more complex than 
synthetic ones. This complexity can lead to the development 
of more selective pharmaceuticals. In fact, in some 
pharmacological groups, such as anti-tumor drugs, many of 
the pharmaceuticals are of natural origin or based on them. 
In addition to structural information, these databases may 
contain information on their activity in different 
pharmacological domains. Figure 1 shows the types of 
compounds included in the different chemical libraries, 
while Figure 2 summarizes the data information existing in 
the same. 
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Fig. (1). Types of compounds in chemical libraries 

 

 

Fig. (2). Overview of data information in chemical libraries. 

 

 

2.2. Structural representation in chemical libraries 

Chemical libraries have implemented different linear 
notation systems to describe 2D molecular models. 

Examples of linear notations are SMILES, SMARTS, 
InChI, InChI Key, and others. 
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2.2.1 SMILES string 

Simplified Molecular Input Line Entry Specification 
(SMILES) [42–46] is a straightforward coding system for 
unambiguously describing molecular structures using 
alpha-numeric character strings in which atoms are 
represented by their atomic symbols and bonds are only 
represented when they are multiple in the same way as 
written according to IUPAC standards. Branches are 
specified in parentheses and/or square brackets. Most 
molecular editors can interpret these SMILES codes for 
conversion into two-or three-dimensional graphical 
molecular models [47–50]. There is a form of canonical 
representation, which is the one used in computational 
studies since it "guarantees to have unique molecules,” 
facilitating rapid data mining in chemical library 
databases. SMILES is not only used for the representation 
of molecular models but also for performing similarity 
searches, in which a comparison of the physicochemical 
properties of molecules is carried out. SMILES is, 
therefore, useful in drug design studies based on 
physicochemical properties [11–13], molecular 
fingerprint [14], chemical space [15–17], and molecular 
scaffold [48]. Weininger, A., and Weininger, D. 
developed the original SMILES specification in the late 
1980s and early 1990s [43, 44, 51]. In 2007, an open 
standard called "OpenSMILES" was developed by the 
open-source chemistry community. 

 

 

 

2.2.2. SMARTS string 

SMARTS (SMILES Arbitrary Target Specification) is an 
extension of SMILES useful for performing a search by 
substructure to find structural fragments paired with other 
matching substructures [46, 52]. SMARTS has 
applications in studies based on the search for structural 
fragments in chemical libraries, such as virtual screening 
and molecular docking studies. In addition, SMARTS 
notation has been used to determine Pan Assay 
Interference Compounds (PAINS) in chemical libraries 
for high throughput screening [52]. Figure 3 shows 
SMILES and SMART representations of a natural product 
(benzopyranone) present in chemical libraries. 

 

 

Fig. (3). SMILES and SMART notation of the 3-phenyl-benzopyran-4-one core using different structure editors. Here it is 
observed that the representation of SMILES presents a different ordering of the characters in its linear notation, while the 
SMART better defines the structure, avoiding errors when using different structural editors. This difference is explained by the 
fact that in structural editors, for example, aromatic rings are represented in upper case (when they should be lower case), and 
this occurs because aromaticity has not been considered, and benzene is considered as tricyclohexene. 



 

 

 

2.2.3 InChI and InChI Keys Identifier  

InChI is the International Chemical Identifier developed 
by the International Union of Pure and Applied Chemistry 
(IUPAC) in collaboration with the U.S. National Institute 
of Standards and Technology (NIST) and the InChI Trust 
[53–56]. The InChI establishes a unique label for each 
chemical compound, facilitating the linking of diverse 
data compilations. This linear notation system resolves 
the inconvenient and chemical ambiguities of the 
SMILES language about stereocenter, tautomer, and 
valence [53–56]. 

The InChI Key is a fixed-length (27-character) condensed 
digital representation of an InChI, developed to make it 
easy to perform web searches for chemical structures. The 
first block of 14 characters for an InChI key encodes the 
core molecular constitution, as described by a formula, 
connectivity, hydrogen positions, and charge sublayers of 
the InChI main layer [53-56]. The other structural features 
complementing the core data, namely exact positions of 
mobile hydrogens, stereochemical, isotopic, and metal 
ligands, whichever are applicable, are encoded by the 
second block of InChI Key. (The InChI Key is described 
in detail here (https://www.inchi-trust.org/) [53–56]. 
Figure 4 show an example of InChl and InChl Key 
representation of organic compound.  

 

 

Fig. (4). InChl and InChl Key representation of the 4-phenyl-benzopyran-4-one using different structure editors. This notation 
lineal defines better the structure of a chemical compound. 

 

2.2.4. Graph model 

Chemical graphs 

In the graphical representation of a chemical structure, the 
vertices represent the atoms, while the edges represent the 
bonds, and the order of the bonds corresponds to the 
multiplicity of edges. This graphical representation of 
vertices and edges describes a "chemical graph". The 
maximum number of bonds that an atom can form has 

been determined by the valence of the chemical elements 
involved in bond formation [57, 58].  

The graph model has been utilized in analyzing based-
fingerprint [59], based scaffold [60], machine learning 
(ML) [61], deep learning methods [62], AI [63], a 
fragment-based model for the construction of building 
blocks and reaction-based de novo design on demand [64]. 
The graph-based representations (Figure 5) were 
generated with the Kcombu program [65]. 

 



 

 

 

Fig. (5). Graph model generated by the Kcombu program. The graph model of 4-phenyl-benzopyran-4-one is observed in (A). 
In a model of 4-phenyl-benzopyran-4-one (B), there are 2D and 3D representations of the compound. The compound was 
identified with a similarity coefficient of Tanimoto of 1.00 in the Nimiki710 database (C). The Bemi-Murcko skeleton and 
carbon are highlighted in green (D). 

 

 

 

SMILES notation is the main type of linear representation 
used to describe the structures of compounds in 2D 
models in chemical entity libraries. It allows easy 
recognition of the groups of atoms, bonds, and 
connections established in a molecule. While SMILES 
and other linear notations are easily understood by 
machines, molecular graphs are the most amenable to 
chemists. 

The main drawback of the design based on the graph 
model is related to the generation of the vectors that 
constitute the graph representation. Mercado et al [63] 
have established a model for molecular design based on 
graphs using neural networks and the canonical SMILES 
as the unit of departure. This robust work provides a 
perspective with immense potential for de novo design 
that can significantly impact drug discovery and 
development programs in pharmaceutical companies [64]. 

2.3. Progress on de novo design in chemical libraries 

De novo drug design is a term used in medicinal 
chemistry that refers to the generation of chemical 
compounds using mathematical equations with the 
support of computational tools [66–68]. The inclusion of 

methodologies linked to AI has allowed considerable 
progress in drug design in the chemical and 
pharmaceutical industries. The ReLeaSE application for 
de novo design of new chemical compounds is based on 
the approaches of deep learning (DL) [66–69] and 
reinforcement learning (RL) [70]. For the design of 
virtual libraries, the ReLeaSe employs the RL algorithm, 
which takes into account physicochemical properties, 
specific biological activity, and chemical complexity [70]. 
DeepLigBuilder is a deep generative model for building 
3D molecules that can be used in chemical library design. 
These generated structures of molecules and analogs are 
based on the physicochemical properties of interest in 
drugs discovery [70]. AutoGrow4 is a powerful 
computational hit discovery and lead optimization 
software with a greater application when the site of 
interaction on the biological target with ligands is 
unknown [71].  

De novo drug design of multi-targeted chemical libraries 
based on AI [72] can be used in the process of drug 
discovery and development in industry and academia. 
This design based on multi-target allows the generation of 
new molecular entities with optimized drug-like 
properties and similarity-based constraints biasing 
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specific biological targets. In addition, this de novo 
approach to chemical compound library design could be 
applied and strengthened in combination with other 
hybrid strategies based on conventional methods and AI 
[72]. 

Reaction-based de novo design refers to the in-silico 
generation of new chemical structures by combining 
reactants through structural transformations derived from 
known reactions. The implementation and validation of 
the model using a multi-marker reaction class 
recommender were developed de novo with a design 
based on a reaction vector combined with a reaction class 
recommender that considers the characteristics of the 
entire molecule as input molecule for suggest only those 
classes of synthetically accessible reaction that are most 
likely to occur in an environment chemical determined 
[73]. 

Diversity-oriented synthesis (DOS) is a synthetic strategy 
that aims to efficiently produce compound collections 
with elevated levels of structural diversity, and three-
dimensionality and is therefore well-suited for the 
construction of novel fragment collections, demonstrating 
the utility of DOS within drug discovery efforts [74]. 

The ReFRAME is an example of a drug repurposing 
library that has contributed to drug discovery in academia 
[75]. 

The approach developed (ML), deep learning (DL), 
reinforcement learning (RL), and AI, in the generation of 
algorithms, scripts, programs, workflow schemes, and 
online web services to generate chemical structures in 2D 
or 3D, has had a significant impact and utility in the 
design of virtual chemical libraries. This has shortened 
the time in the drug discovery process in academia and 
pharmaceutical industries [76]. 

In summary, the incorporation of methodologies such as 
based-reaction, multi-marker reaction class recommender, 
diversity-oriented synthesis-based design, synthesis-based 
building block, and drug repositioning library has 
increased the use of computational tools. The use of these 
methodologies has led to an increase in the complexity of 
structural representation systems for which graph models 
have limitations in their generation, so that linear notation 
systems, such as SMILES, remain the means of choice for 
generating molecules in chemical libraries. 

 

3. ANALYSIS OF CONTENTS AND DIVERSITY IN 

CHEMICAL LIBRARIES 

Systematic analysis of the types of chemical structures 
contained in a compound library and their diversity is a 
basic practice for the rational design and use of such 
libraries. Indeed, the diversity of the analysis is a major 
criterion to identifying bioactive compounds and it can be 
applied for multiple purposes, such as design, acquisition, 
and selection of compounds for screening (virtual and 
experimental), and analysis of structure-activity 
relationships. Diversity analysis is also incorporated into 

de novo design strategies to evaluate the structural novelty 
of chemical libraries [77]. Furthermore, diversity analysis 
has applications not only in drug discovery but also in 
natural product research, food chemistry, organic 
chemistry, and material sciences, among other areas. 

The contents and diversity analysis will depend on the 
compound representation, discussed in Section 2. In 
general, the representations can be grouped into two 
major categories: molecular scaffolds and structural 
fingerprints. The selection of the compound 
representation to study a chemical library gives rise to the 
definition of the “chemical space” and will depend on the 
goals of the research program. In this section, we briefly 
discuss the concepts of chemical space and methods used 
to study systematically the diversity, variety of chemical 
scaffolds, and diversity of fingerprints. Several reviews 
address the basics and early developments of the analysis 
of the contents and diversity analysis of chemical space of 
compound libraries [78]. As Dunn et al. [77, 79] recently 
pointed out, the rapid growth in the number and size of 
chemical libraries required the development of 
computational methods to analyze the heterogeneousness 
of ultra-large chemical libraries [80–81]. 

3.1 Diversity of chemical space 

Chemical space is a core concept in chemoinformatics 
[82], which refers to all molecules as well as multi-
dimensional conceptual space. In contrast, the universe 
includes all types of matter and energy; galaxies; solar 
systems; and all the contents of the space that could be 
called cosmic space, which means the entire universe. 
Unlike cosmic space, chemical space is dependent on the 
structural representation and the type of properties or 
descriptors used to represent the compounds of interest. 
For example, the types of descriptors employed to 
represent small organic molecules will be different than 
those describing organometallic molecules, and both 
constitute a fraction of the chemical space [83]. 

Progress on chemoinformatics methods to explore 
systematically the chemical space using quantitative and 
visual methods has been reviewed [84]. Despite the 
considerable progress in the methodologies to study the 
chemical space (and biological spaces as well), it remains 
one of the grand challenges in computer-aided drug 
design [85].  

Several published studies focus on the use of chemical 
space as a tool for assessing the diversity of data sets and 
exploring the relationships between compound collections. 
For instance, the chemical space of nearly 43,000 
naturally occurring compounds from Latin America and 
other geographical regions has been analyzed. It was 
concluded that the natural products data sets occupy 
similar regions in the chemical space and are an attractive 
source for obtaining novel leaders able to become new 
pharmaceuticals [86]. These observations are consistent 
with previous studies that showed that natural products 
cover a broader region of the chemical space as compared 
to approved drugs and synthetic compounds, and they 
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populate areas of the chemical space that are difficult to 
synthesize [87]. 

Another recent exploration the chemical space of large 
and ultra-large chemical libraries is represented by the 
study of Dunn et al. [77]. In that work, the authors 
introduced the Chemical Library Networks (CLNs) as a 
general and efficient approach to representing visually the 
chemical space of chemical libraries. Dunn et al, [77] 
exemplified the use of the CLNs to analyze the diversity 
of 19 compound data sets commonly used in natural 
product research and drug discovery, containing more 
than 18 million molecules. Notably, the code used to 
create the CLNs is freely available and was used in a 
separate study to visually represent the chemical space of 
11 synthetic compound libraries focused on epigenetic 
targets containing over 50,000 molecules [88]. A survey 
of de novo virtual libraries [87, 89–91], peptides [92], and 
food chemicals [93, 94] is another representative diversity 
analysis of compound libraries in the chemical space. 

3.2 Diversity based on molecular scaffolds 

Another strategy to characterize the contents and diversity 
of compound databases is the use of molecular scaffolds 
or chemotypes i.e., the central or main core structure of a 
molecule [95]. Like physicochemical properties, 
molecular scaffolds can be interpreted straightforwardly 
and facilitate communication within research groups from 
different disciplines. The concept of scaffold is associated 
with “scaffold hopping” and “privileged structures”. 
Scaffold content analysis is frequently used to compare 
compound databases, uncover novel scaffolds in a 
compound data set, analyze the SAR of sets of molecules 
with measured activity, and analyze the SAR of sets of 
molecules with measured activity [96]. 

Quantifying and comparing the scaffold diversity of 
compound libraries depends on many variables, such as 
the specific method used to generate the scaffolds, the 
number of compounds in the database, and the specific 
distribution or frequency of the molecules in those 
scaffold classes. Often, scaffold diversity is measured 
based on frequency counts. While these metrics are 
correct in the way they are defined, they do not provide 
enough information related to the specific distribution of 
the molecules across the different scaffolds, particularly 
the most populated ones. An entropy-based metric has 
been proposed to measure the distribution of the 
molecules across different scaffolds, particularly the most 
populated ones, as a complementary metric for the 
comprehensive scaffold diversity analysis of compound 
data sets [96]. 

Scaffold analysis of natural products databases from 
various sources has been published recently. For instance, 
Núñez MJ et al. [85] reported the scaffold diversity of 15 
natural product databases. For that work, the authors used 
the scaffold definition of Bemis-Murko, and the scaffold 
diversity was measured using cyclic system recovery 
curves and scaffold counts. It was concluded that the 
collections of natural products from Brazil (in the 
NUBBE database) and the Panamanian flora (UPMA) are 

the most diverse. In contrast, the collections such as 
AfroDB, BIOFACQUIM, and other collections of natural 
products from commercial sources were the least diverse.  

Bhurta and Bharate recently reported on the scaffold 
diversity of cyclin-dependent kinase (CDK) inhibitors, 
which are one of the major drug targets. The authors 
analyzed CDK inhibitors under preclinical and clinical 
development and found that the amino-pyrimidine 
framework is the most represented scaffold [97]. 

3.3 Diversity based on molecular fingerprints 

Molecular fingerprints are an alternative approach to 
describing chemical structures systematically and 
quantitatively. One of the main advantages of molecular 
fingerprints is that they can be calculated extremely fast, 
being suitable for handling small -to- large and ultra-large 
compound databases containing millions of chemical 
structures. 

The great versatility of molecular fingerprints in 
chemoinformatics has increased their usefulness in the 
computer-aided drug design process [98]. Fingerprints are 
particularly useful for quantifying molecular similarity, 
during database searching or clustering processes, and in 
the development of classification or predictive models 
[98]. Molecular diversity is usually quantified using a 
similarity coefficient, which is typically, although not 
necessarily the most adequate in all cases, the Tanimoto 
coefficient [99].  

Like other molecular representations, the type of 
fingerprint used for a particular application will define the 
chemical space. To reduce the dependence of the 
similarity assessment on the specific type of molecular 
fingerprint used, it has been proposed to use the 
combination of multiple molecular fingerprints, merging 
the metrics into a consensus measure [100]. 

Although there are many well-established molecular 
fingerprints, the development of novel and improved 
fingerprints is an area of continued research [101]. In 
recent applications, molecular fingerprints have been 
employed to quantify the structural diversity of 19 
compound libraries used in drug discovery and natural 
product research, containing more than 18 million 
molecules (vide supra) [101, 102]. In that work, a newly 
introduced similarity metric, extended by Tanimoto in 
combination with the RDKit fingerprints, showed the best 
performance to represent the chemical libraries. 
Molecular fingerprints have also been used broadly to 
quantify the molecular diversity of natural product 
databases such as natural product collections from Latin 
America and other geographical regions, propolis 
components, and other data sets [103].  

 

4. APPLICATION OF COMPOUND LIBRARY 

The use of chemical libraries in the computational 
analysis includes areas of chemoinformatics, 
bioinformatics, ADMET (absorption, distribution, 
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metabolism, excretion, and toxicity properties), and 
PAINS alerts. These are developed in the following 
sections. 

4.1 Cheminformatics 

Cheminformatics is based on computational chemistry 
programs for the acquisition, analysis, and visualization 
of chemical structure data sets [80–81, 87, 89–92, 95, 96, 
99, 102-103]. Section 3 described the most common 
metrics used in chemoinformatics studies. This discipline 
includes the management of biochemical or biological 
information from experimental data [104] and spectral 
data [105]. On the other hand, chemoinformatics is a 
fundamental tool in biochemical science research and 
biomedical areas related to biological systems, 
metabolomics, proteomics, and chemogenomics applied 
to drug discovery and development [106–108] 

4.2. Bioinformatics 

Bioinformatics involves using computational analysis of 
biological data, which is relevant in pharmacological, 
biological, and biomedical studies [109]. In drug 
discovery, bioinformatic helps to evaluate in silico the 
interaction of cellular components, tissues, peptides, 
proteins, ADN, ARN, antibodies with endogenous 
metabolites, chemical compounds, and tissular fragments 
(monoclonal antibody, antitoxin) to predict how these 
biological systems are affected because of these 
molecular interactions [110]. 

 This research field is strongly leading to drug discovery 
and development (DDD) [111], genome analysis, with an 
approach to personalized medicine for the development of 
a drug, and the optimization of biological targets [112] 
using protein-protein simulation, homology models, and 
molecular docking and dynamic tools with chemical 
libraries [113]. 

 Incorporating AI methodologies in the development of 

chemoinformatics and bioinformatics tools can increase 
their usefulness in biomedical, biological, and 
pharmaceutical sciences, thus strengthening drug 
discovery and development programs. 

4.3 ADMET and toxicological properties 

In recent years, the growth of in silico studies to evaluate 
pharmacokinetic and toxicological properties has taken on 
a relevant role in the drug discovery and development 
process in the pharmaceutical industry. The incorporation 
of methodologies based on AI in the generation of in 

silico predictive models, for the determination of ADMET 
properties in real compound libraries, virtual chemical 
library, chemical libraries databases, and combinatorial 
chemistry libraries, has allowed the development of 
software standalone and online web platforms that 
promote the study of ADMET in silico [114–115]. 

The incorporation of quantitative structure-activity 
relationship (QSAR) methods in ADMET predictive 
studies has meant a great advance in the process of drug 
discovery and development in the pharmaceutical industry 

[116]. ADMET studies have been conducted on libraries 
designed with different approaches, for example: 
fragment-based drug discovery (FBDD) [117], natural 
products [118], small molecules [119], using the SMILES 
notation [117–118], SMARTS [119], and graph model 
[120].  

The existence of numerous computational tools to predict 
ADMET properties in chemical compounds constitutes 
one of the main limitations of these in silico methods, as 
pointed out by Kar, S., and Leszczynski, J. [121], in their 
extensive work on in silico tools to predict the ADMET 
profile.  

These authors conclude that depending on the metrics 
used (physicochemical properties (drug-like/lead-like), 
ADMET predictive properties, and the approach of the 
designed model) to generate these data, a great variation 
is observed in them due to the software, program, or web 
server used. This is in addition to the fact that predicting 
the properties of ADMET is an increasingly complex 
challenge for researchers, where obtaining reliable and 
reproducible values becomes a growing obstacle due to 
the exponential increase in the algorithms developed to 
predict these properties.  

In general terms, it is recommended to use several in 
silico tools and to agree on the properties of ADMET with 
the available methodologies to minimize the statistical 
variations of the model used.  

Some examples of web platforms are shown in Table 2. 
 

ADMET predictor Description Source or 

Reference 

PreADMET is a web-based 

application for 

predicting ADMET 

data and building a 

drug-like library 

using in silico 

method 

https://preadmet.we

bservice.bmdrc.org/ 

ADMET 

Predictor® 10.3 

is the flagship ML 

platform for 

ADMET modeling 

and AI. 

https://www.simulat

ions-plus.com/ 

 

ADMETlab 2.0 an integrated online 

platform for 

accurate and 

comprehensive 

predictions of 

ADMET properties. 

[122] 

FPADMET which is a repository 

of molecular 

fingerprint-based 

predictive models 

for ADMET 

properties [123]. 

https://gitlab.com/vi

shsoft/fpadmet 

ProTox-II a web server for the 

prediction of 

toxicity of 

chemicals. 

[124] 

Table 2. Example of web services to predict ADMET 
properties. 
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4.4. Structural alerts  

PAINS (Pan-Assay INterference compoundS) are 
compounds that influence the interpretation of bioassay 
results [125] by interacting with single biological targets 
[126] or multiple biological targets [127], resulting in 
bioactive compounds with a high potential for 
optimization in the drug discovery and development 
process [127]. These interfering compounds have been 
called artifacts, promiscuous compounds, or false 
positives in cellular, biochemical, or pharmacological 
assays [128], which have frequently appeared when using 
libraries for high throughput screening (HTS), libraries 
based on fragments or small molecules (FBDD) [129], 
The Natural Product Library (NPL) [130], and many other 
chemical library databases or real compound libraries. 

PAINS can be either synthetic, semi-synthetic, or natural 
compounds that have triggered biological alterations: 
oxidation by redox mechanisms, covalent interaction with 
proteins, metal chelation, and alteration of the lipid layer 
of cell membranes. These disturbances affect biological 
assays by interference with fluorescence and structural 
decomposition of the tested compounds [131], making the 
identification of these interfering compounds in chemical 
libraries a difficult problem [132–134]. 

To recognize the PAINS, present in compound libraries, 
several computational tools, and AI methodologies have 
been developed to filter, remove, or eliminate these 
artifacts to avoid their effects on pharmacological trials 
and molecular modeling studies [135]. However, the 
structural fragments present in these promiscuous 
compounds have shown variable biological activities in 
biological tests [136, 137]. Platforms based on 
substructure filters have been commonly used to identify 
and eliminate these interfering compounds [138]. Some 
platforms used are: AlphaScreen technology [139, 140], 
and PrePeP [141]. In addition, in-house methodologies 
have been developed for certain PAINS with the KNIME 
[142] software, the OpenEye [143] chemoinformatics 
tools, and the R and RStudio applications, which use the 
Java and R programming languages [16, 144]. 

Computational methods, including AI, are powerful tools 

for the detection of interfering compounds in vitro 
biological assays, as well as for virtual molecular 
modeling assays [145–147]. 

 

5. PERSPECTIVE AND FUTURE DIRECTION 

The design of libraries of chemical compounds and 
chemical library databases has increased with the 
incorporation of AI in the chemical industry, while in the 
pharmaceutical industry it has led to great advances in the 
drug discovery and development stages. Medicines 
developed with the help of AI are expected to be on the 
market soon. 

The development of chemical libraries in the Latin 
American region started a few years ago. They are 
focused on natural products, containing initially between 

196 and 485 (El Salvador and Panama databases) [85] 
plant metabolites, but have been enriched with the 
inclusion of metabolites from fungi, bacteria, and marine 
organisms, highlighting the BIODIFACQUIM and 
NUBBE databases developed at universities in Mexico 
and Brazil. [83, 85, 89]. Because of the wide range of 
chemotypes in these compound libraries, they have a high 
structural diversity and molecular complexity. They have 
been evaluated through chemoinformatics studies and 
have a high potential for usefulness in drug discovery for 
emerging and re-emerging diseases affecting the 
population of Latin America. 

The high biodiversity of these countries means that these 
databases may increase significantly, such as in the case 
of Panama, where research on natural products has 
expanded to include snakes and amphibians; land fungi; 
land microorganisms (bacteria, endophytic fungus); 
marine microorganisms; and marine microorganisms in 
symbiosis with corals and sponges, among other areas of 
increasing research in our country. Additionally, 
NAPROC-13 databases contain 13C NMR spectroscopic 
data and collect most of the natural products isolated in 
Panama and El Salvador [38]. 

These initiatives are supported by the national agencies 
that provide funding. 
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