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Abstract

Many efforts have succeeded over the last decade at lengthening the timescale in which spin qubits
loss quantum information under free evolution. With these design principles, it is now timely to zoom out
and take the whole picture: concerning applications that require user-driven evolutions, qubits should be
assessed within the desired algorithm. This means to test qubits under external control while relaxation
is active, and to maximize the algorithm fidelity as the actual figure of merit. Herein, we pose and
analytically solve a master equation devised to run one-spin-qubit algorithms subject to relaxation. It
is handled via a code, QBithm, which inputs gate sequences and relaxation rates thus connecting with
the longstanding work devoted to their ab initio computation. We calculate fidelities against relaxation
and imperfections, and implement well-known pulse sequences quantitatively agreeing with experimental
data. Hopefully, this work will stimulate the study of many-qubit systems driven under relaxation and
imperfections in quantum algorithms.

Introduction

Quantum simulation and quantum computation are
expected to circumvent the exponential scaling that
makes problems of wide interest -but with a large
input- be unsolvable on classical computers. In-
stances of these problems include the prediction of
materials relevant for industry and society, and the
resolution of both optimization and combinatorics
queries for policy-making. While this picture seems
promising even at establishing new scientific and
technological revolutions, the required experimen-
tal techniques rely on noisy operations that even-
tually spoil quantum information. A clear path
towards a prototype able to solve all the above-
mentioned problems in the mid term is nowadays
elusive. Until quantum error correction protocols
can be implemented in the lab on a massive scale,
the provisory solution is that of operating on noisy
intermediate-scale quantum (NISQ) devices. These
are the platforms currently devoted to test algo-
rithms with quantum advantage, [1] namely the ones
which, by exploiting quantum properties, offer a
more efficient scaling for those specific tasks where
any conceivable classical algorithm would never do

any better than exponentially. [2]

The logical operations or gates that compose a
quantum algorithm are mapped onto manipulations
of a given physical degree of freedom: the ground
energy spectrum of an atom or an ion, the charge
or the flux of a carrier, the polarization of a pho-
ton, or the motion of a mechanical oscillator. [3–6]
In particular, beside technological applications such
as sensing and communication, [7,8] the spin is one
of the best-suited candidates for quantum compu-
tation, [9] where the minimum amount of informa-
tion -termed as qubit- is physically realized in the
spin states of defect centers, [10–12] donor atoms in
silicon, [13], and magnetic molecules. [14–21] The
proved potential of this degree of freedom in terms
of initialization, long-lived coherent control, read-
out, single-spin manipulation, scalability and appli-
cations can be further enhanced within the molecu-
lar approach, where the well-developed tools of syn-
thetic chemistry are ideal to tune and improve at
will the properties of the so-called molecular spin
qubits embedded in magnetic molecules. [22–43]

An important conundrum faced over the last
decade from both the theoretical and the experi-
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mental side has been to unveil those mechanisms
that promote relaxation in a spin under free evo-
lution. [44–46] In particular, this has been crucial
to deepen understanding of the phase memory time
Tm, namely the timescale for the survival of quan-
tum information stored in a freely-evolving spin
qubit. While this process has yielded key design
principles to lengthen Tm, one must not forget that
spin qubits are partly envisaged for being employed
in algorithms that will solve applied problems of
wide interest and intractable by classical comput-
ers. Hence, the focus should eventually be put on
the user-driven evolution of these qubits and on how
they perform within the algorithm of interest sub-
ject to the mentioned relaxation mechanisms.

In this manuscript, we design a master equa-
tion aimed at time-evolving the density matrix of
one spin qubit, where both the main relaxation
rates and the user-driven control -in the form of
pulse oscillating magnetic field- are inputted. This
framework allows not only studying the mentioned
problem that has drawn the attention over the last
decade, namely to track the loss of quantum infor-
mation as a magnetization decay in time when the
spin freely evolves under relaxation without any ex-
ternal control, but also to tackle what the next step
should be: the inclusion of the said external con-
trol to drive the spin in such a way that (i) free
evolutions and rotations are combined as a gate se-
quence to place the qubit at those desired points of
the Bloch sphere thus implementing any digital one-
qubit algorithm while at the same time (ii) the main
relaxation mechanisms extensively studied so far are
active. Moreover, we also contribute with the de-
tailed analytical resolution of the master equation.
This facilitates an in-depth study of the qubit dy-
namics unlike when one follows the more extended
procedure of employing numerical methods.

In the spirit of benchmarking the qubit perfor-
mance within the desired algorithm as stated above,
our work meets the long-term goal of developing cer-
tification protocols for quantum algorithms, where
the fidelity between the density matrix obtained af-
ter running the algorithm and the expected one with
neither relaxation nor experimental imperfections is
the actual figure of merit instead of the timescale for
the magnetization decay. The relaxation rates are
rather an input of our master equation and hence
this work connects in a natural way with all the the-

oretical efforts made over the past years devoted to
compute them from ab initio methods. [47–62] In
the race for the highly-prized scalable architectures,
the realization of many-qubit systems will certainly
depend on a proper understanding of the single-
qubit dynamics under relaxation, external control,
and imperfections as a key building block. Hence,
we expect that our contribution will help to lay the
foundations in the modeling of, firstly, qubit pairs
for logical gates and, then, quantum algorithms in-
volving larger numbers of qubits.

The master equation is handled via an open-
source and user-friendly software package called
QBithm, where the one-spin-qubit algorithms are
established in the input as a gate sequence. We first
demonstrate control over the whole Bloch sphere,
and realize one-qubit gates whose fidelity is tested
against relaxation and experimental imperfections.
Then, we run well-known pulse sequences as in-
stances of one-qubit algorithms, and obtain quan-
titative agreement with the experimental data of
potential molecular spin qubits in the determina-
tion of the T1, Tm and CPMG-sequence relaxation
times as well as in the production of Rabi oscilla-
tions. Insight on the role of the vibration bath on
spin qubit relaxation is also provided.

Results

Master equation

Our goal is to model the non-unitary time evolution
of the spin qubit when its reduced density operator
ρ̂(t ≥ 0) = Trbath(ρ̂qubit+bath) is driven through a
gate sequence under the influence of the most impor-
tant relaxation sources affecting spin qubits, namely
the vibration and spin baths. The spin qubit is pic-
tured as an effective doublet whose states, termed as
|u−⟩ and |u+⟩ with energies u− < u+, are selected
from the energy scheme of the spin Hamiltonian Ĥ
employed to describe the magnetic object contain-
ing the spin qubit. These states are not necessarily
the ones with the lowest energies in the said scheme
but should fulfil some specific requirements such as
initialization and addressability in the form of an al-
lowed and non-degenerate transition |u−⟩ ↔ |u+⟩.
We model such a time evolution by making use of
the GKLS equation, also known as Lindblad master
equation, which determines the effective dynamics
within the subspace {|u+⟩ , |u−⟩} and, after adapta-
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tion to our particular problem, reads as (see SI for
a full description of all its elements):

∂ρ̂

∂t
≡ ˙̂ρ =

1

iℏ
[Ĥeff, ρ̂] + L1-pρ̂+ L2-pρ̂+ Lmagρ̂ (1)

In the characterization of the qubit-bath set, the
use of the so-called Markovian approximation is le-
git since the timescale for the bath thermalization
is much shorter than the one involved in the re-
laxation of the spin qubit. Correlations within the
bath are lost extremely fast and this translates into
a memoryless qubit+bath system such that its evo-
lution is only determined by the current time step
with no contribution from the past history. Any
change induced by the qubit into the bath will
rapidly be washed out and the bath itself recov-
ers its thermal state quasi-instantaneously. This as-
sures that no backflow of information from bath to
qubit happens at any moment. The bath is thus
statically described by its thermal density operator

ρ̂thbath = e−βĤbath/Z only dependent on temperature.

Moreover, at the initial time t = 0, our gate
sequences always start with the qubit placed in a
given pure state |ψ⟩ = α |u−⟩ + β |u+⟩, α, β ∈ C,
|α|2 + |β|2 = 1, which is prepared apart from the
bath. Hence, qubit and bath are supposed to be
uncorrelated at t = 0 such that the global den-
sity operator ρ̂qubit+bath(0) is expressed as the ten-
sor product ρ̂(0)⊗ ρ̂bath(0) between qubit and bath
degrees of freedom, being ρ̂(0) = |ψ⟩ ⟨ψ|. This as-
sumption, known as Born approximation, combines
with Markovianity in such a way that the above
factorization extends over the whole time evolution
with ρ̂bath(t ≥ 0) = ρ̂thbath (weak qubit-bath coupling
limit whereby the bath is not significantly altered
due to its largeness compared to the qubit).

Last but not least, since the time of interest t for
the propagation of ρ̂ is in the µs scale or above -
where the relaxation times of spin qubits lie- and
the smallest timescale T ≲ 10−4 µs -given by typi-
cal spin qubit gaps ≳ 10 GHz- is much shorter than
t, all fast oscillations associated to T are overshad-
owed and average out to zero in the timescale t of
interest. This fact entitles one to disregard the said
oscillations upon application of the so-called secu-
lar approximation, in virtue of which only the reso-
nant interactions with the bath are retained. All in
all, as soon as the above-mentioned approximations
are justified in the characterization of the qubit-
bath set, the non-unitary dynamics of the qubit

induced by its coupling with the bath can be well
described by the GKLS formalism. [63] The GKLS
equation leads any initial state to a steady solu-
tion ˙̂ρ(t → +∞) = 0 under free evolution (i.e. no
user-induced driving), it is also Markovian, trace-
preserving Tr[ρ̂(t ≥ 0)] = 1 and, unlike the Red-
field master equation, is completely positive mean-
ing that the non-negativity of the diagonal elements
of ρ̂ -the populations of the two qubit states- is guar-
anteed at any time.

The first term on the right-hand side of Eq.1 rep-
resents the unitary part of the qubit time evolu-
tion, while the remaining terms are the ones that in-
duce the non-unitary dynamics on the qubit due to
its interaction with the baths. In particular, L1-pρ̂
and L2-pρ̂ account for all the one- and two-phonon
processes including both real (direct, Stokes/anti-
Stokes, spontaneous emission followed by absorp-
tion) and virtual ones. These processes altogether
are characterized by temperature-dependent ab-
sorption Γab ≥ 0 and emission Γem ≥ 0 rates de-
termining the flow of spin population between |u−⟩
and |u+⟩ driven by the vibration bath. [64] On the
other hand, Lmagρ̂ describes the effect of the spin
bath on the qubit dynamics. [65] This bath is mod-
eled as an isotropic magnetic noise -only dependent
on the qubit-spin distances- and its effect is quan-
tified by means of a rate Γmag ≥ 0 whose magni-
tude is proportional to the volume concentration of
spins in the bath. [49] All rates are time-independent
and, crucially, non-negative which ensures the trace
preservation and the complete positivity.

Given a time interval ti−1 < ti with 1 ≤ i ≤ n and
t0 = 0, tn the initial and final evolution times, the
effective Hamiltonian Ĥeff describes the spin qubit
as a two-level system with an energy gap u+−u− =
ℏω+− -being ω+− the Larmor angular frequency-
that is either freely evolved or driven in ti−1 ≤ t ≤
ti depending on whether the Rabi frequency ΩR =
µ⃗+− · B⃗1/ℏ ∈ C is zero or different from zero:

Heff = ℏ

 ω+−
2 Ω∗

Rcos(ωMW∆ti)

ΩRcos(ωMW∆ti) −ω+−
2


(2)

All matrix representations are written in the or-
dered basis set {|u+⟩ , |u−⟩}, ∆ti = t− ti−1, µ⃗+− is
the magnetic dipolar moment associated to the tran-
sition |u−⟩ ↔ |u+⟩, and B⃗1 is a linearly-polarized
oscillating magnetic field whose angular frequency
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is ωMW. Essentially, if we neglect relaxation for
a moment and |ψ⟩ is parameterized in terms of
the zenithal θ and azimuthal ϕ angles of the Bloch
sphere, |ψ⟩ = cos(θ/2) |u−⟩ + eiϕsen(θ/2) |u+⟩ with
|0⟩ ≡ |u−⟩ and |1⟩ ≡ |u+⟩, θ is controlled by activat-
ing B⃗1 for an appropriate time, while ϕ is changed
by switching B⃗1 off and letting the Larmor preces-
sion make the qubit rotate around the axis joining
the poles |0⟩ and |1⟩ of the said sphere with angu-
lar frequency ω+− (see Quantum gates for one-
qubit algorithms and SI).

Note that Heff is time-dependent and this fact
hampers the resolution of Eq.1 in the Schrödinger
picture. It is thus crucial to devise a clever change
of picture -namely a unitary operator Û transform-
ing ρ̂ into ρ̂ = Û ρ̂Û†- that allows eliminating the
mentioned time-dependency to find the analytical
solution of Eq.1. In our case, the right choice is:

U =

exp
(
iωMW

2 ∆ti
)

0

0 exp
(
−iωMW

2 ∆ti
)
 (3)

All details concerning the analytical resolution of
Eq.1 in the above picture are found in SI. In this
resolution, we make use of the rotating wave ap-
proximation and the resulting effective Hamiltonian
Heff in the new picture -with no time-dependency
but dependent on the detuning δ = ω+− −ωMW- is:

Heff =
ℏ
2

 δ Ω∗
R

ΩR −δ

 (4)

A given initial condition at t = t0 for the den-
sity operator ρ̂ provides a unique solution of Eq.1.
Note that Û(t = t0) = Î -the identity operator-
meaning that at t = t0 Schrödinger and new pic-
tures coincide. Hence, the said initial condition
can be given on the density operator ρ̂. If we
consider the matrix representation ρ(t = t0) =
ρ011 |u+⟩ ⟨u+| + (ρ012,r + iρ012,i) |u+⟩ ⟨u−| + (ρ012,r −
iρ012,i) |u−⟩ ⟨u+| + ρ022 |u−⟩ ⟨u−|, one just needs to

provide the four real numbers ρ011, ρ
0
22, ρ

0
12,r, ρ

0
12,i

with ρ011 + ρ022 = 1. As mentioned above, the
case of interest for us is to prepare the qubit in a
pure state |ψ⟩ = α |u−⟩ + β |u+⟩ at t = t0, with
α = αr+ iαi, β = βr+ iβi, |α|2+ |β|2 = 1. By work-
ing out |ψ⟩ ⟨ψ|, one easily finds ρ011 = |β|2, ρ022 =
|α|2, ρ012,r = βrαr + βiαi, ρ

0
12,i = βiαr − βrαi. In the

production of Rabi oscillations and determination of

T1, Tm, we use α = 1, β = 0 (see Pulse sequences:
Rabi oscillations and spin relaxation times).

Once Eq.1 is transformed into the new picture,
let us note that its solutions can be classified in two
main groups depending on whether Γab = Γem =
Γmag = 0 or at least one of these rates is differ-
ent from zero. In the first case, where no relax-
ation takes place and the qubit behaves as a closed
system with a unitary dynamics, the Liouville-von
Neumann equation iℏρ̇ = [Heff, ρ] is recovered. Its
solution -fully described in SI- is given by ρ(ti−1 ≤
t ≤ ti) = Rρ(ti−1)R† being R = exp

(
−i∆tiHeff/ℏ

)
the rotation operator, or |ψ⟩(ti−1 ≤ t ≤ ti) = R|ψ⟩
in case of pure states. The computation of R shows
that it depends on the so-called generalized Rabi
frequency Ωg =

√
|ΩR|2 + δ2 and that a rotation

angle can be defined as Ωg∆ti with ∆ti = ti − ti−1

interpreted as the time taken by the rotation.

When δ = 0, the representation of R is that of a
2D rotation matrix and, if the qubit is described by
a pure state |ψ⟩ = cos(θ/2) |u−⟩+ eiϕsen(θ/2) |u+⟩,
R rotates |ψ⟩ an angle Ωg∆ti around the axis per-
pendicular to the plane containing |ψ⟩, R|ψ⟩, and
the origin O of the Bloch sphere. Since R is uni-
tary, the norm of |ψ⟩ is conserved and R|ψ⟩ is also
found on the mentioned sphere. In case the rota-
tion axis is contained in the equatorial plane of the
Bloch sphere, and for that to happen the plane de-
fined by {|ψ⟩ ,R|ψ⟩ ,O} must contain the line join-
ing the poles |0⟩ and |1⟩, one finds that R|ψ⟩ =
cos((θ+Ωg∆ti)/2) |u−⟩+eiϕsen((θ+Ωg∆ti)/2) |u+⟩.
Namely, the rotation has been performed along the
meridian given by the unaltered azimuthal angle ϕ
and the rotation angle θ + Ωg∆ti − θ = Ωg∆ti can
be interpreted here as a zenithal angle.

When |ψ⟩ = |u−⟩, namely θ = 0, this case often
defines the starting point of EPR-pulse experiments
in which the qubit is initialized in its lowest energy
state. If ∆ti is such that Ωg∆ti = π/2 or Ωg∆ti = π,
R corresponds to the well-known π/2 and π pulses:
the first one creates an equally-weighted superposi-
tion |ew⟩ between |u−⟩ and |u+⟩ contained in the
equatorial plane of the Bloch sphere, while the
second one transfers all the spin population from
|0⟩ ≡ |u−⟩ to |1⟩ ≡ |u+⟩. Instead, if δ ̸= 0,
R(Ωg∆ti = π/2) |u−⟩ and R(Ωg∆ti = π) |u−⟩ will
differ from |ew⟩ and |u+⟩, resp. The realization of a
rotation in such a way that the resulting state lies
close enough to the expected one crucially depends
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on how small δ is (see Quantum gates for one-
qubit algorithms) and hence δ should be taken as
a key design parameter.

In the other main group of solutions of Eq.1 trans-
formed into the new picture, at least one of the three
rates Γab, Γem, Γmag is different from zero. In this
situation, there exists in turn two subgroups of solu-
tions depending on whether both |B⃗1| and ωMW are
zero, or |B⃗1| ≠ 0 and ωMW ̸= 0. These subgroups
constitute the two elementary building-blocks that
we will employ sequentially in the form of gates for
the construction of one-qubit algorithms. The first
gate -detailed in SI- is known as free evolution: the
qubit evolves for a given time subject to relaxation
but with no user-induced driving. For instance, this
evolution can be encountered (i) during the waiting
time between pulses such as the π/2 and π pulses of
the Hahn sequence and (ii) after the said π pulse of
the same sequence until recording the Hahn echo.

On the other hand, the gate consisting in |B⃗1| ≠ 0
and ωMW ̸= 0 also for a finite time ∆ti is known as
rotation: the qubit is now driven by the user but,
since relaxation is active, its evolution cannot be
described in terms of a pure state circulating on
the Bloch sphere anymore. Notwithstanding, when
∆ti is short enough as compared to the relaxation
timescale tr set by Γab, Γem, Γmag, the qubit evolves
quasi-unitarily and the Bloch sphere picture can still
be recovered. For instance, this situation applies in
the description of the π/2 and π pulses which take
a few tens of nanoseconds in standard EPR experi-
ments, while typical relaxation times in spin qubits
lie in the microsecond scale or above (see Quan-
tum gates for one-qubit algorithms). Under
this circumstance, the solution ρ(t = ti) provided
by our master equation Eq.1 in the new picture can
be approximated by the one obtained above with
the rotation operator R at t = ti. If additionally
δ → 0, R is often directly expressed in terms of the
rotation angle ζ, namely R(ζ), with no presence of
Ωg and ∆ti thus assuming that both Ωg and ∆ti are
properly chosen in the lab such that their combina-
tion produces the desired value of ζ. [50]

Our solution ρ(t = ti) mentioned above general-
izes the one produced by R(ζ) and provides a more
realistic description of rotations since the former (i)
always contains the effects of relaxation -whether
they are small or large after ∆ti-, (ii) can deal with
values δ ̸= 0, and (iii) provides the user with full

control by inputting |B⃗1|, ωMW -both determining δ
and Ωg-, and ∆ti, instead of directly using ζ. More-
over, whether δ is small or large, relaxation becomes
significant when ∆ti ≳ tr, a fact that precludes the
use of R at t = ti and obliges to employ ρ(t = ti).
This is the case of the production of Rabi oscilla-
tions where the rotation -named as nutation- is ex-
tended with a duration that ranges from ∆t1 ∼ t0
to ∆t1 ∼ tr. While ρ(t0 ≤ t ≤ t1) is able to re-
produce the damping of these oscillations caused by
relaxation as t moves on (see Pulse sequences:
Rabi oscillations and spin relaxation times),
R would just produce non-damped oscillations.

With these ingredients and given ρ(t = t0), any
digital one-qubit algorithm is simply constructed
as a finite sequence {Gi}ni=1 of free evolutions

and rotations: ρ(t = t0)
G1,∆t1−−−−→ · · · Gi−1,∆ti−1−−−−−−−→

ρ(ti−1)
Gi,∆ti−−−−→ ρ(ti)

Gi+1,∆ti+1−−−−−−−→ · · · Gn,∆tn−−−−−→ ρ(tn),
where each Gi is activated for a time ∆ti = ti− ti−1

and transforms ρ(ti−1) as an initial condition into
ρ(ti) via Eq.1 -in the new picture- with t0 = 0 and
ρ(t0) = ρ(t = t0). In case of not being interested
in any observable, one can either (i) just follow the
evolution of ρ after each Gi or (ii) even repeat the
same algorithm but with Γab = Γem = Γmag = 0
in order to obtain a new result ρ0(tn) and calculate
the fidelity between ρ(tn) and ρ0(tn) as a perfor-
mance measure of the qubit in the algorithm (see
Quantum gates for one-qubit algorithms).

Now, given an observable O in the Schrödinger
picture and represented in the ordered basis set
{|u+⟩ , |u−⟩}, its expectation value ⟨O⟩(tn) at t = tn
can be determined as ⟨O⟩(tn) = Tr[Oρ(tn)]
where ρ(tn) = U†(∆tn)ρ(tn)U(∆tn). Two
observables of interest are the longitudinal
Mz = σz = |u+⟩ ⟨u+| − |u−⟩ ⟨u−| and in-plane
Mxy = σx + iσy = 2 |u+⟩ ⟨u−| magnetizations
as they are employed in the determination
of Rabi oscillations and T1, Tm (see Pulse
sequences: Rabi oscillations and spin re-
laxation times). If ρ(tn) = ρ11(tn) |u+⟩ ⟨u+| +
(ρ12,r(tn) + iρ12,i(tn)) |u+⟩ ⟨u−| + (ρ12,r(tn) −
iρ12,i(tn)) |u−⟩ ⟨u+| + ρ22(tn) |u−⟩ ⟨u−|, we find in
SI: ⟨Mz⟩(tn) = ρ11(tn) − ρ22(tn) and ⟨Mxy⟩(tn) =
2
(
ρ12,r(tn)cos(∆tnωMW) + ρ12,i(tn)sen(∆tnωMW)

)
+

i2
(
ρ12,r(tn)sen(∆tnωMW)− ρ12,i(tn)cos(∆tnωMW)

)
.

Note that ⟨Mxy⟩(tn) -with oscillatory real and imag-
inary parts- is complex. In order to compare with
experimental data, we use the absolute value
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|⟨Mxy⟩(tn)| = 2
√

(ρ12,r(tn))
2 + (ρ12,i(tn))

2.

Whenever Gi consists in a free evolution, it is pos-
sible to analytically find ρ(ti) as an explicit function
of ρ(ti−1). In particular, if Gi=n is a free evolution,
the further work out of ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)|
provides the explicit relation between Γab, Γem,
Γmag and the decay rates Γ1, Γ2 of ⟨Mz⟩(tn) and
|⟨Mxy⟩(tn)| plotted vs ∆tn (see SI). This is of spe-
cific interest since the last gate in the pulse se-
quences employed to experimentally determine the
respective decay timescales T1 and Tm of ⟨Mz⟩ and
|⟨Mxy⟩| consists in a free evolution with a variable
duration time (see Pulse sequences: Rabi oscil-
lations and spin relaxation times). We find
that ⟨Mz⟩(tn) decays single-exponentially in ∆tn
with a rate Γ1 = Γab + Γem + Γmag, while the de-
cay of the real and imaginary parts of ⟨Mxy⟩(tn)
in ∆tn is double-exponentially with rates Γ1 and
Γ2 = (Γab + Γem)/2 + Γmag.

The said exponential decays with ∆tn are non-
stretched and this fact may hamper a proper de-
scription by our theoretical model of those ex-
periments where the processes that produce an
stretched shape of the magnetization are the ones
that determine the observed spin relaxation. [48]
We also find that the decay of the real and imag-
inary part of ⟨Mxy⟩(tn) is oscillatory with angular
frequency ω+−. Hence, oscillations in |⟨Mxy⟩|(tn)
with ∆tn could appear. When the spin that en-
codes the qubit is coupled with a neighboring nu-
clear spin, e.g. that of 1H, the experimental |⟨Mxy⟩|
could also exhibit an oscillatory decay but now with
the nuclear Larmor frequency of 1H. This situation
whereby the Larmor frequency of an external spin
coupled to the spin qubit determines the oscillation
frequency of the mentioned magnetization decay is
also beyond the reach of our model. A proper de-
scription of this phenomenon would require to ex-
pand the qubit 2D Hilbert space to include the cou-
pled nuclear spin in the qubit dynamics.

Case studies

The ab initio calculation of µ⃗+−, Γab, Γem, Γmag

requires using the energy scheme -including |u−⟩,
|u+⟩, u−, u+- of the spin Hamiltonian Ĥ that mod-
els the magnetic object containing the spin qubit.
The particular scheme we focus on is that described
by a ground electron spin quantum number S ≥ 1/2

either effective or not. An instance of an effective S
can be encountered when a set of angular momenta
Si couple with each other at low enough temper-
ature thus producing a giant ground spin S. In
case of non-negligible spin-orbit interactions with
an orbital quantum number L ̸= 0, S would be re-
placed by the total electron spin J as a good quan-
tum number. Henceforth, we use J where the par-
ticular case L = 0, J = S is included. We also
neglect interactions between J and higher energy
states arising from excited quantum numbers Jex.
This means that any working temperature should
be low enough as compared to the gap between the
J manifold comprising 2J +1 states and that of the
first excited Jex.

The quantum number J -associated to a ground

electron spin operator
ˆ⃗
J = (Ĵx, Ĵy, Ĵz) with Carte-

sian components {Ĵα}α=x,y,z- is combined with up
to three types of interactions. First, with an
external, weak, and static magnetic field B⃗ =
(Bx, By, Bz). This interaction is described in terms
of a Zeeman Hamiltonian. Second, an important
class of magnetic objects of interest for us is that
of molecular coordination complexes, where one or
several magnetic atoms or magnetic atomic ions are
surrounded by and linked to a set of donor atoms
via coordinate covalent bonds. The electrostatic
field produced by the donor atoms lifts the initial
degeneracy of the 2J + 1 states thus producing a
zero-field splitting. This fact is accounted for with
the inclusion of the so-called Crystal Field Hamil-
tonian, which is also employed in the description of
another relevant class of magnetic objects as that of
nitrogen-vacancy centers in nanodiamonds. Third,
in case of having a ground nuclear spin quantum
number I, the J-manifold can be further expanded
by coupling J to I with a hyperfine interaction term.
All in all, the spin Hamiltonian Ĥ whose energy
scheme (i) |u−⟩, |u+⟩, u−, u+ are selected from, and
(ii) we employ to calculate µ⃗+−, Γab, Γem, Γmag (see
SI and [47,49] for details), reads as follows:

Ĥ =
µB
ℏ

∑
α=x,y,z

gαBαĴα +
∑
k,q

Bq
kÔ

q
k+ (5)

+
∑

β=x,y,z

Aβ Îβ Ĵβ + P Î2z

The first term in Eq.5 is the Zeeman Hamilto-
nian, being µB the Bohr magneton, ℏ the reduced
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Planck’s constant, and gα the effective Landé fac-
tors. The reason for allowing gα be different among
them and different from gJ -the free J Landé factor-
is to effectively recover the electron spin anisotropy
-either small or large- in case ones sets Bq

k ≡ 0 not to
employ the Crystal Field Hamiltonian. When em-
ploying it, we set gα = gJ . The second term is the
said Crystal Field Hamiltonian which is written as
a function of the Crystal Field Parameters Bq

k and

the Extended Stevens Operators Ôq
k with k = 2, 4, 6

and q = −k,−k+ 1, ..., k− 1, k. The third term de-

scribes the hyperfine interaction between
ˆ⃗
J and the

ground nuclear spin operator
ˆ⃗
I = (Îx, Îy, Îz) asso-

ciated to I with parameters {Aβ}β=x,y,z, while the
fourth one models a possible zero-field splitting of I
with parameter P .

The above spin Hamiltonian encompasses a large
set of wide-interest systems employed to define spin
qubits in the energy scheme described by Eq.5.
Well-known instances are quantum dots in hetero-
structures such as GaAs, vacancy centers in SiC
and nanodiamonds, group VA dopant atoms in
silicon, transition metal and rare-earth impurities
in ionic crystals, and molecular coordination com-
plexes with a single magnetic atomic ion such as
V4+, Cu2+ or Ln3+ where Ln = Gd, Tb, Dy, Ho.
The two states |u−⟩ and |u+⟩ of the spin qubit are
selected among the (2J +1)(2I +1) states obtained
after diagonalizing Eq.5.

As previously seen, when the last gate of the se-
quence is a free evolution, we find analytical ex-
pressions for ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| as explicit
functions of Γab, Γem, Γmag. Importantly, the de-
cay of ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| with ∆tn -as deter-
mined by the said three rates- is exponential but
non-stretched. In order to incorporate other pos-
sible spin relaxation processes which also produce
a non-stretched exponential decay of ⟨Mz⟩(tn) and
|⟨Mxy⟩(tn)| but that are not included in Γab, Γem,
Γmag, we add Γab,add ≥ 0, Γem,add ≥ 0, Γmag,add ≥ 0
up to Γab, Γem, Γmag such that Γa := Γab +Γab,add,
Γe := Γem + Γem,add, Γm := Γmag + Γmag,add are the
actual rates employed in Eq.1 with Γab,add, Γem,add,
Γmag,add to be used as free parameters when not set
to zero. Optionally, this set of added rates can be
reduced into two parameters by relating Γab,add and
Γem,add through the detailed balance condition at a

given temperature T :

Γab,add = Γem,addexp (−(u+ − u−)/kBT ) (6)

The rates Γab,add, Γem,add, Γmag,add may still have
an alternative role to that just described. Indeed, in
case a rather different spin Hamiltonian is preferred
over Eq.5, one would set Γab = Γem = Γmag = 0 and
input in µ⃗+−, Γab,add, Γem,add, Γmag,add the values
of the magnetic dipolar moment, absorption, emis-
sion, and magnetic rates calculated with the energy
scheme, which {|u−⟩ , |u+⟩ , u−, u+} are now taken
from, of the desired spin Hamiltonian. An instance
of the latter could be the expansion of Eq.5 with the
excited quantum numbers Jex.

QBithm software package

All in all, the input required to implement a given
digital quantum algorithm involving a single spin
qubit consists of (i) the initial condition ρ(t = t0)
provided by the four real numbers ρ011, ρ

0
22, ρ

0
12,r,

ρ012,i with ρ
0
11 + ρ022 = 1, and (ii) the finite sequence

{Gi}ni=1 where each Gi is the time propagation of
ρ from ρ(ti−1) to ρ(ti) via Eq.1 with t0 = 0 and
ρ(t0) = ρ(t = t0). Each Gi is selected with either
|B⃗1| = 0 and ωMW = 0 -case of a free evolution- or
|B⃗1| ̸= 0 and ωMW ̸= 0 -case of a rotation-. The
output of interest can be found either at checking
each ρ(ti) to follow the time evolution of the qubit
and using ρ(tn) to compute the resulting fidelity by
repeating the algorithm with Γa = Γe = Γm = 0,
or at calculating both ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| as
a function of tn when this time is variable.

In this last case, ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| are
plotted vs ∆ti0 , for some 1 ≤ i0 ≤ n, inside a
selected range from ∆ti0 ≳ 0 until ⟨Mz⟩(tn) and
|⟨Mxy⟩(tn)| vanish. In some sequences, apart from
∆ti0 , other time intervals ∆ti are also simultane-
ously varied within the same range. Being 1 ≤ m ≤
n the number of these variable time intervals which
we rename as τ := ∆ti including i = i0, the plot of
⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| is performed vs mτ .

For instance, the Hahn sequence, with ρ022 = 1,
ρ011 = ρ012,r = ρ012,i = 0, m = 2, consists of n = 4
gates where G1 is a π/2 rotation, G3 is a π rotation,
and G2, G4 are a free evolution with the same vari-
able duration time -known as waiting time- τ . The
plot of interest is that of representing |⟨Mxy⟩(t4)| vs
2τ , and the use of a fitting curve f -often of the form
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f(2τ) = a+ bexp(−2τ/Tm)- allows determining the
theoretical value of Tm. On the other hand, the so-
called Inversion Recovery sequence, with the same
initial condition, consists of n = 2 gates being G1 a
π rotation and G2 a free evolution with a variable τ .
In this case, m = 1 and the theoretical value of T1 is
obtained after fitting the plot ⟨Mz⟩(t2) vs τ often to
the curve f(τ) = a(1− bexp(−τ/T1)). Since the T1
to obtain remains the same, we have rather coded in
QBithm: ⟨Mz⟩(tn) = ρ22(tn)−ρ11(tn). Last, the se-
quence to produce Rabi oscillations, where ρ022 = 1,
ρ011 = ρ012,r = ρ012,i = 0 again, consists of a single
n = 1 gate, namely a rotation but now with a vari-
able τ . The plot to perform is ⟨Mz⟩(t1) vs τ .

In the experimental determination of Rabi oscil-
lations and T1, the sequences presented above are
still further extended with an extra set of pulses
which are necessary to measure the relevant mag-
netization. From theory, we can compute the mag-
netization at any moment hence there is no need to
incorporate the said extra pulses. Yet, we use one
of the case studies below to check in SI that no sig-
nificant difference in the results is found when the
original sequences are extended.

We have coded the above-summarized procedures
in the form of an open-source and user-friendly For-
tran 77 software package named as QBithm, whose
detailed user handbook can be found in SI. The code
is fed via three input files: qb.ddata, qb.mdata, and
qb.adata. The first one contains, for each field di-
rection B⃗/|B⃗| to explore: Γmag, the (2J+1)(2I+1)
spin energies Ei of Eq.5, as well as the matrix ele-
ments N+− and M+− -computed from the states of
Eq.5- necessary to calculate µ⃗+− and Γab, Γem, resp.
On its hand, qb.mdata includes the harmonic fre-
quency, reduced mass, and half-width of each mode
in the vibration bath. The automated generation of
qb.ddata, qb.mdata and the computation of all pa-
rameters therein is accomplished by employing the
code SIMPRE, [47] which operates under Eq.5 and
can be obtained from the authors upon request. It
is also possible to sweep |B⃗| in qb.ddata in order to
produce ESE(electron spin echo)-detected spectra.
For this purpose, one employs the Hahn sequence
with a fixed τ , and then plots |⟨Mxy⟩(t4)| vs |B⃗|.
The third input file, qb.adata, is the place where
the gates {Gi}ni=1 are established thus setting up the
desired one-spin-qubit algorithm or pulse sequence.
It also contains the duration time ∆ti of the im-

plemented free evolutions and rotations along with
the axes of the latter. Extra input parameters that
may also need to be set such as the numerical value
of (2J + 1)(2I + 1), the temperature T , gJ , |B⃗1|,
ωMW/2π, Γab,add, Γem,add, Γmag,add, ρ

0
11, ρ

0
22, ρ

0
12,r,

ρ012,i are found in the code file qbithm.f.

On the other hand, up to three output files can
be generated: (i) qb.out, where one can read δ,
Ωg, Γab, Γem, the vibration modes in qb.mdata that
most contribute to these two rates, and ρ(ti) at each
ti, (ii) qb.mz.out, with ⟨Mz⟩(tn) vs mτ , and (iii)
qb.mxy.out, containing |⟨Mxy⟩(tn)| vs mτ . When
m = 0, qb.mz.out and qb.mxy.out just contain a
single value of ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)|, namely the
values corresponding to the set of fixed time inter-
vals {∆ti}ni=1. Both plotting and curve fitting is not
performed by QBithm and one must use a rather
different code devoted to these tasks.

Let us stress that SIMPRE can be requested
to write in qb.ddata either Γmag = 0 or its ab
initio value after determining it. On the other
hand, QBithm computes Γab and Γem from qb.ddata
and qb.mdata as generated by SIMPRE. Instead,
if Γab = Γem = 0 is desired, the user requests
SIMPRE not to generate qb.mdata nor to write
M+− in qb.ddata thus leading QBithm to auto-
matically implement the above setting. The option
Γab = Γem = 0 applies in the following cases: (i)
if using Eq.5, to employ qb.ddata as produced by
SIMPRE with Γmag either zero or its ab initio value,
while each Γab,add, Γem,add, Γmag,add is either zero
or operated as a free parameter, (ii) if using a spin
Hamiltonian Ĥ different from Eq.5, each Γab,add,
Γem,add, Γmag,add can be zero, ab initio, or free pa-
rameter; in addition, SIMPRE can still be requested
to generate qb.ddata with Γmag = 0 but, prior to

run QBithm and for each field direction B⃗/|B⃗|, one
will first manually replace (a) all Ei by only u−, u+
-thus using (2J +1)(2I +1) = 2 in qbithm.f- calcu-
lated from the said Ĥ, and (b) the values of N+− by
the ones also calculated with Ĥ. Recall that, when-
ever one desires using Eq.6, Γab,add is not inputted
but automatically computed by QBithm from the
given Γem,add value whether this is ab initio or free
parameter, with Γem,add = 0 producing Γab,add = 0.

All in all, QBithm can be operated in three
ways: (i) ab initio mode, where one either sets
Γab,add = Γem,add = Γmag,add = 0 and uses qb.ddata,
qb.mdata as produced by SIMPRE with Eq.5, or
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sets Γab = Γem = Γmag = 0 and -as above explained-
inputs (2J + 1)(2I + 1) = 2, u−, u+, N+−, Γab,add,
Γem,add, Γmag,add computed by the user with the

desired Ĥ, (ii) semi-empirical mode, where Γab =
Γem = Γmag = 0 and Γab,add, Γem,add, Γmag,add

are employed to fit experimental data, (iii) any
meaningful combination of (i) and (ii), where, if at
least one set among {Γab,Γem}, {Γmag} is ab initio,
all rates Γab,add, Γem,add, Γmag,add must be either
zero or free parameter, and vice versa: if any rate
among Γab,add, Γem,add, Γmag,add is ab initio, both
{Γab,Γem} and {Γmag} must be either zero or free
parameter. The reason is to avoid the joint use of
rates determined with different spin Hamiltonians
as N+−, M+−, Ei would remain undefined.

We have not coded R in QBithm. Despite it,
the main group of solutions Γa = Γe = Γm = 0 -
namely Γab = Γem = Γmag = Γab,add = Γem,add =
Γmag,add = 0- can be easily recovered. For math-
ematical reasons (see SI), one must avoid setting
Γab = Γem = Γmag = Γab,add = Γem,add =
Γmag,add = 0. Instead, all six rates are set to zero
but one -usually Γmag,add- which is given a value
close to zero yet above the machine precision (e.g.
10−10−10−12 µs−1, such that 1010−1012 µs is much
larger than any runtime meaning relaxation is effec-
tively neglected).

Quantum gates for one-qubit algorithms

Rotation and free evolution can be combined in
QBithm to place the spin qubit at any point of the
Bloch sphere. If |ψ⟩ = cos(θ/2) |0⟩+ eiϕsen(θ/2) |1⟩
is the parameterization of the qubit state |ψ⟩ in
terms of the zenithal 0 ≤ θ ≤ π and azimuthal
0 ≤ ϕ < 2π angles of the said sphere, rotation and
free evolution can be respectively employed to con-
trol at will the value of θ and ϕ.

In particular, we have implemented a selection
of one-qubit logical gates: the CNOT, Hadamard,
and Phase gates, which are key building-blocks in
quantum algorithms. Input and output files as well
as full details are found in SI. We assign the south
|1⟩ and north |0⟩ poles of the Bloch sphere according
to |1⟩ ≡ |u+⟩, |0⟩ ≡ |u−⟩. The initial condition is
ρ022 = 1, ρ011 = ρ012,r = ρ012,i = 0, namely the qubit
is initialized in its lowest energy state |ψ⟩ = |u−⟩,
θ = 0. The respective matrix representations C(ϵ),
H(ϵ), P (γ) of the CNOT, Hadamard, Phase gates

in the ordered basis set {|1⟩ , |0⟩} are:

C(ϵ) =

 0 eiϵ

e−iϵ 0

 H(ϵ) =

 e−iϵ
√
2

−e−iϵ
√
2

1√
2

1√
2

 (7)

P (γ) =

eiγ 0

0 1


The angle 0 ≤ ϵ < 2π sets the direction of the

rotation axis contained in the equatorial plane of the
Bloch sphere. In C(ϵ), H(ϵ), the respective rotation
angle around the mentioned axis is always π, π/2,
and the rotation is implemented along the meridian
ϕ = π − ϵ determined by the selected ϵ value. The
origin ϕ = 0 is found at the positive X axis of the
Bloch sphere, while ϵ = 0 is located at its positive
Y axis. We use the convention whereby positive
increments in ϕ and ϵ correspond to anti clock-wise
rotations in the equatorial plane -as defined by the
perpendicular X, Y axes- of the said sphere.

On the other hand, γ = ϕf−ϕ0 -with 0 ≤ ϕ0, ϕf <
2π the initial and final azimuthal angles- is the ro-
tation angle around the axis joining the poles |1⟩
and |0⟩ and along the parallel defined by the given
θ value. The particular gates whose implementa-
tion we demonstrate are: the Pauli X = C(ϵ = 0),
Y = C(ϵ = π/2) gates, the Hadamard H(ϵ = π/2),
H(ϵ = 0) gates, and the S = P (γ = −π/2),
T = P (γ = −π/4) gates. The action of the first
four gates on the initial state |ψ⟩ = |0⟩ is:

X |0⟩ = |1⟩ Y |0⟩ = i |1⟩ (8)

H
(π
2

)
|0⟩ = 1√

2
(i |1⟩+ |0⟩)

H(0) |0⟩ = 1√
2
(− |1⟩+ |0⟩)

Note that S and T leaves |0⟩ unaltered as S |0⟩ =
T |0⟩ = |0⟩. To show how P (γ) can be employed to
change ϕ, it is crucial to apply P (γ) on qubit states
with θ ̸= 0, π, namely different from |0⟩ and |1⟩. We
choose H(π) |0⟩ = (|1⟩+ |0⟩)/

√
2 for which θ = π/2,

ϕ = 0, and the action of both S and T on it is:

S(H(π) |0⟩) = 1√
2
(−i |1⟩+ |0⟩) (9)

T (H(π) |0⟩) = 1√
2

(
1− i√

2
|1⟩+ |0⟩

)
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If |q⟩ is any of X |0⟩, Y |0⟩, H(π/2) |0⟩, H(0) |0⟩,
S(H(π) |0⟩), T (H(π) |0⟩), the resulting density ma-

trix |q⟩ ⟨q| = ρf11 |1⟩ ⟨1| + (ρf12,r + iρf12,i) |1⟩ ⟨0| +
(ρf12,r − iρf12,i) |0⟩ ⟨1|+ ρf22 |0⟩ ⟨0| in each case is:

|q⟩ ⟨q| ρf11 ρf22 ρf12,r ρf12,i θ ϕ

X |0⟩ 1 0 0 0 π 0

Y |0⟩ 1 0 0 0 π π
2

H(π2 ) |0⟩
1
2

1
2 0 1

2
π
2

π
2

H(0) |0⟩ 1
2

1
2 -12 0 π

2 π

S(H(π) |0⟩) 1
2

1
2 0 -12

π
2 -π2

T (H(π) |0⟩) 1
2

1
2

1
2
√
2

− 1
2
√
2

π
2 -π4

Table 1: Resulting density matrix |q⟩ ⟨q| with
|q⟩ being X |0⟩, Y |0⟩, H(π/2) |0⟩, H(0) |0⟩,
S(H(π) |0⟩), T (H(π) |0⟩) (see main text).

To implement a general rotation in QBithm along
a given meridian ϕ of the Bloch sphere with the aim
of changing θ, some key parameters need to be set.
First, one provides the desired gJ , |B⃗1|, ωMW/2π
values in qbithm.f. We choose gJ = 2, |B⃗1| = 1.5
mT, ωMW/2π = ω+−/2π = 0.3 cm−1 hence δ = 0.
The energies u+, u− to calculate ω+− are taken by
QBithm from qb.ddata. Then, the rotation gate is
selected in qb.adata together with the particular ϵ
value that gives rise to ϕ. The remaining parameter
to be introduced in this input file is the rotation time
∆ti. If κ > 0 is the rotation angle, ∆ti is determined
from the condition Ωg∆ti = κ. Particularly, if θ0
and θf are the initial and final zenithal angles with
0 ≤ θ0, θf < 2π; since QBithm rotations are clock-
wise (see below), κ = θf − θ0 when θf > θ0 and
κ = 2π − (θ0 − θf ) when θ0 > θf . We recommend
first to use a dummy ∆ti value to compute Ωg, then
to read Ωg in qb.out, and last to run QBithm again
but with the right ∆ti value.

Since the initial qubit state is |ψ⟩ = |0⟩ where
θ0 = 0, implementing the X, Y gates requires κ =
π − 0 = π to reach θf = π, while H(π/2), H(0)
require κ = π/2 − 0 = π/2 to get θf = π/2. As
the computed Ωg/2π is ≈ 21.0 MHz, the π rotation
involved in theX, Y gates takes ∆tπ = π/Ωg ≈ 23.8
ns, while the π/2 rotation that implements H(π/2),
H(0) takes ∆tπ/2 = (π/2)/Ωg ≈ 11.9 ns.

On the other hand, to implement the action of the

gate sequences SH(π), TH(π) on |0⟩, two steps are
required in qb.adata in each case. The first one is
common and consists in a π/2 rotation to produce
H(π) with ϵ = π and ∆tπ/2 ≈ 11.9 ns. At this
moment, the qubit state H(π) |0⟩ is contained in the
equatorial plane of the Bloch sphere with θ = π/2,
ϕ0 = 0, and ρ11 = ρ22 = 1/2, ρ12,r = 1/2, ρ12,i = 0.
The action of P (γ) will be to rotate it an angle γ
around the axis joining the poles |1⟩ and |0⟩ until
ϕf = ϕ0 + γ while keeping θ = π/2 constant.

P (γ) is implemented by selecting a free evolution
in qb.adata and the right evolution time ∆ti. In-
deed, under free evolution, the spin undergoes Lar-
mor precession around the B⃗ direction with angular
frequency ω+−. After ∆ti, the qubit state is rotated
the desired angle γ around the above-mentioned
axis with θ unaltered. According to the fact that
QBithm rotations are clock-wise, ω+−∆ti = −γ
provides ∆ti when ϕf < ϕ0, while ω+−∆ti = 2π−γ
applies in case ϕf > ϕ0. Since ω+−/2π = 0.3
cm−1, the γ = −π/2 and γ = −π/4 rotations take
∆t−π/2 = (π/2)/ω+− ≈ 0.028 ns and ∆t−π/4 =

(π/4)/ω+− ≈ 0.014 ns. Note that both |B⃗1| and
ωMW are automatically set to zero by QBithm when
performing a free evolution and reset to the values
provided in qbithm.f once the said evolution is done.

The obtainment of short ∆tγ < 1 ns values can
be experimentally solved by extending the free evo-
lution with a large enough number m > 0 of periods
2π/ω+− yet small enough to keep ∆tγ +m2π/ω+−
below the relaxation timescale thus not altering the
desired final state. The convention |1⟩ ≡ |u+⟩,
|0⟩ ≡ |u−⟩ coded in QBithm is the reason why both
θ and ϕ rotations are clock-wise. E.g., this fact
makes H(π) -whose rotation axis ϵ = π is placed at
the negative Y axis of the Bloch sphere- take |0⟩ to
(|0⟩+ |1⟩)/

√
2 where ϕ = 0 instead of (|0⟩− |1⟩)/

√
2

where ϕ = π. In the opposite convention, one would
use ϕ = ϵ−π with the same ϵ values to produce the
same rotated states up to a global phase.

We have runX, Y , H(π/2), H(0), SH(π), TH(π)
in QBithm as indicated above with |0⟩ as the initial
state and the resulting density matrices written in
qb.out coincide with the expected ones of Table 1.
Both X and Y inverts the population from |0⟩ with
ρ022 = 1, θ = 0 to ∝ |1⟩ with ρf11 = 1, θ = π. The

fact ρf11 = ρf22 = 1/2 indicates an equally-weighted
superposition between |0⟩ and |1⟩ with θ = π/2.
Hence, the qubit is found in the equatorial plane
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of the Bloch sphere. Since the action of S and T
conserves the θ value, ρf11 = ρf22 = 1/2 remains.

All in all, given an initial qubit state on the Bloch
sphere whose coordinates are (θ0, ϕ0), one can reach
any other point (θf , ϕf ) with 0 ≤ θ0, θf , ϕ0, ϕf < 2π.
If θf ̸= θ0, the first step consists in a rotation with
ϵ = π−ϕ0 and ∆tκ = (θf − θ0)/Ωg when θf > θ0 or
∆tκ = (2π− (θ0 − θf ))/Ωg in case θf < θ0. Then, if
ϕf ̸= ϕ0, depending on whether ϕf < ϕ0 or ϕf > ϕ0,
a free evolution is implemented with ∆tγ = −γ/ω+−
or ∆tγ = (2π − γ)/ω+−. Interestingly, one could
use a single rotation axis ϵ = ϵ0 and yet also reach
any point (θf , ϕf ) from (θ0, ϕ0). For instance, if
ϵ0 = 0 which places the rotation axis at the posi-
tive Y axis of the Bloch sphere, one should first im-
plement a free evolution until reaching (θ0, ϕ = π)
when ϕ0 ̸= π. Then, a rotation with the right ∆tκ
around ϵ0 = 0 allows getting (θf , ϕ = π). Last, a
new free evolution transforms ϕ = π into ϕf .

The previous examples have been carried out
under ideal circumstances, namely Γab = Γem =
Γmag = Γab,add = Γem,add = 0 and Γmag,add = 10−10

µs−1 as explained above, as well as δ = 0 and
the right values of ϵ, ∆tκ, ∆tγ . This setting ex-
cludes both relaxation and experimental imperfec-
tions, and allows following the qubit evolution in
time as a point circulating on the Bloch sphere just
by translating ρf written in qb.out in terms of θ and
ϕ as done in Table 1. As soon as the rates become
comparable or shorter than the gate/algorithm run-
time, the qubit is rather described as a mixed state
and cannot be followed as a pure state on the men-
tioned sphere nor ρf can be translated into θ, ϕ.

We now study how changes in the said ideal set-
ting affect the implementation of X, H(0), SH(π).
For that, we repeat the same examples by keep-
ing Γab = Γem = Γmag = 0 but with (i) δ = 0,
Γab,add = Γem,add = 0, Γmag,add > 0, (ii) δ = 0,
Γmag,add = 10−10 µs−1, Γem,add > 0 with T = 5,
50, 200 K and Γab,add given by Eq.6, (iii) δ > 0,
Γab,add = Γem,add = 0, Γmag,add = 10−10 µs−1,
(iv) case of the SH(π) gate sequence with δ = 0,
Γab,add = Γem,add = 0, Γmag,add = 10−10 µs−1

and increments relative to the right values ϵ = π,
∆tκ=π/2 ≈ 11.9 ns, ∆tγ=−π/2 ≈ 0.028 ns. For each
value (i) Γmag,add > 0, (ii) Γem,add > 0, (iii) δ > 0
and increment (iv) in ϵ, ∆tκ=π/2, ∆tγ=−π/2, we ob-

tain a density matrix σf . The implementation of X,
H(0), SH(π) under (i), (ii), (iii), (iv) is evaluated

by computing the fidelity 0 ≤ F = F (ρf , σf ) ≤ 1
shown in Fig.1 with ρf in Table 1.
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Figure 1: Computed F fidelities of X, H(0),
SH(π) vs (i) Γmag,add, (ii) Γem,add, (iii) δ and (iv)
increments in ϵ, ∆tκ=π/2, ∆tγ=−π/2 relative to π,
≈ 11.9 ns, ≈ 0.028 ns, resp.; with Γab = Γem =
Γmag = 0. (i) and (ii) also show the computed Tm.
(ii): solid, dashed, dotted lines correspond to 5, 50,
200 K. | · | in (iii) and (iv) is the absolute value.

This assessment of the qubit performance when
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realizing a given gate can be equally extended to
the implementation of any digital one-spin-qubit al-
gorithm, namely by calculating the fidelity between
the ideal and non-ideal density matrices obtained
after running the same gate sequence. In (i) and
(ii), which can be respectively deemed as the lim-
its where relaxation is driven only by the spin bath
and only by the vibration bath, we also compute Tm
to check how F and Tm compare with each other.
High fidelities >95% require Tm ≳ 0.89 µs in (i)
and ≳ 0.94 µs in (ii) with no experimental imper-
fections. The little affection by temperature in (ii)
is due to u+ − u− = 0.3 cm−1 = 0.43 K in the em-
ployed Eq.6 is small enough as compared to the ex-
plored temperatures 5, 50, 200 K. While Tm ∼ 1 µs
values are easily achievable by current spin qubits,
the interest of our method is here rather found at
determining the Tm that one would need to drive
the spin qubit through the desired number of gates
with the prescribed algorithm fidelity.

We also highlight the role of δ, ϵ, ∆tκ, ∆tγ as key
design parameters since deviations from δ = 0 and
the right values of ϵ, ∆tκ, ∆tγ further lower F . As

seen in (iii), a longer B⃗1-driven rotation -as the one
producing X respect to the one involved in H(0),
SH(π)- leads to a lower F for a fixed δ and requires
a smaller |δ| to achieve a given F . High fidelities
> 95% are found with |δ| < 5 MHz inX and |δ| < 10
MHz in H(0), SH(π) if relaxation is negligible. On
the other hand, (iv) shows that the fine tuning of ϵ
requires more attention than that of ∆tκ, ∆tγ . The
relative increment in ϵ must not exceed 14.5% to
keep F > 95%, while this high fidelity can already
be obtained with relative increments in ∆tκ, ∆tγ
below 28.5%. Note that H(0), SH(π) only differ
in a free evolution. Since its runtime ≈ 0.028 ns is
shorter enough than the explored Γ−1

mag,add, Γ
−1
em,add

values and δ is always equal to the constant value
ω+− in any free evolution, the fidelities of H(0),
SH(π) are virtually the same in (i), (ii), (iii).

Pulse sequences: Rabi oscillations and spin
relaxation times

We study four potential molecular spin qubits as
case studies defined from the energy schemes of
the molecular coordination complexes in Fig.2: (1)
[VO(dmit)2]

2−, (2) [V(dmit)3]
2−, (3) VOPc, (4)

[Cu(mnt)2]
2−. Diagonalization of Eq.5 and pro-

duction of qb.ddata is conducted by SIMPRE with

J = 1/2, I(V4+) = 7/2, I(Cu2+) = 3/2, Bq
k ≡

0, P ≡ 0. The two qubit states |mJ ,mI⟩ are
the eigenstates |−1/2,−1/2⟩, |+1/2,−1/2⟩ in (1)-
(3), and |−1/2,+3/2⟩, |+1/2,+3/2⟩ in (4). We
employ QBithm to reproduce the experimentally-
determined Rabi oscillations, T1 and Tm, as well as
the spin relaxation time Tdd measured when apply-
ing the so-called CPMG sequence to (4). [66–69]
Full details along with input and output files are
found in SI.

Figure 2: Molecular coordination complexes, with
magnetic atomic ions V4+ (red) and Cu2+ (orange),
as case studies of potential spin qubits. Top Left:
(1), Top Right: (2), Middle: (3), Bottom: (4). C:
black, S: yellow, N: pale blue, O: dark blue. [66–69]

The operation mode is that of combining the
ab initio and semi-empirical modes. SIMPRE is
requested to not generate qb.mdata nor write in
qb.ddata the matrix elementsM+− required to com-
pute Γab, Γem, thus making QBithm set Γab =
Γem = 0. We do request SIMPRE to compute
Γmag. All in all, QBithm is operated by employ-
ing Γmag,add = 0, Eq.6, and Γem,add as the only
free parameter. Our attention has been put in the
master equation, hence we leave aside in our par-
ticular study of (1)-(4) the well-separated task of
performing the ab initio calculation of Γab, Γem.
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This issue has been addressed over the last years
with fruitful results and we refer the reader inter-
ested in using the purely ab initio mode to SI, the
adapted version of SIMPRE, and the relevant con-
tributions. [56–62,70–73] In case of operating under
the said mode, QBithm connects in a natural way
with them as their output is part of the input re-
quired to determine Γab, Γem. Interestingly, when-
ever Eq.1 provides an accurate enough description
of the given physical process, the values of Γab,add,
Γem,add, Γmag,add that result from fitting relevant
experimental data under either the semi-empirical
or the combined mode can be used as a benchmark
to guide which additional mechanisms should be in-
cluded in Γab, Γem, Γmag until the values of these
rates resemble those of Γab,add, Γem,add, Γmag,add.

Rabi oscillations. An important parameter that
must firstly be determined is |B⃗1|. For each case
study, we pick the experimental oscillation mea-
sured at the highest attenuation. Its Fourier trans-
form provides the experimental generalized Rabi fre-
quency Ωexp

1,g which is attributed to a relative mag-

nitude |B⃗1|1,rel = 1. |B⃗1| is varied in QBithm un-
til Ωg of the calculated oscillation matches Ωexp

1,g

with an appropriate value |B⃗1|1. If |B⃗1|i,rel > 1
are the relative magnitudes of the remaining exper-
imental oscillations, [66–69] their |B⃗1|i values are
|B⃗1|i = |B⃗1|1 · |B⃗1|i,rel. The largest attenuation cor-

respond to the smallest |B⃗1|, Ωexp
g and vice versa.

Then, we adjust Γem,add to reproduce in the calcu-
lated oscillation the time decay of the experimental
one. Fig.3 shows the results of this method applied
to (1), (2), while those of (3), (4) are found in SI.

In Fig.3 Right, we observe the onset of a long-
lived experimental oscillation at τ ∼ 200 ns with
a well-defined Ωexp

HH,g when employing |B⃗1| = 1.12
mT to drive (2). According to the Fourier trans-
form, [66] Ωexp

HH,g/2π = 14.68 MHz which coincides

with the proton 1H Larmor frequency ω1H at the
working magnetic field |B⃗| = 345 mT. The require-
ment for the emergence of the said long-lived oscil-
lation -known as Hartmann-Hahn condition- is two-
fold: a nearby proton hyperfine-coupled to (2), and
to drive (2) with the attenuation that makes Ωexp

g

match ω1H at the given |B⃗|. Our theoretical model
does not consider any explicit proton in Eq.5, hence
it is unable to reproduce the long-lived oscillation.

The Fourier transform of each experimental os-

cillation i peaks at the relevant Ωexp
i,g but, impor-

tantly, its non-negligible width ∆exp
i,g shows that the

observed oscillation is actually composed of a con-
tinuum of Ωexp

g . [66–69] Particularly, ∆exp
g is further

increased upon lowering the attenuation AMW. In
case ∆exp

g becomes large enough with a major con-
tribution of several Ωexp

g , see (3) and (4) in SI, the
calculated oscillation may not produce a satisfac-
tory match with the experimental one in the whole
nutation time since our theoretical model just pro-
vides a single Ωg. In an improved version of this
model, we would (i) treat {Ωexp

i,g ,∆
exp
i,g } as a (normal-

ized) probability distribution P i
d = P i

d(Ω
exp
g ), e.g.

with a Lorentzian shape, (ii) sample a representative
set {Ωexp

j,i,g}j from P i
d, (iii) compute ⟨Mz⟩(Ωexp

j,i,g) =
⟨Mz⟩(Ωexp

j,i,g, t1) at each Ωexp
j,i,g, and (iv) use the av-

erage ⟨Mi
z⟩(t1) = ΣjP

i
d(Ω

exp
j,i,g)⟨Mz⟩(Ωexp

j,i,g, t1) plot-
ted vs t1 to compare with the experimental oscilla-
tion. [74]

Note that the sole decrease of AMW also produces
a faster decay of the experimental Rabi oscillations.
Here, the increasing values found for Γem,add (and
Γab,add via Eq.6) in each case study must be split
into the constant contribution Γvb from the vibra-
tion bath and that from an additional effective rate
ΓMW that grows up as AMW is reduced to recover
the mentioned faster decay. The appropriate mod-
eling of this fact, attributed to the static fluctuation
of the microwave power, [69] would include an extra
term in Eq.1 that should operate when |B⃗1| ≠ 0 and
should recover ΓMW, while Γem,add = Γvb.

T1 and Tm. In case the last gate Gn of a se-
quence is a free evolution, we saw that the calculated
⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| as functions of ∆tn decay
respectively with rates Γ1 and Γ1, Γ2. However, let
us recall that the plot of interest in the determina-
tion of relaxation times is ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)|
vs mτ , being 1 ≤ m ≤ n the number of time inter-
vals in the sequence -including ∆tn- whose duration
τ := ∆ti is variable. Hence, the actual decay rates
of ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| represented vs mτ are
Γ1/m and Γ1/m, Γ2/m, resp.

Whether ⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| are determined
by running the same gate sequence or not, if m =
mz = mxy, since Γ1 and Γ2 lie essentially within
the same order of magnitude for predefined values
of Γa, Γe, Γm, we find that the calculated ⟨Mz⟩(tn)
and |⟨Mxy⟩(tn)|might decay with not very dissimilar
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Figure 3: Experimental (dotted [66]) and calculated ⟨Mz⟩(t1) (solid) magnetization vs nutation time τ ,
together with the Γem,add and |B⃗1| values used in QBithm. Left: (1). Right: (2).

relaxation times vs mτ . Moreover, when mz ̸= mxy

-case of different sequences- with the same Γa, Γe,
Γm, one may even learn that ⟨Mz⟩(tn) decays faster
than |⟨Mxy⟩(tn)| if mz < mxy. For instance, the re-
spective use of mz = 1 and mxy = 2 in the Inversion
recovery and Hahn sequence would lead to calculate
T1 < Tm since Γ1 > Γ1/2, Γ2/2 once Γ1 and Γ2 have
the same magnitude as mentioned.

Herein, we will elaborate on the reasonable basis
of modeling the implementation of each given se-
quence S0 with its own working conditions W0 as
a unique physical process, hence characterized by
a particular set of values {Γ0

a,Γ
0
e ,Γ

0
m} which may

change as soon as either of S0,W0 is modified. As we
already stated in a previous section, the target pro-
cesses are the ones that might be captured by Eq.1.
This would exclude those whose relaxation mecha-
nisms are beyond the vibration and spin baths or,
being driven only by them, produce stretched mag-
netization decays. The right description of these
cases should proceed through the expansion of Eq.1
-even Eq.5- with relevant terms containing their own
rates thus avoiding an artificial tuning of Γa, Γe, Γm.

Once relaxation is covered by Eq.1 and these three
rates, the change in Γa, Γe, Γm from one process to
another may be due to the participation of a dif-
ferent set of mechanisms, or also to a variation in
their magnitude if the set is the same. In case our
Γab, Γem, Γmag are conserved or do not include all
mechanisms at play, the change in Γa, Γe, Γm and
any missing contribution can still be collected by
the additional rates Γab,add, Γem,add, Γmag,add.

This framework allows accommodating the
specific fact that the experimental ⟨Mz⟩(tn)
and |⟨Mxy⟩(tn)| can also decay with rather dif-
ferent relaxation times when mz = mxy, even
with |⟨Mxy⟩(tn)| decaying faster if mz < mxy.
In general, we will model the computation of
⟨Mz⟩(tn) and |⟨Mxy⟩(tn)| as two processes ini-
tially independent, each one with its own set
of values {Γz

a,Γ
z
e ,Γ

z
m} and {Γxy

a ,Γ
xy
e ,Γ

xy
m }. In

turn, this means to operate with the two sets of
values {Γz

ab,Γ
z
em,Γ

z
mag,Γ

z
ab,add,Γ

z
em,add,Γ

z
mag,add}

and {Γxy
ab,Γ

xy
em,Γ

xy
mag,Γ

xy
ab,add,Γ

xy
em,add,Γ

xy
mag,add}.

On the other hand, when we are interested
in the same magnetization -either longitudi-
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nal or in-plane- in different sequences {Sk}k,
we will also employ initially independent sets
{Γk

ab,Γ
k
em,Γ

k
mag,Γ

k
ab,add,Γ

k
em,add,Γ

k
mag,add}k. This

approach would include the case of the CPMG
sequence, which is parameterized in terms of the
number k of refocusing π pulses.

As stated at the beginning of this sec-

tion, our operation mode sets Γ
Rabi/T1/Tm/Tdd

ab =

Γ
Rabi/T1/Tm/Tdd
em = 0 and binds Γ

Rabi/T1/Tm/Tdd

ab,add with

Γ
Rabi/T1/Tm/Tdd

em,add via Eq.6. The models coded in SIM-
PRE for the computation of Γmag are devised to de-
termine Tm, hence we use ΓTm

mag = Γmag. In addition,
since this relaxation time also controls the decay
rate of Rabi oscillations, we employed ΓRabi

mag = Γmag.
Once the spin bath is under consideration through
ΓTm
mag, Γ

Rabi
mag , we set ΓTm

mag,add = 0 and use ΓTm
em,add as

the only free parameter such as did with ΓRabi
mag,add

and ΓRabi
em,add. On the other hand, we reproduce T1

by invoking only the vibration bath with ΓT1
em,add as

the unique free parameter and ΓT1
mag = ΓT1

mag,add = 0.
Whenever evidences reflect that T1 is total or par-
tially limited by the spin bath, the relevant con-
tribution will be added to ΓT1

mag,add. We lack an
estimate for our case studies thus decide to fix
ΓT1
mag,add = 0 to avoid a second free parameter. The

option ΓT1
mag = Γmag must be excluded since the cal-

culated Γmag values -intended for Tm- are too large
to reproduce the long T1 values measured at low
temperatures. The use of ΓTm

em,add and ΓT1
em,add as

free parameters fits our purpose of reproducing Tm
and T1 as a function of temperature since this is
one of the key working conditions that modulates
the contribution of the vibration bath to relaxation.
The resulting ΓTm

em,add and ΓT1
em,add values produced

at fitting the experimental Tm and T1 of (1)-(4) as
a function of temperature are found in SI.

CPMG sequence. This sequence is based on the
building block {G2 → G3 → G2} which is repeated
k times after an initial π/2 rotation G1, namely
G1 → {G2 → G3 → G2}k. G2 is a free evolu-
tion with a variable duration time τ , while G3 is a
π rotation. Here, G1 and G3 are respectively per-
formed along the positive X and Y axes of the Bloch
sphere. All in all, the number of gates is n = 3k+1
where m = 2k of them are run for the variable du-
ration time τ . If we retake again the initial condi-
tion ρ022 = 1, ρ011 = ρ012,r = ρ012,i = 0, G1 brings
the qubit to an equally-weighted superposition be-

tween |0⟩ and |1⟩ in the equatorial plane of the Bloch
sphere from the initial state |0⟩ ≡ |u−⟩. Given k,
|⟨Mxy⟩(t3k+1)| is plotted vs 2kτ to extract the spin
relaxation time Tdd after fitting the said represen-
tation to an exponential decaying curve f(2kτ) =
a+bexp (−2kτ/Tdd). The key to CPMG sequence is
the continual implementation of {G2 → G3 → G2}
which mitigates the relaxation produced by the spin
bath and lengthen Tdd as k is increased. [69] In prac-
tice, Tdd is limited by experimental imperfections.

The CPMG sequence is run at a fixed temper-
ature. In addition, since its role is to act essen-
tially on the spin bath, we model the lengthen-
ing of Tdd as a reduction in ΓTdd

mag,add with a con-

stant ΓTdd
em,add = ΓTdd,lim

em,add. ΓTdd
mag is here set to zero

thus the entire relaxation due to the spin bath will
be collected by ΓTdd

mag,add as a free parameter. We

determine ΓTdd,lim
em,add by fitting the calculated Tdd to

the limiting value T lim
dd measured at a high enough

klim. Since the qubit is already certainly decou-
pled from the spin bath at k = klim, we employ
ΓTdd
mag,add = 0 in this particular fitting process. The

ΓTdd,lim
em,add value would also contain an effective rate

associated to experimental imperfections. Then, for
each k < klim explored, we keep ΓTdd

em,add = ΓTdd,lim
em,add

and vary ΓTdd
mag,add until reproducing the experimen-

tal Tdd. The resulting ΓTdd
mag,add takes progressively

lower values as k is increased and becomes zero for
k ≥ klim. In the case of (4), we lack T lim

dd . Hence,
to illustrate our method, we use T lim

dd = 1.4 ms ob-
tained with the largest k = 2048 implemented. We
get ΓTdd,lim

em,add = 7.31·10−4 µs−1 and the ΓTdd
mag,add found

to fit the experimental Tdd for each k = 1, 8, 32, 128,
256, 512, 1024, 2048 is depicted in Fig.4.

The oscillatory decay of the experimental mag-
netization curves in [69] is not present in the com-
puted |⟨Mxy⟩(t3k+1)| shown in Fig.4 since our the-
oretical model does not include the interaction be-
tween the molecular spin and nearby nuclear spins
as explained in a previous section. We also note
that Hahn and CPMG sequences coincide for k = 1
so Tm = Tdd. Our method described above deliv-
ers ΓTm

em,add ≈ 0.15 µs−1 when applied to (4) in SI
to reproduce the experimental Tm = 6.8 µs with
ΓTm
mag = Γmag ≈ 2.6 · 10−3 µs−1 fixed in qb.ddata.

The fact that we employ a value ΓTm
em,add ≈ 0.15 µs−1

≫ ΓTdd,lim
em,add needed to compensate the rather small
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Γmag ≈ 2.6 · 10−3 µs−1 as compared to ΓTdd
mag,add ≈

0.15 µs−1 found for k = 1 points towards an under-
estimated Γmag.
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Figure 4: Top: Γmag,add rates determined with
QBithm to fit the experimental spin relaxation
times Tdd measured when applying the CPMG se-
quence to (4) with k = 1, 8, 32, 128, 256, 512, 1024,
2048 π rotations. [69] Bottom: computed in-plane
magnetization curves at each Γmag,add value above.

Discussion

Over the last decade, the study of the relaxation
times T1 and Tm has undoubtedly produced a body
of design principles aimed at quenching the loss of
quantum information stored in freely-evolving spin
qubits. At this point, these well-established strate-
gies that have resulted from a fruitful interplay
theory-experiment set an ideal position for push-
ing towards the use of spin qubits in quantum algo-
rithms as one of their key applications. This means
to submit the qubit to an evolution which is not free
anymore but rather driven by the user while relax-
ation and imperfections are likewise active. Within
this widened picture, T1 and Tm -intended for free
evolution- provide a rather limited benchmark for
the qubit performance might now be evaluated af-
ter running the selected algorithm of interest in the
form of fidelity as the actual figure of merit.

We have posed and conducted the analytical reso-
lution of a master equation devoted to run any one-
spin-qubit algorithm set and driven by the user as a
gate sequence subject to relaxation and experimen-
tal imperfections. The fidelity F is easily computed
by combining the two qubit density matrices ob-
tained after running the algorithm of interest with
and without relaxation rates Γ and imperfections.
This allows assessing a given spin qubit among sev-
eral algorithms as well as comparing different spin
qubits each one implementing the same algorithm.
The master equation is operated through the soft-
ware package QBithm which, in addition to show
the time evolution of the density matrix, also of-
fers the possibility of calculating longitudinal and
in-plane magnetization curves to determine relax-
ation times such as T1 and Tm, ESE-detected spec-
tra, and Rabi oscillations. Interestingly, this feature
helps to translate between Tm and F in a given al-
gorithm run by a spin qubit: one can learn either
what F would result from the Γ values that repro-
duce Tm, or which the minimum Tm should be so
the consequent Γ values lead to a prescribed F .

The operation mode in QBithm depends on the
inputted Γ values whether they are previously cal-
culated or employed as free parameters. In the first
case, our work takes up the torch from those efforts
devoted to design ab initio methods for computing
the rates Γ which now feed QBithm. On the other
hand, when using Γ to fit experimental data, the
resulting values can serve as a benchmark for the
above-mentioned methods. Here, we have operated
under a rather combined mode that allows dealing
with a plethora of potential case studies and exper-
iments of wide interest. In particular, we managed
to reproduce the measured experimental data by
describing the initially-complex issue of relaxation
-such as that originated in the vibration bath- with
realistic values of a single relaxation rate as the only
free parameter. At this point, the ball is now in the
court of those researchers interested in proceeding
through the purely ab initio operation mode.

As a function test, we did compute Γab and Γem

for (4) from its calculated molecular-vibration spec-
trum published in [70]. The obtained values< 10−10

µs−1 in the range 5−300 K are rather negligible and
cannot account for the experimental T1 and Tm ly-
ing inside 1 µs − 100 ms. We find that key to those
such a low values is the mismatch between the spin-
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qubit gap ω+− ∼ 0.3, ∼ 1.0 cm−1 -depending on
whether the X or the Q band is employed- and the
harmonic frequencies ωi ≳ 20 cm−1 of the molecular
vibrations, as well as the low phonon populations
that ωi produce at the working temperatures. In
particular, we state that calculated vibration spec-
tra should also include the low-energy lattice vibra-
tions -specially those with ωi ≲ 1 cm−1- for a proper
description of the direct relaxation process between
the two states |u+⟩ and |u−⟩ of spin qubits. [75, 76]
Indeed, after resetting ωi to 1 cm−1 and by assum-
ing that both spin-vibration matrix elements and
reduced masses remain unaltered, we found that
each molecular vibration contributes to Γab, Γem

with values ∼ 106 − 108 times larger in 5 − 300 K.
Hence, if ∼ 10 − 100 lattice vibrations with ωi ≲ 1
cm−1 were included, Γab and Γem would increase by
∼ 107 − 1010 thus resulting in more realistic values
in the µs scale and longer.

Molecular/local vibrations should not, however,
be discarded as they can play a significant role in
Raman relaxation processes. [77] Given two vibra-
tion modes i, j -either i = j or i ̸= j-, the mismatch
of ωi, ωj respect to ω+− is not crucial since the res-
onance condition to fulfil now is |ωi − ωj | ∼ ω+−.
While this condition suffices to account for virtual
Raman processes, where the virtual intermediate
state is either above u+ or below u− in energy, real
Raman processes additionally require an eigenstate
|uc⟩ of the relevant spin Hamiltonian as the interme-
diate state -with energy either uc > u+ or uc < u−-
such that each |uc − u+|, |uc − u−| must be similar
to one among ωi, ωj .

In the case of (1)-(4), the sole inclusion of the
ground J , I quantum numbers in Eq.5 provides
an energy scheme of (2J + 1)(2I + 1) eigenstates
that span no more than 1 cm−1. Hence, |uc − u+|,
|uc − u−| ≲ 1 cm−1. While this fact also supports
the need of incorporating lattice vibrations with
ωi ≲ 1 cm−1, molecular vibrations -having ωi ≳ 20
cm−1- will play a significant role only if there ex-
ist |uc⟩ of high-enough energy such that |uc − u+|,
|uc − u−| ≳ 20 cm−1. Thus, for a proper descrip-
tion of molecular/local-vibration relaxation in spin
qubits, we also state that one could require to ex-
pand Eq.5 with excited J quantum numbers or even
with other degrees of freedom which also couple to
J and produce states that might also work as high-
energy intermediate states. As included in our the-

oretical model, both real and virtual Raman pro-
cesses can also proceed through intermediate states
with an energy between u− and u+, being the res-
onance condition ωi + ωj ∼ ω+−. Since ω+− ≲ 1
cm−1, the proper modeling of this relaxation case
would require again the participation of low-energy
lattice vibrations.

QBithm can readily deal with the required ex-
pansion Ĥ ′ of Eq.5 since, as mentioned in QBithm
software package, one can request Γab = Γem = 0
within the ab initio operation mode and input in
Γab,add and Γem,add the values externally calculated

with Ĥ ′. In this case, one sets (2J+1)(2I+1) = 2 in
qbithm.f and manually writes in qb.ddata the values
of u−, u+, N+− computed also with Ĥ ′. In addi-
tion, SIMPRE can be fed with vibrations of any
frequency range, both lattice- and molecular-like;
hence, the calculated Γab, Γem can already account
for the full direct relaxation process with Eq.5 and
Γab,add = Γem,add = 0 since the description of this
process only needs to invoke |u−⟩ and |u+⟩ but not
any intermediate state.

On the other hand, beside the production of high-
fidelity gates, the importance of a small detuning
δ = ω+− − ωMW also manifests itself in the imple-
mentation of pulse sequences, e.g. those employed
to determine T1, Tm and produce Rabi oscillations
as we check in SI. Despite δ ̸= 0, one can still
conduct a faithful driving with less stringent upper
bounds in |δ| if ω+− lies inside the excitation band-
width B = [ωMW−∆ωMW/2, ωMW+∆ωMW/2]. For
pulses at least 10 ns long as the ones employed by
us, ∆ωMW ≤ 100 MHz in standard EPR setups.
Moreover, the distribution D of the spin Hamilto-
nian parameters as a result of static disorder leads
to a broadening in ω+− whose FWHM can be as
high as 300 MHz. [78] Hence, there exists a window
as wide as ∆ωMW/2+FWHM/2 = 200 MHz where
the tails of B and D can significantly overlap pro-
vided |δ| < 200 MHz. This is the case of (1)-(4),
where the minimum detuning |δ|min ranges from 10
to 150 MHz. Instead of including ∆ωMW and the
mentioned FWHM in our calculations, and since the
resonance probability decays abruptly as soon as |δ|
becomes larger, we have opted for a simpler alter-
native which effectively covers the relevant physics.
Namely, for each case study we work out with the
|B⃗| direction u⃗ where |δ| = |δ|min and set ωMW in
qbithm.f with the value of ω+− corresponding to
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u⃗. If there exist several u⃗ directions, e.g. in sys-
tems with some isotropy, one would integrate the
relevant magnetization curve over all u⃗ as it may
happen in powder samples and frozen solutions (see
SI for more details).

All in all, our contribution comes with an as-
sorted toolkit that tackles the issue of driving one
spin qubit on the Bloch sphere while exposed to re-
laxation, thus supplying the complementary piece
of those design principles devised to lengthen Tm
for a spin in free evolution. A natural next step
for QBithm would be the expansion of the compu-
tational Hilbert space {|u+⟩ , |u−⟩} to firstly accom-
modate two spin qubits and then a larger set of them
to run more sophisticated gate-based algorithms.
The first movement results in the implementation of
two-qubit gates and the testing of their fidelity, [79]
but also allows including physical processes not col-
lected in our current theoretical model. Indeed, the
said expansion could also consist in the interaction
between a single qubit and a nearby nuclear spin-
1/2 which is commonly behind some long-lived Rabi
oscillations and the oscillatory behavior of some de-
caying magnetization curves.

Instead, the inclusion of other processes could re-
quire the addition of extra terms in the master equa-
tion, e.g. those ones that lead to the faster decay
of Rabi oscillations upon increasing the microwave
power or to the stretched shape of some magnetiza-
tion curves. In case of existing evidence, longitudi-
nal magnetization curves Mz with an stretch factor
x below 1 are often interpreted as the sum of two
non-stretched and exponentially-decaying curves,
where one corresponds to a process operating on a
shorter timescale and the other one on a longer one.
This particular situation can still be addressed by
QBithm provided both processes are described with
two different sets of relaxation rates such as we do
for (1)-(4) in SI. On the other hand, our calculated
in-plane magnetization curves Mxy, which contain
two decay rates Γ1 and Γ2, can exhibit an stretched
shape with x < 1 provided Γ1 ̸= Γ2. Hence, our
model could also describe stretched Mxy curves with
x < 1 if the origin of this fact is the participation of
the vibration bath, since Γa+Γe ̸= 0 is the condition
that leads to Γ1 ̸= Γ2.

QBithm also offers an appealing opportunity for
experimentalists. In addition to the possibility
of studying imperfections, such as deviations from

ideal gate time and angle ϵ as studied in Fig.1, it
also encourages to conduct better-characterized ex-
periments in terms of parameters key for QBithm.
These include δ, |B⃗1|, the polarization angle α of
B⃗1, and even ϵ. Moreover, the effective Hamilto-
nian in Eq.2 could be modified to implement the
potential option of driving the spin via an oscillat-
ing electric field as already experimentally explored
with success. [80] In a nutshell, we expect that our
work will be of help to the wide community of spin
qubits and to those researchers interested in exploit-
ing this physical platform for quantum information
and computation.
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