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In this work, we explore the issue of origin dependence in optical rotation (OR) calculations in the length
dipole gauge (LG) using standard approximate methods belonging to density functional theory (DFT) and
coupled cluster (CC) theory. We use the origin-invariant LG approach, LG(OI), that we recently proposed
as reference for the calculations, and we study whether a proper choice of coordinate origin and molecular
orientation can be made such that diagonal elements of the LG-OR tensor match those of the LG(OI) tensor.
Using a numerical search algorithm, we show that multiple spatial orientations can be found where the LG
and LG(OI) results match. However, a simple analytical procedure provides a spatial orientation where the
origin of the coordinate system is close to the center of mass of the molecule. At the same time, we also show
that putting the origin at the center of mass is not an ideal choice for every molecule (relative errors in the
OR up to 70% can be obtained in out test set). Finally, we show that the choice of coordinate origin based
on the analytical procedure is transferable across different methods and it is superior to putting the origin
in the center of mass or center of nuclear charge. This is important because the LG(OI) approach is trivial
to implement for DFT, but not necessarily for non-variational methods in the CC family. Therefore, one can
determine an optimal coordinate origin at DFT level and use it for standard LG-CC response calculations.
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I. INTRODUCTION

Optical rotation (OR) is the angle by which plane
polarized light is rotated as it passes through an opti-
cally active medium.1 Two enantiomers will generate OR
of same magnitude but opposite sign, so this property
can be used to assign the absolute configuration of chi-
ral molecules in a sample. Although the OR value can
be determined experimentally, calculations are needed to
match the OR sign to a specific enantiomer.2–19 Efforts
have also been made to provide a more chemically intu-
itive picture of this structure-property relationship.20–27
Therefore, it is desirable to continue to pursue more ac-
curate and efficient methods for performing OR simula-
tions, and to better understand the limitations of practi-
cal approximate methods.

These limitations revolve around a few key factors: the
incompleteness of the basis set and of the treatment of
electron correlation in practical calculations, the inability
of treating quantum effects in electrons and nuclei on the
same footing, and the inability to treat the environment
around a chiral molecule at the quantum level. Although
these limitations are common to simulations of many
molecular properties, they are particularly important for
OR due to its sensitivity to molecular structure and inter-
molecular interactions. Typically, vibrational contribu-
tions to OR are treated with perturbative formulas, but
it is hard to determine the accuracy of this approach.28–31
For solvation the situation is even worse, as there is no
standard recipe to accurately reproduce its effect, and
the anomalous shift in OR going from gas to solution
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phase is largely not understood.32–43 For OR in the solid
phase, a few efforts have begun to appear but simula-
tions are not at a mature state.44–46 Electron correlation
incompleteness is also difficult to overcome, because chi-
ral molecules tend to be too large for high-level methods.
Among the systematically improvable methods, the most
accurate and yet affordable one is coupled cluster with
single and double excitations (CCSD),15–19,47,48 but we
have recently shown that CCSD may not be as close to
convergence in terms of electron correlation treatment as
one would hope.48,49 On the other hand, density func-
tional theory (DFT) methods dominate the field of OR
simulations because of their favorable cost to accuracy
ratio.11–15,41,50 However, although it has been shown that
the accuracy can be improved with range-tuning,51 the
typical DFT issue of system dependent-accuracy is also
present for this property. The basis set dependence in
OR calculations has been well studied,52–58 and basis sets
have been formulated specifically for OR calculations in
an attempt to decrease computational cost while main-
taining accuracy.59–62

A consequence of basis set and electron correlation in-
completeness is that different choices of gauge for the
external field representation provide different numerical
values of the OR, contrary to exact calculations. Two
common choices are the length gauge (LG) and the ve-
locity gauge (VG), which differ in the representation
of the electric dipole operator.63,64 VG calculations in-
clude an unphysical static limit, which must be calcu-
lated and subtracted out explicitly; a procedure called
modified VG (MVG).7 Approximate LG-OR calculations
are origin dependent, which is also unphysical. The is-
sue can be solved using London orbitals65,66, where a
magnetic field dependent phase factor is included on
each atomic basis function. This is a general approach
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that can be useful for many magnetic properties, but at
the cost of significantly more complicated equations and
implementations.9,10,12,67 Additionally, this approach re-
quires the inclusion of the orbital response, which is stan-
dard in DFT but not in CCSD (unless complicated or-
bital optimization procedures are used68,69). We pro-
posed a different approach, called origin-invariant LG or
LG(OI), where the origin dependence of the OR is re-
moved with a clever transformation of the OR tensor.47,48
The LG(OI) approach is considerably simpler to imple-
ment than London orbitals and it works equally well for
variational and non-variational methods, but it is spe-
cific to OR calculations. In a recent work, we showed
that LG(OI) converges to the complete basis set limit
slightly faster than MVG.49

In this work, we investigate whether a meaningful
choice of coordinate origin and molecular orientation can
be made for a standard LG calculation so that it matches
the LG(OI) result. In previous work, we have proposed
an analytical approach to determine the spatial orienta-
tion of a molecule so that the diagonal elements of the
OR tensor match between LG and LG(OI) calculations.48
Here we try to understand if that choice has any general
physical characteristic and how the OR results compare
with more common choices of coordinate origin (e.g., the
center of mass or the center of nuclear charge). We also
determine whether the choice of molecular orientation
where the LG and LG(OI) OR match is unique, by using
a numerical procedure that iteratively performs rigid ro-
tations and translations of the molecule until the diagonal
elements and the trace of the LG and LG(OI) OR ten-
sors agree within a given threshold. Finally, we explore
whether this choice of molecular orientation is transfer-
able between different methods (for instance, from a spe-
cific functional to another one or to CCSD). This is im-
portant because while LG(OI) is trivial to implement for
DFT and has no impact on the computational cost, it
does require some effort for CCSD (both in terms of ini-
tial implementation and for the computational cost, if
the symmetric version of the response function is used).
Therefore, it may be useful to find a special LG origin for
DFT and use it for a standard LG-OR CCSD calculation.

This paper is organized as follows. Section II reviews
the equations relevant to this work. Section III lists the
computational details for the calculations. Section IV
reports the results for the test calculations, and Section
V discusses and summarizes the results.

II. THEORY

This section reviews the most important equations for
the calculation of optical rotation that are useful for the
discussion of the simulations. The OR in isotropic me-
dia is commonly reported as a spatially averaged quan-
tity normalized for the path length of the sample and its
concentration, called specific rotation [α]ω, in units of

deg [dm(g/mL)]−1:

[α]ω =
(72 × 10−6)h̵2NAω

2

c2m2
eM

Tr(β)
3

(1)

where h̵ is the reduced Planck’s constant (J s), NA is
Avogadro’s number, c is the speed of light (m/s), me is
the mass of an electron (kg), and M is the molar mass
(amu). β (a.u.) is the electric dipole-magnetic dipole
polarizability tensor17:

βαβ = 2∑
j≠0

Im
⟨ψ0∣µα ∣ψj⟩ ⟨ψj ∣mβ ∣ψ0⟩

ω2
j0 − ω2

(2)

where ψ0 and ψj represent the ground and jth excited
state wavefunctions, µα is the electric dipole operator,
mβ is the magnetic dipole operator, ωj0 is the jth exci-
tation frequency, and ω is the frequency of the impinging
radiation. Greek letter indexes represent Cartesian coor-
dinates. This sum-over-state (SOS) formulation of β is
not convenient for fast calculations, which are commonly
performed using linear response (LR) theory7,9,17,70,71.
In brief, LR replaces the evaluation of the excited states
in Eq. 2 with the solution of response equations for one
of the multipole perturbations; this produces a perturbed
density in the molecular orbital (MO) or atomic orbital
(AO) basis, which is then contracted with the MO or AO
integrals for the other multipole operator. For variational
methods like Hartree-Fock (HF) or DFT, the choice of
perturbation for the response equation is immaterial as
either choice leads to the same tensor values.9 For non-
variational methods like CC theory, the symmetric for-
mulation of the response function requires the solution of
the response equations for both perturbations while the
non-symmetric formulation requires only one perturba-
tion but two sets of perturbed amplitudes.72,73 Therefore,
both CC-LR formulations are computationally equivalent
for the evaluation of β.

For exact calculations, Tr(β) is an origin and gauge in-
dependent quantity. However, practical calculations are
based on approximate methods where typically both the
basis set and the treatment of electron correlation are
incomplete. Therefore, the choice of gauge matters and
the two most common choices are the length and veloc-
ity gauges (LG and VG), where the electronic part of the
electric dipole operator (in a.u.) is represented as:63,64

µR = −r (3)

µP = −p (4)

where r is the position operator and p is the momentum
operator. The LG formulation suffers from origin depen-
dence, which can be addressed by using London orbitals
for variational methods9,10,12,65–67 or with our origin-
invariant formulation [LG(OI)] for any method, discussed
below.47,48 The VG suffers from an unphysical static limit
that needs to be evaluated and subtracted out explicitly
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(called the modified VG or MVG approach)7. In previous
work, we studied how the evaluation of [α]ω converges to-
wards basis set and electron correlation completeness.49

In this work, we investigate how the choice of origin
affects standard LG-OR calculations. Therefore, we need
to discuss the expressions that quantify this dependence.
Considering an origin displacement:

O′ =O + d (5)

the β tensor elements vary as7,63,64

βαβ(O′) = βαβ(O) +
1

2
ϵβγδα

(R,P )
αγ dδ (6)

where ϵ is the Levi-Civita operator and α is the electric
dipole-electric dipole polarizability tensor. The super-
script (R,P ) indicates a mixed-gauge representation of
the electric dipole operator according to Eqs. 3-4.

Although in exact calculations α is symmetric no mat-
ter the electric dipole operator representation, this is not
the case anymore for α(R,P ) in approximate calculations,
which leads to the origin dependence of the LG-OR:

Tr[β(O′)] =Tr[β(O)] + 1

2
[dx(αyz − αzy)

+dy(αzx − αxz) + dz(αxy − αyz)]
(7)

where we neglected the (R,P ) superscript for clarity.
In LG(OI), one performs a singular value decomposi-

tion (SVD) of α(R,P )

α(R,P ) = Uα
(R,P )
D V † (8)

where α
(R,P )
D is diagonal and U and V † are unitary

transformations47,48. Applying the inverse transforma-
tion to β

β̃ = U †βV (9)

leads to diagonal elements of the transformed β̃ tensor
that are now origin invariant, so that the corresponding
[α]LG(OI)

ω is also origin invariant. The LG(OI) trans-
formation is a post-processing treatment of the β ten-
sor that is trivial to implement and apply. In HF or
DFT, one needs only to calculate the perturbed density
for the µR operator and then contract it with the appro-
priate multipole integrals to obtain all relevant tensors:
the standard electric dipole-electric dipole polarizabil-
ity in the length and mixed gauges, the electric dipole-
magnetic dipole polarizability β, and even the electric
dipole-electric quadrupole polarizability necessary to cal-
culate the full OR tensor for oriented systems.44,48 In this
sense, the LG(OI)-OR is a free subproduct of a standard
electric polarizability calculation. For CC methods, our
current implementation with the symmetric form of the
LR function requires an explicit evaluation of the µP per-
turbed densities. However, a non-symmetric formulation
of the LR function would only require the evaluation of
the µR perturbed amplitudes, similar to the DFT case.

In Ref. 48, we showed that the molecule can be reori-
ented and translated analytically so that the diagonal el-
ements of β match those of β̃. This can be accomplished
by first orienting the molecule along the principal axes of
the symmetric part of α(R,P ). This is followed by a rigid
translation according to Eq. 6 such that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β̃xx = βxx(O′) = βxx(O) + 1
2
(dzαxy − dyαxz)

β̃yy = βyy(O′) = βyy(O) + 1
2
(dxαyz − dzαyx)

β̃zz = βzz(O′) = βzz(O) + 1
2
(dyαzx − dxαzy)

(10)

In the next section, we will call this choice of origin (and
orientation) OAn.

From an analysis of Eq. 7, it is easy to realize that
there is an infinite number of choices of origin that give
[α]LG

ω = [α]LG(OI)
ω . For a given orientation, the elements

of the α(R,P ) are origin invariant. Introducing the no-
tation γα = (αβγ − αγβ), the last term in Eq. 7 can be
set to zero by choosing a non-nil γα, say γz, and set the
corresponding origin displacement to:

dz = −
dxγx + dyγy

γz
(11)

Therefore, starting from OAn, one can choose any pair
of values for dx and dy and find the value of dz that
maintains [α]LG

ω = [α]LG(OI)
ω .

However, the question remains whether there are alter-
native choices of origin and molecular orientation where
βαα = β̃αα for all diagonal elements. This would require
that the second terms in each equation in Eq. 10 are si-
multaneously zero, which is a problem with six unknowns
and three equations. To seek out these alternative spa-
tial orientations of the molecules, we wrote a Python
script that attempts the search numerically. The script
uses a Broyden-Fletcher-Goldfarb-Shannon (BFGS) op-
timization module in SciPy74 to determine the necessary
shift and rotation. This algorithm seeks to minimize the
root mean squared difference (RMSD) between the di-
agonal elements and the trace of the LG and LG(OI) β
tensors by performing consecutive rotations and shifts of
the coordinate system. Gradients of the RMSD are cal-
culated with numerical differentiation of the four target
variables (i.e., the tensor diagonal elements and trace)
with respect to rigid translations and rotations. After
some initial testing, the displacement for the numerical
derivative was set to 10−4 Å for translations and 10−4 rad
for rotations. The trust radius for the displacements dur-
ing the optimization was set to 10−1 Å and 10−1 rad at the
beginning of the procedure, and incrementally decreased
close to convergence. Convergence was reached when the
RMSD for each variable was below 10−8. We performed
two sets of orientation optimization, one starting from
the origin at the center of mass (COM) and orientation
equivalent to that at OAn, and a second one starting from
the same orientation but arbitrarily translating the COM
by 10 Å in each Cartesian direction. In the following, we
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call the origin found by the numerical procedure with the
two starting points ONum and OFar, respectively.

III. METHODS

FIG. 1: The test set of molecules used for OR
calculations.

OR values are computed in the LG and LG(OI) for
a set of 15 rigid, organic molecules (see Figure 1) using
CAM-B3LYP75 and the aug-cc-pVDZ basis set.76 The
initial geometries were obtained from Refs. 55,56,58. All
calculations are performed in the gas-phase. The OR is
calculated with different choices of origin: OAn, ONum,
OFar, OCOM, and OCOC. The first three are described
in Section II. OCOM indicates that the COM is placed at
the origin and the molecular orientation is obtained from
the analytical procedure; OCOC indicates that the center
of nuclear charge (which is obtained as the COM but
using the nuclear charges rather than masses) is placed
at the origin and the orientation is the same as for OCOM.

Calculations are also performed at B3LYP and CCSD
levels (with the same basis set) with the LG(OI) ap-
proach and with LG at three different origins: OCOM,
OCOC, and the CAM-B3LYP analytical origin (OAn

CAM).
All calculations were performed at the sodium D line,
589.3 nm, to avoid any issue with resonance,1,50,67 using a
development version of the Gaussian suite of programs77.

The results in Section IV are primarily represented us-
ing the unsigned percent relative error:

∆i =
RRRRRRRRRRR

λLG
i − λLG(OI)

i

λ
LG(OI)
i

RRRRRRRRRRR
× 100 (12)

where the subscript i denotes the molecule number from
Figure 1 and λ is the quantity under study (e.g., indi-
vidual diagonal elements of the β tensor or the specific
rotation).

IV. RESULTS

We start the analysis by comparing the collective LG
and LG(OI) OR results for the four choices of origin:
OAn, ONum, OCOM, and OCOC, shown in Table I. The
table reports the mean unsigned relative error (MURE),
maximum and minimum relative errors (MAX and MIN),

OAn ONum OCOM OCOC

MURE 0.00 0.00 4.16 3.37
MAX 0.00 0.00 21.31 21.94
MIN 0.00 0.00 0.07 0.02
STDV 0.00 0.00 5.81 5.54

TABLE I: Statistical analysis for CAM-B3LYP OR
values.

and the standard deviation of the relative error (STDV)
over the set of 15 molecules in Figure 1, where the relative
error is calculated for the specific rotation (λi ≡ [α]D(i)
in Eq. 12). The analytical and the numerical procedure
for the translation of the molecules leads to an essentially
perfect match of the LG(OI) results. On the other hand,
setting the origin at either the COM or COC may result
in significant errors: although the average error for each
is not necessarily large (about 4% and 3%, respectively),
there is significant deviation (STDV = 6%) with a max-
imum error of 21-22% in the test set for both. The indi-
vidual LG errors for both the OCOM and OCOC choices
are reported in Figure S1 of the supporting information
(SI).

OAn ONum OCOM OCOC OFar

xx 0.00 0.00 0.68 0.52 0.02
yy 0.01 0.01 1.94 1.84 0.01
zz 0.00 0.00 1.47 1.09 0.05

TABLE II: Mean Unsigned Relative Error (%) for
CAM-B3LYP β diagonal elements.

The matching of the LG and LG(OI) specific rotation
with OAn and ONum is not due to cancellation of error,
but to the matching of the individual diagonal elements
of the β tensor, as shown by the % MURE results in Ta-
ble II. The errors for the individual molecules are shown
in Figure S2 of the SI, and the raw data are collected in
Tables S1-S4 of the SI. Furthermore, the analytical and
numerical procedures lead to the same position and orien-
tation of the molecules: this is shown in Figure 2, which
reports the distance of OAn and ONum from the COM,
and in Figure S3 in the SI, which reports the overlaid
geometry of each molecule obtained with the two proce-
dures. Even for molecule 15, Figure S3 in the SI shows
that the two structures are essentially overlapped. The
difference is likely due to a small origin dependence of the
OR along the x axis direction, which the numerical pro-
cedure is unable to fully capture. In principle, an exact
matching could be obtained by improving the numerical
algorithm by implementing analytical gradients and fur-
ther tightening the thresholds for convergence, but this
is beyond the scope of this work. In general, these re-
sults show that the convergence of the β tensor towards
the LG(OI) values is faster than the convergence of the
position and orientation of the molecule in space. Note
that OAn is rather close to the COM (within 1 Å for each
molecule), but the latter is not necessarily a good choice
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of origin for every molecule, as shown in Table I and Fig-
ure S1 of the SI. Interestingly, the average errors for the
individual diagonal elements of β with the COM/COC
origins are each smaller than the average error for the
specific rotation (compare both the OCOM and OCOC

results in Table I with those in Table II). This is because
the elements of the β tensor are signed quantities and a
small error in the diagonal elements may lead to a larger
error in the trace.

FIG. 2: Distance (Å) between the center of mass
(COM) and the coordinate origin at OAn and ONum for

each molecule.

Although the numerical procedure starting from the
COM consistently leads to an orientation of the molecules
that matches that obtained with the analytical proce-
dure, other choices of origin and orientation can also lead
to perfect matching of the diagonal elements of the LG β
tensor with the corresponding LG(OI) values. These ge-
ometries were found by starting the numerical procedure
with each molecule far away from the origin of the coor-
dinate system (as explained in Section II, the COM was
arbitrarily shifted by 10 Å in every Cartesian direction).
The numerical procedure found a new origin and orien-
tation for all 15 molecules with negligible errors in the
diagonal β elements, as shown in Table II (OFar column)
and Figure S2 of the SI. The distance of the COM from
the origin of this coordinate system (OFar) is shown in
Figure 3, with values that vary from 7 Å to almost 25 Å
(a comparison of the orientation between OAn and OFar

is shown in Figure S4 of the SI). These results show that
the orientation associated with OAn is not unique, al-
though it is the closest to the COM.

Lastly, the OAn obtained from a CAM-B3LYP calcu-
lation (OAn

CAM) is used to perform a length gauge OR
calculation using B3LYP and CCSD. The same calcula-
tion is performed using OCOM and OCOC, and both are
compared to the LG(OI) calculation at the correspond-
ing level of theory. The results are displayed in Figure
4 and the raw data are reported in Tables S5-S6 of the
SI. It is evident that OAn

CAM is in general a drastically
better choice than either OCOM or OCOC for both levels

FIG. 3: Distance (Å) between the center of mass (COM)
and the coordinate origin at OFar for each molecule.

of theory. There are few cases where all choices of origin
have small errors: Molecules 3, 4, 10, and 14. However,
in other cases the difference is stark. For instance, for
B3LYP the relative error for Molecule 13 falls from 25%
to 1% passing from OCOM/OCOC to OAn

CAM. For CCSD,
the change is even more dramatic for molecules 9 (the er-
rors goes from 72% to 1%) and 13 (from 50% with OCOM

to 47% with OCOC to 1% with OAn
CAM). Therefore, the

choice of position and orientation obtained with the ana-
lytical procedure at one level of theory seems transferable
to other levels of theory.

V. DISCUSSION AND CONCLUSIONS

Origin dependence is an unfortunate byproduct of ap-
proximations for standard LG calculations, but LG(OI)
can remedy this for variational and nonvariational meth-
ods. In this work we have discussed two methods for lo-
cating the position and orientation of a molecule in space
for which a standard LG-OR calculation is equivalent to
LG(OI) in both the trace of the β tensor and its diagonal
elements (within 1% relative error). While calculations
with the coordinate origin at the COM or COC did not
yield poor results for all cases, both the analytical and
numerical procedure consistently showed substantial im-
provement over those choices of origin. When the COM
was used as the starting point for the optimization rou-
tine, the resulting ONum proved to be essentially the same
to OAn (the agreement would improve if tighter thresh-
olds were employed for the numerical procedure).

It was also shown that an infinite number of origins
can be chosen such that Tr(β̃) = Tr(β) (see Eqs. 7 and
11). The numerical procedure also located an alternative
origin (OFar) for all molecules where the individual diago-
nal elements of the LG and LG(OI) OR tensors matched
each other to within 1% (and not just the trace). For
each case, the newly found OFar proved to be at a fairly
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FIG. 4: Unsigned relative error in OR values calculated
using B3LYP (a) and CCSD (b) with the coordinate

origin at OCOM,OCOC, and OAn
CAM.

large distance from the initial point OAn/ONum (for in-
stance, the COM is nearly 25 Å away from the origin of
the coordinate system for Molecule 25), indicating that
OFar is in fact distinct from OAn and not only different
due to numerical precision.

We also showed that OAn is transferable to other lev-
els of theory. In fact, this choice of molecular orientation
calculated at CAM-B3LYP level was consistently better
than putting the origin at the COM or COC for both
B3LYP and CCSD. In extreme cases like molecule 9 for
CCSD, the relative error decreased from 70% with the
origin at the COM to 1%. Overall, using OAn

CAM for
B3LYP and CCSD produced errors <2%.

In summary, we demonstrated that the molecular ori-
entation with OAn as the coordinate origin provides the
most faithful representation of the LG(OI) OR tensor us-
ing a standard LG approach. Although other choices of
origin and orientation are possible, OAn is more natural
because it is close to the COM of the molecule and it
can be obtained with a simple analytical procedure. Fur-
thermore, this choice of orientation is transferable across
methods so it can be computed at a lower level where

the implementation of LG(OI) is simple, and used for
standard LG calculations at higher levels of theory.

SUPPORTING INFORMATION

The Supporting Information includes the [α]D un-
signed relative error for each molecule when the coor-
dinate origin is in OCOM and OCOC (Figure S1); the
unsigned relative error for βαα for each molecule with
the coordinate origin in OAn, ONum, OCOM, OCOC, and
OFar (Figure S2); the overlaid structure of each molecule
obtained with the analytical and numerical procedures:
OAn vs. ONum and OAn vs. OFar (Figures S3-S4); the
βαα and [α]D values computed at CAM-B3LYP/aug-cc-
pVDZ level for each molecule with LG(OI) and with
LG at every applicable origin: OAn, ONum, OCOM,
OCOC, and OFar (Tables S1-S4); [α]D values computed
at B3LYP and CCSD/aug-cc-pVDZ levels with LG(OI)
and LG at OAn

CAM, OCOM, and OCOC origins (Tables S5-
S6); the geometry of each molecule obtained with the
analytical procedure and the numerical procedure start-
ing with the COM far from the coordinate origin (OAn in
Tables S7-S21 and OFar in Tables S22-S36, respectively).
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