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ABSTRACT: Infrared ion spectroscopy (IRIS) continues to see increasing use as an analytical tool for 

small-molecule identification in conjunction with mass spectrometry (MS). The IR spectrum of an m/z 

selected population of ions constitutes a unique fingerprint that is specific to the molecular structure. 

However, direct translation of an IR spectrum to a molecular structure remains challenging, as 

reference libraries of IR spectra of molecular ions largely do not exist. Quantum-chemically computed 

spectra can reliably be used as reference, but the challenge of selecting the candidate structures 

remains. Here we introduce an in silico library of vibrational spectra of common MS adducts of over 

4500 compounds found in the human metabolome database (HMDB). In total, the library currently 

contains more than 75 000 spectra computed at the DFT level that can be queried with an experimental 

IR spectrum. Moreover, we introduce a database of 189 experimental IRIS spectra, which is employed 

to validate the automated spectral matching routines. This demonstrates that 75% of metabolites in 

the experimental dataset is correctly identified, based solely on their exact m/z and IRIS spectrum. 

Additionally, we demonstrate an approach for specifically identifying substructures by performing a 

search without m/z constraints to find structural analogues. Such an unsupervised search paves the 

way towards the de novo identification of unknowns that are absent in spectral libraries. We apply the 

in silico spectral library to identify an unknown in a plasma sample as 3-hydroyxhexanoic acid, 

highlighting the potential of the method. 
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Introduction 
Mass spectrometry (MS) is the primary analytical approach in untargeted metabolomics due to its high 

sensitivity, selectivity and throughput. Routine analyses of complex biological samples yield large 

numbers of detected features – numbers that are unrivalled by other analytical techniques 1. 

Subsequent (biological) interpretation requires the precise molecular identification of the m/z features 

of interest 2. Herein lies the major challenge of MS-based metabolomics, as little structural information 

is contained in an m/z value alone. To distinguish between structural isomers, MS is often hyphenated 

with gas or liquid chromatography (GC or LC), tandem MS (MS/MS) 3 or ion mobility spectrometry 

(IMS) 4. Annotation is then achieved by comparison against libraries with reference MS/MS spectra 5, 

6, retention times or CCS values 6, 7. Yet, despite the many reference libraries, detailed molecular 

identification remains the main bottleneck in MS-based metabolomics. 

Infrared ion spectroscopy (IRIS) provides an alternative approach to molecular structure determination 

in MS. IRIS measures the IR spectrum of an m/z-selected population of ions in the MS instrument and 

thus provides detailed structural information 8. Being rooted in MS, IRIS can be appended to LC/MS-

workflows 9, 10, which has enabled its analytical implementation in, for instance, the identification of 

biomarkers for metabolic diseases 11-13 and other small-molecule isomerism questions 14-16. Translation 

of an IR spectrum to a chemical structure is usually performed by formulating (a small number of) 

candidate structures based on prior knowledge of the underlying (bio)chemistry. Structural 

confirmation of these candidates is then achieved through comparison of the experimental IRIS 

spectrum to a reference spectrum from a physical standard and/or from a quantum-chemical 

prediction 17. The latter option enables identification without a physical reference standard and is 

therefore efficient if standards are not available. Density functional theory (DFT) calculations typically 

give accurate predictions of a compound’s vibrational spectrum and have been employed in numerous 

fundamental ion chemistry studies utilizing IRIS 18-20. DFT-predictions are therefore useful for 

(preliminary) metabolite identification and can at least reduce the number of candidate structures 

substantially. 

This approach to spectrum-to-structure conversion is efficient if detailed prior knowledge on the 

detected feature is available, especially if the candidate structures are well defined and limited in 

number. However, such information is often not available or not sufficiently detailed. Ideally, one 

would use a large IRIS spectral library, similar to those available for MS/MS spectra, to facilitate quick 

and high-throughput screening. Large IR spectral libraries are available for neutral (gaseous) 

molecules, but their ions formed in MS (e.g. [M+H]+, [M-H]-, [M+Na]+) possess drastically different IR 

spectra 21. An experimental IRIS library sufficiently large for identification purposes is currently 

unavailable (although efforts are underway to compile small libraries for specific compound classes, 

such as glycans 22, 23). Moreover, in the light of the vastness of small-molecule chemical space 24, 25, 

experimental reference libraries are intrinsically limited for metabolomic studies, as is also the case for 

MS/MS and IMS data. Therefore, the focus in the metabolomics community has shifted towards 

expanding MS/MS and IMS libraries with computational data 5, 26-28. In addition to their cost-

effectiveness, in silico libraries have the advantage of a greatly increased coverage, since only a small 

fraction of molecules are available as physical reference standards. 

Using quantum-chemical methods, vibrational spectra can be routinely and accurately calculated 

(somewhat in contrast to MS/MS spectra). For example, Karunaratne et al. pursued identification of 

neutral gaseous molecules detected with GC-FTIR spectroscopy by employing DFT-calculated 

reference spectra of compounds extracted from the PubChem database 29. This approach yields 

identification rates comparable to those achieved with MS/MS. However, GC-FTIR is not compatible 

with typical sample matrices in the metabolomics field, where LC-MS is the method of choice. 
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Here we present an in silico IR spectral library of molecular ions, compatible with IRIS and hence LC-

MS workflows. This library was compiled by coupling a standardized workflow for calculating 

vibrational spectra at the DFT-level to the human metabolome database (HMDB) 6. This workflow 

requires only a simple chemical identifier as input to automatically generate relevant IR spectra. This 

workflow is applied to entries in the HMDB with molecular weights <210 Da. We present benchmark 

tests of this in silico library using a new, extensive set of 189 experimental IRIS spectra, derived from 

87 unique metabolites. We demonstrate that the specificity of the IR fingerprint not only allows for 

the identification of known unknowns, but also enables de novo structural elucidation of unknown 

unknowns. 

Methods 
Chemicals 
Methanol and water (HPLC grade) were obtained from Sigma-Aldrich (St. Louis, USA). The metabolite 

reference compounds originate from vendors indicated in Table S2 in the SI. The 3-hydroxyhexanoic 

acid reference metabolite was obtained from Enamine Ltd. (Kiev, Ukraine). 

Infrared ion spectroscopy 
IR fingerprint spectra (600-1900 cm-1) of the reference compounds were measured using an ion trap 

mass spectrometer (Bruker AmaZon Speed ETD, Bremen, Germany) coupled to the beamline of the 

Free-Electron Laser for Infrared eXperiments, FELIX 30, 31. Solutions of the reference compounds 

(approx. 10-5 M in 1:1 methanol:water) were directly infused into the electrospray ionization source, 

after which adducts of interest ([M+H]+, [M-H]-, and/or [M+Na]+) were mass-isolated and subjected to 

IR measurements. LC-IRIS measurements were performed in an online fashion using a single 80 μL 

sample loop installed between a 6-port switching valve and the ion source 10, 32. The isolated ions were 

irradiated with 1 to 10 FELIX macropulses of 10 µs; the pulse energy ranges from 20 to 180 mJ 

depending on wavelength and the laser bandwidth amounts to 0.5% of the center frequency. The 

internal energy of the ions increases by frequency-dependent absorption of multiple IR photons until 

the ions undergo fragmentation. Each IR spectrum was reconstructed from a series of mass spectra by 

plotting the fragmentation yield, −ln[ 𝐼𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟/ ∑(𝐼𝑎𝑙𝑙)], as a function of IR frequency (scanned in 3-

5 cm-1 steps). When no IR-induced fragment ions were observed, the depletion of the precursor ion 

was plotted instead, −ln[ 𝐼𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟/𝐼𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
𝑛𝑜 𝐼𝑅 ] 33. The yield is linearly corrected for frequency-

dependent variations in laser pulse energy. A grating spectrometer was used to calibrate the laser 

frequency. 

Computational workflow 
The SMILES chemical identifier associated with each HMDB entry was used to generate the starting 

2D-structure for the workflow. Using the cheminformatics toolbox RDKit 34, protonated, deprotonated 

and sodiated adduct ions were constructed by considering all nitrogen, oxygen and sulfur atoms as 

sites for H+ or Na+ addition or removal. This was done for all possible tautomers, after which resonance 

structures were filtered out. Some HMDB entries contained unspecified stereochemistry and were 

omitted, unless their stereochemistry would not affect the IR spectrum (enantiomers), in which case 

the stereochemistry was randomly assigned. For each ionized isomer a conformational search using 

RDKit’s distance geometry algorithm was performed to produce 500 random 3D-conformations. After 

minimization using the MMFF94 classical force field, ten conformations were selected after clustering, 

or fewer if conformations were too similar (rms-deviation of atom positions <1.4 Å). The selected 3D-

geometries were then submitted to Gaussian16 for geometry optimization and frequency calculation 

at the semi-empirical PM6 level 35. Unfavorable ionization sites and unfavorable conformations were 

filtered by their relative energies (electronic + thermal) using a threshold of +40 kJ/mol from the global 
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minimum. Additionally, geometries that converged to the same local minimum in the optimization 

were filtered based on their (nearly) identical vibrational spectrum. The remaining geometries were 

reoptimized using the B3LYP density functional and 6-311+G(d,p) basis set, followed by a frequency 

calculation. More accurate electronic energies at the MP2/6-311+G(d,p) level were calculated using 

the B3LYP geometry and combined with the thermal energy from the B3LYP frequency calculation. 

The B3LYP/6-311+G(d,p) frequency calculation was used to generate the reference IR spectra to 

populate the spectral library. The computed frequencies were scaled by a factor of 0.975 to correct for 

the harmonic approximation used. The stick spectrum was convolved with a Gaussian profile of 45 cm-

1 full width at half maximum (FWHM). 

Scoring of spectral similarity 
A search of the library with experimental IR spectra retrieves computed IR spectra sorted by their 

spectral similarity 𝑆𝑠𝑝𝑒𝑐, derived from the cosine similarity score i.e., the normalized Euclidean dot 

product of two spectra with a common x-axis with n points, represented as vectors a and b 

𝑆𝑠𝑝𝑒𝑐 = 1000 ∙
𝒂 ∙ 𝒃

|𝒂||𝒃|
= 1000 ∙

∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1

√∑ (𝑎𝑖)2𝑛
𝑖=1 √∑ (𝑏𝑖)2𝑛

𝑖=1

 

such that 0 ≤ 𝑆𝑠𝑝𝑒𝑐 ≤ 1000, with a score closer to 1000 indicating greater similarity. To expedite 

spectral comparisons, the convolved computed spectra were binned once at 3 cm-1 intervals (minimum 

experimental step size) and saved into the library. Spectral comparisons are then performed by 

evaluating the experimental intensities at these wavenumber points through linear interpolation, 

which ensures a common x-axis. 

Earlier studies used a log transformation of the normalized spectral intensities 𝐼𝑖 to make 𝑆𝑠𝑝𝑒𝑐 less 

sensitive to intensity deviations and hence more sensitive to frequency overlap 36. A similar effect is 

achieved with a power function 37, 

𝐼𝑖
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

= (𝐼𝑖)0.5  

Both the values of the exponent (here 0.5) and the Gaussian line broadening (here 45 cm-1) were 

optimized to provide the best retrieval of the correct spectra (Table S1 in the SI). 

Scoring of structural similarity 
To define the structural similarity 𝑆𝑠𝑡𝑟𝑢𝑐 between two molecules, the ionized metabolites were 

represented by a Morgan2 bit-vector (based on ECFP4) using RDKit 38. Conceptually, each bit in this 

2048-bit vector represents the presence (1) or absence (0) of a specific chemical substructure in the 

molecule. Molecules with many substructures in common have similar bit vectors and therefore yield 

a Dice similarity score closer to 1. The combination of Morgan2 and Dice similarity scores was chosen 

as this gave a more uniform spread across structural similarities compared to other fingerprints (e.g. 

Morgan3) and similarity measures (e.g. Tanimoto) 39. 

Results and Discussion 
Library and validation set 
IR spectra were calculated for the protonated ([M+H]+), deprotonated ([M-H]-) and sodiated ([M+Na]+) 

forms of all entries in the HMDB 4.0 40 with a molecular weight lower than 210 Da. This amounts to a 

total of 11823 ions generated from 4640 metabolites. Since several tautomers and conformers are 

included for each ion, the library contains a total of 75941 computed IR spectra. The experimental 

validation set consisted of 12 IR spectra taken from earlier publications 8, 14, 17, 41 and 177 newly 
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measured IRIS spectra derived from 87 metabolites (Table S2 and Scheme S1). Chemical class 

information of both the library and validation set was determined by ClassyFire 42. This assessment 

showed that all major classes in the library are represented by at least 6 reference metabolites (Figure 

S1) and that the computational library and experimental validation set cover similar distributions in 

mass and ion type (Figure S2). The experimental and computational IR spectra are available through 

the HMDB website (https://hmdb.ca), where they are interactively viewable (via JSpectraView) in the 

“spectrum” field of the MetaboCard of the corresponding metabolite 43. 

Identifying 3,4-dihydroxyphenylacetic acid 
Figure 1 presents a schematic overview of the proposed workflow, where an LC-MS feature with known 

accurate mass but unknown molecular structure is characterized by recording its IRIS spectrum. This 

spectrum is then compared to computed spectra of candidate isomers in the library of in silico IR ion 

spectra. The unknown was annotated with the structure that provides the best IR spectral match in 

terms of the cosine similarity. As a proof of concept, we demonstrate this workflow using the IRIS 

spectrum of deprotonated 3,4-dihydroxyphenylacetic acid (DOPAC), a metabolite of dopamine. As 

previously shown, DOPAC is spectroscopically distinguishable from its structural isomer homogentisic 

acid (HGA), a biomarker for the genetic disorder alkaptonuria 8. However, the HMDB contains a total 

of 18 metabolites that share the elemental composition of DOPAC (C8H8O4), 16 of which can be 

deprotonated; their computed IR spectra are present in the in silico IR spectral library. 

 

Figure 1. Schematic workflow for reference standard free metabolite identification. A metabolite with 

unknown molecular structure, encountered in an untargeted LC-MS screening, is characterized by its IR 

spectrum measured using infrared ion spectroscopy. The IRIS spectrum is compared against the DFT-

computed IR spectra in the library and the ion is annotated with the structure of the best matching 

library spectrum. 

Figure 2 shows the IR spectrum of [DOPAC-H]- along with the three best matching spectra in the in 

silico library and their corresponding structures (see results for all 16 isomers in Figure S3). The 

computed spectrum of [DOPAC-H]- indeed yields the highest spectral similarity. Interestingly, 

metabolites that are structurally similar to DOPAC give the second and third highest scores, 3,4-

dihydroxymandelaldehyde and 3,5-dihydroxyphenylacetic acid, respectively. These metabolites are 

the only 1,2-positional isomers of DOPAC in the set of 16 isomers (Figure S3) and have the highest 

structural similarity with DOPAC (0.56 and 0.78). 

https://hmdb.ca/
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Figure 2. The three computed vibrational spectra (orange) for [C8H8O4-H]- ions in the library giving the 

best spectral match to the experimental spectrum of [DOPAC-H]- (gray). Spectral similarity scores are 

indicated. 

The use of in silico IR spectra as a spectral reference enables us to attribute normal mode vibrations of 

specific functional groups to each band in the spectrum. This allows spectral mismatches to be 

correlated with structural mismatches. For example, in Figure 2b, the computed bands in the 900-1050 

cm-1 range originate from bending vibrations of the aldehyde C-H and the -hydroxide O-H. Likewise, 

the band at 1600 cm-1 in Figure 2c corresponds to the C-O- stretch of the phenoxide. In cases where 

the actual metabolite is not included in the library, this may suggest new structures based on correctly 

and incorrectly matching substructure(s). Computing IR spectra for these newly conceived structures 

is then a route towards de novo structure identification of unknown unknowns (i.e., compounds that 

are not contained in the IR spectral library). 

Unsupervised searches for unknown unknowns 
The example in Figure 2 demonstrates the potential of IRIS-based identification of known unknowns, 

based on the inherent sensitivity of an IR spectrum to chemical structure. Not only is the correct 

metabolite ranked best (known unknown identification), but the search also assigns high scores to 

entries that are structurally similar. This inherent link between structure and spectroscopy provides 

venues towards the identification of unknown unknowns. Searching the entire IR library with an adduct 

constraint, but releasing the constraint on chemical formula (i.e., on exact mass), should assign high 

spectral similarity scores to compounds with high structural similarity to the unknown, even if the 

elemental composition is not the same. 

For this proof-of-concept, the experimental IRIS spectrum of [DOPAC-H]- is again taken as the 

hypothetical unknown. Figure 3 presents the nine highest-ranked entries upon matching this IRIS 

spectrum against the entire library, without constraint on chemical formula. The fact that DOPAC itself 

is ranked #1 out of 2707 deprotonated entries demonstrates both the uniqueness of the experimental 

IR spectrum, as well as its accurate prediction by DFT calculations. Inspecting the compounds ranked 
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#2 – #9 reveals the potential for de novo structural elucidation via this unsupervised search: the top-9 

metabolites are structurally very similar to DOPAC, mostly differing in the length of the alkyl chain, the 

addition of a methyl or hydroxyl group, or a combination thereof. 

 

Figure 3. The nine best matching computed vibrational spectra (orange) in the DFT library with the 

experimental IR spectrum of [DOPAC-H]- (gray). No m/z or molecular formula constraint was applied 

(unsupervised). Spectral similarity scores are indicated. 

A strong correlation between molecules with similar structure and molecules with similar spectra is 

essential for this identification strategy. This is also the basis of recently developed scoring approaches 

for metabolite identification by tandem MS 39. To further quantify the ability of the unsupervised IRIS 

spectral search to find structurally similar metabolites, the structural similarity between each 

deprotonated metabolite and [DOPAC-H]- was calculated using the Dice similarity score of their bit 

vectors. For each metabolite in our library, the grey dots in Figure 4 mark the structural similarity to 

[DOPAC-H]- plotted versus the spectral similarity to its IRIS spectrum. For a large majority of structures 

with intermediate spectral similarity to [DOPAC-H]-, the structural similarity fluctuates greatly. This 

arises from the fact that coincidental overlap between absorption bands due to different functional 

groups is common in vibrational spectra. However, the moving average (bin size of 15) shows a steep 

increase as the spectral score approaches its maximum value of 1000. This indicates that good spectral 

similarity indeed correlates well with similarity in the type, number and relative positioning of 

functional groups within a molecule. This is clearly reflected in the top-9 retrieved structures all being 

very similar to DOPAC (Figure 3). 
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Figure 4. For each entry in the in silico library, the structural similarity and spectral similarity to [DOPAC-

H]- are plotted as the grey dots. [DOPAC-H]- itself is the blue dot. The trend is visualized with a 15-point 

moving average (red line), excluding the blue data point. Distributions of the structural and spectral 

similarity are presented on the right and top axis, respectively. 

General performance 
To verify how the results for [DOPAC-H]- generalize, a validation set of 189 experimental IRIS spectra 

was subjected to spectral matching against the in silico IR library spectra, analogous to the analysis for 

DOPAC. The ranking of each IR spectrum match, as well as spectral plots similar to those for DOPAC 

are available in the Supporting Information. Figure 5a shows how well the metabolites are identified 

based on their IRIS spectrum and exact m/z, plotting the percentage of correctly identified metabolites 

in the top k for increasing k. A total of 142 (75%) correct metabolite identifications is achieved when a 

single experimental IR spectrum is used (red solid trace); 97% of the metabolites are among the top 5 

ranked structures. Annotating the experimental IR spectrum to a random isomeric entry from the 

spectral library correctly identifies 33% of the metabolites (dashed trace), which is relatively high due 

to entries in the database with only one or a few isomeric structures. 

The overall performance can be captured in a single number by taking the geometric mean of the rank 

of each of the 189 reference metabolites 44. This rank product (RP) is equal to 1.3 here. When the IR 

spectra from different adducts ([M+H]+, [M-H]-, [M+Na]+) of the same metabolite are combined (blue 

solid trace) by ranking on the product of individual spectral similarity scores, the correct identification 

rate increases to 83% (72 out of 87 metabolites at rank #1) and the RP improves to 1.2. Overall, this 

performance is higher than typical retrieval rates when employing tandem MS libraries, which typically 

are 45-70% 45, although true comparison is hampered by the much smaller validation set used here. 

What the present results do clearly demonstrate is the general applicability of the in silico IR spectral 

library in identifying compounds across a large data set. 
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Figure 5. Percentage of correct structures found in the top k hits when performing an isomer search (a) 

or an unsupervised search (b). Results for individual adducts are in red (N=189), for adducts combined 

in purple (N=87); random annotation results are indicated with the dashed line. Panel (c) shows the 

average structural similarity to the correct metabolite per rank after an unsupervised search. 

A similar plot can be constructed to assess how well metabolites are retrieved in an unsupervised 

search, i.e., releasing the m/z constraint (Figure 5b) and matching the IRIS spectrum against all adduct-

constrained computed spectra in the IR library. In this case, 19% of the identifications are correct, while 

48% are scored in the top 10. The specificity improves significantly when IR spectra of different adducts 

([M+H]+, [M-H]-, [M+Na]+) are combined, boosting the top 1 and top 10 percentages to 32% and 62%, 

respectively. The RPs follow a similar trend, improving from 18.2 to 7.6. For the unsupervised search, 

the contrast with randomly annotating the experimental spectra is pronounced, with just 0.03% 

correct identification, as the number of adduct-constrained candidates increases to 3892 on average. 

The effectiveness of combining spectra of different adducts is best illustrated with acetylglycine 

(HMDB0000532), for which the individual adducts rank 10th ([M-H]-), 20th ([M+H]+) and 6th ([M+Na]+) in 

an unsupervised search, but combined they rank 1st (Table S3). Decomposition of Figure 5b into the 

individual adducts shows that the [M+H]+ adducts are retrieved best from the library, followed by 
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[M+Na]+ and then [M-H]- (RPs are 12.4, 15.8 and 30.0, respectively). A discussion of this trend is 

presented in the SI along with Figure S4. 

The correlation between spectral similarity and structural similarity for the whole validation set is 

visualized by plotting the average structural similarity between each reference metabolite and the 

ranked library structures, where the reference metabolites themselves are removed from the data 

(Figure 5c). On average, a clear increase in structural similarity is observed when approaching rank 1, 

with a steep increase for the ~50 best matches. Inspection of the individual structure vs spectral 

similarity plots (see SI) suggests that the correlation between structural similarity and spectral 

similarity for some metabolites is limited by the number of structural analogues present in the library 

(e.g. Figure S5 in the SI). An expansion of the library to include more metabolites would therefore not 

only allow for the direct identification of more metabolites, but also make unsupervised searches more 

sensitive to substructure, as more structural analogues would be included. 

Higher-energy geometries 
To assess where the scoring can be further improved, we manually inspected the computed 

geometries and computed IR spectra for each reference metabolite and compared these with the 

experimental IR spectra. It appears that about 10% of ions adopt a higher-energy conformational or 

tautomeric geometry, with a significantly different computed IR spectrum. These higher-energy 

geometries lie up to 68.8 kJ/mol above the lowest-energy geometry (Figures S6 and S7). The presence 

of higher-energy geometries is not uncommon and may be due to inaccuracies in the calculated 

energies or kinetic trapping of solution-phase conformers or tautomers that are transferred to the gas 

phase 46, 47. 

To account for these higher-energy geometries, the spectral library can be searched with an energy 

tolerance, where the ranking is based on the best matching computed spectrum per entry. For a 

tolerance of 10 kJ/mol, this results in an overall better performance as derived from the RP, which 

improves from 18.2 to 17.0 in the unsupervised search. However, the 10 kJ/mol tolerance increases 

the number of considered spectra about 3-fold (to 10811 on average), possibly leading to a worse 

ranking for metabolites that already performed well. This effect becomes pronounced when all adduct-

constrained spectra in the in silico library are searched, i.e. without energy constraints (24865 spectra 

on average, Table S3), yielding a poorer RP of 19.0. 

For some ions, a mix of conformers or tautomers may be present, each with distinct IR spectra (Figures 

S8 and S9), which may be addressed by optimizing linear combinations of computed vibrational spectra 
48. However, this is not pursued here, as it would severely slow down the evaluation of spectral 

similarities and likely give poorer performance for metabolites that exhibit a “pure” population. 

Moreover, the benefits are likely small as mixtures are not frequently observed (<15% based on 

manual inspection) and minimally affect the IR spectrum when the contribution of the minor 

population is small (Figure S10). Methods that experimentally deconvolute the mixtures, e.g. by 

separating conformers so tautomers with ion mobility spectrometry 23, 47 or by employing 2-color laser 

experiments 49, could improver heir identification analogous to using spectra of multiple adducts. 

Broader spectra 
Severe spectral broadening observed in some IRIS spectra can limit the performance of our method. 

Extensive broadening is often caused by strong ionic hydrogen bonds that induce shared-proton motifs 
50-53. Such problematic spectra may be avoided by selecting different adducts. For instance, for L-

aspartic acid (HMDB0000191), the [M-H]- ion shows severe broadening 54, while both [M+H]+ and 

[M+Na]+ ions do not (Figure S11) 55. We also note that spectral broadening in such systems is often 

reduced on cryogenic tandem mass spectrometry platforms 15, 56-58. Alternatively, IRIS identification 
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may be applied to MS/MS fragments, which typically exhibit better resolved spectra 17, 41, in 

combination with a bottom-up approach for structure elucidation. This also extends the applicability 

of the IR spectral library towards molecules beyond its upper mass limit 22, 59. 

Identification from a human plasma sample 
To demonstrate the applicability of the in silico IR spectral library to actual biofluids, we elucidated the 

molecular structure of an LC-MS feature (-ESI, m/z 131.0713, RT=6.27 min.) elevated in a patient’s 

plasma sample (see SI for experimental details). The measured m/z suggests a chemical formula of 

[C6H12O3-H]- (Δm = +7.6 ppm), which corresponds with 10 entries in our spectral library. Figure 6 shows 

the experimental IR spectrum of the LC-MS feature and the three best matching computed IR spectra. 

All ten spectral comparisons are shown in Figure S12. The three top-ranked structures all possess a 

carboxylate moiety an a nearby hydroxyl group, giving rise to three main spectral bands between 1200 

and 1700 cm-1 that are also observed in the IRIS spectrum. Specifically, these bands originate from 

symmetric and antisymmetric carboxylate O-C-O stretching (1300 and 1650 cm-1) 60 and O-H bending 

(1450 cm-1). The 3-hydroxyhexanoate anion is ranked highest, as the experimental band at 850 cm-1 is 

also reproduced, corresponding to the O-H out-of-plane bending vibration (Figure 6a). For the 2-

hydroxy isomers, this O-H bending vibration is computed at 700 cm-1 (Figure 6b-c). This assignment is 

further corroborated by inspecting the top-25 matches of an unsupervised search, which yields the 3-

hydroxycarboxylate motif in 13 out of 25 structures, while the 2-hydroxycarboxylate substructure 

occurs only once (see Figure S13). 

 

Figure 6. The three best matching computed vibrational spectra (orange) obtained in a library query 

with the IRIS spectrum of an unknown LC-MS feature (gray) with chemical formula [C6H12O3-H]-. The 

experimental spectrum of the 3-hydroxyhexanoate ([M-H]-) reference standard is added to the top 

panel (black). Spectral similarity scores are indicated. 

The annotation of the LC-MS feature as 3-hydroxyhexanoic acid was confirmed by measuring an IRIS 

spectrum for a reference standard of this molecule (Figure 6a), which indeed gives high spectral 

similarity (Sspec = 969) with the spectrum of the LC-MS feature. The stereochemistry of the hydroxide 

remains ambiguous because it cannot be determined directly from an IR measurement. In general, 3-

hydroxycarboxylic acids are biomarkers for fatty acid oxidative disorders of both long- and short-chain 
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3-hydroxyacyl-CoA dehydrogenases 61. Specifically, 3-hydroxyhexanoic acid is increased in the serum 

of diabetic ketoacidotic patients 62 and has been observed in body fluids of patients with 3-hydroxy-3-

methylglutaryl-CoA synthase deficiency 63 and metastatic melanoma 64. The patient in this case was in 

ketosis as exemplified by the high body fluid concentrations of acetoacetate and 3-hydroxybutyric acid. 

After the identification of this m/z 131.0713 feature, we observed 3-hydroxyhexanoic acid in many 

plasma samples of ketotic patients. As such 3-hydroxyhexanoic acid may serve as ketosis biomarker. 

Conclusions and Outlook 
The compilation and utilization of an in silico IR spectral library of ionized molecules for the 

identification of unknown metabolites using MS-based IRIS experiments has been demonstrated. An 

automated workflow to produce IR spectra of molecular ions generated over 75000 DFT-calculated 

vibrational spectra for 4640 metabolites taken from the HMDB. A scoring algorithm based on cosine 

similarity was employed to identify the molecular structures that match favorably with a user supplied 

experimental IR ion spectrum. By collecting a set of 189 experimental IRIS spectra we evaluated the 

performance of the in silico IR spectral library in the identification of metabolites. With a known 

accurate mass value and working within the boundaries of our data set, 75% of metabolites was 

correctly identified, which further improves to 83% by simultaneous identification of multiple ionic 

adducts of the same metabolite. 

We also explored the potential of an unsupervised search, where an experimental IRIS spectrum is 

compared against the entire library, without m/z constraints. This strategy to identify molecular 

substructures in an unknown molecule relies on the strong spectrum-structure correlation of 

vibrational spectroscopy and is especially valuable for the de novo identification of metabolites not 

included in the library. 

Manual inspection of the spectral comparisons revealed that higher-energy conformers and tautomers 

occur in about 10-15% of cases. Including these higher-energy geometries by using a tolerance on 

relative energy (that can be set in the spectral scoring procedure) improved the performance by 

assigning geometries that were not considered before. However, as a trade-off, for metabolites that 

match well, the inclusion of more candidates reduces the correct identification rate. An intermediate 

energy cut-off of about 10 kJ/mol was found to yield optimal results. Isomeric mixtures have not been 

addressed, but experiments involving LC, IMS or 2-color laser spectroscopy are expected to reduce 

such cases. The utility of the in silico IR spectral library was demonstrated in the identification of a 

human plasma metabolite as 3-hydroxyhexanoic acid. 

The datasets presented here are larger than any previously reported set of experimental or 

computational IR ion spectra and provide further opportunities for improvement of the metabolite 

identification workflow. For instance, adapting the scoring method to better capture structural 

similarity 39, applying chemical element-dependent frequency scaling to better correct for anharmonic 

shifts 65, integrating IRIS scoring with MS/MS scoring algorithms 66, or tackling the spectrum-to-

structure conversion directly 66 may be realized with this data set. The experimental and computation 

spectra are now available through the HMDB website and will be added to the Spectra Search interface 

in its next release (HMDB 6.0). Moreover, we will continue to expand both the experimental and in 

silico IR spectral library. A promising prospect in this regard is the development of machine-learned 

density functionals, which should significantly speed-up DFT calculations 67. This could extend the 

feasibility of our approach to molecules of increased size and with a much larger coverage of chemical 

space, thereby further establishing infrared ion spectroscopy as an appealing route for small-molecule 

identification far beyond metabolomics alone. 
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and tables/figures in support of the results (word file) 
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(https://doi.org/10.5281/zenodo.7706021) 
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