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Abstract 
To accurately predict binding of inhibitors to the FtsZ cell division protein of the antibiotic-resistance Staphilococcus aureus pathogen, 
evolutionary library docking, ligand-efficiency predictions and rank consensus docking strategies have been sequentially applied. Starting from 
the crystallographic FtsZ bound model of the PC190723 reference ligand, fragments were derived to generate children molecules fitting low 
docking-scores with low molecular sizes and hydrophobicities using the DataWarrior Build Evolutionary Library.  PC190723 fragment children 
molecules combined with toxicity filters, and consensus ranks with ligand efficiencies and AutoDockVina docking, identified new benzamide 
and non-benzamide chemotypes with nanomolar docking-scores and improved specificities to continue with anti-FtsZ ligand investigations.  
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Introduction 
 Bacterial cell division remains under explored for new antibiotics, 
compared to cell wall synthesis,  protein translation or DNA replication.  
 Bacterial cell division require protein-forming filaments to separate the 
two daughter cells by a zone ring (Z). Filament temperature sensitive Z-ring (FtsZ) 
cell division proteins are the most important component of Z rings and therefore 
one of the most important antibiotic targets. 
 Bacterial FtsZ monomers are ~ 300-400 amino acid proteins that 
contain one molecule each of GTP/GDP nucleotides, Mg++ and K+ as cofactors.  
FtsZ filaments are formed by adding non-covalent top-to-bottom adjacent 
monomers (Figure 1). FtsZ filaments are dynamic assembling / disassembling 
protein polymers constantly exchanging with soluble monomers every ~10 
seconds 

1 
. According to crystallographic, mutational and other studies 

2, 3 
, FtsZ 

contains two main binding-cavities for known ligands, the interdomain cleft (idc) 
and  the nucleotide binding domain (nbd). The nbd binds GTP/GDP, and 
participates in FtsZ folding and GTP γ-phosphate hydrolysis

4 
. FtsZ switches from 

a closed-relaxed conformation in monomers to an  open-tense conformation in 
filaments 

5 
. Suggested by crystallographic observations

6 ,7 
, the FtsZ transitions 

were confirmed by several studies
3, 7-9 

. At each dimerization step, a new interface 
is generated including the cocatalytic loop from one of the monomers and the 
complementary GTP-containing nbd from other monomer.  
 Experimental screening for bacterial cell division inhibitors among 
natural extracts and synthetic compounds,  identified FtsZ binding ligands with 
bacterial inhibitory activities at the low µM range

10 
. The bacterial inhibition 

activities of a limited set of ligands correlated  better with their idc/nbd binding-
affinities  than with other experimental assays including inhibition of FtsZ 
polymerization or regeneration of GTPase activity

10, 11 
. Therefore, screening for 

improved binding to FtsZ may be the best strategy to predict antibacterial  activity, 
as recently suggested 

2 
.  

  The reference anti-staphylococcal PC190723 inhibitor that binds idc 
at the FtsZ open-tense conformation at low µM ranges 

12-14 
 was identified  by in 

vitro assaying benzamide derivatives 
15 

 
12, 16 

.  PC190723 contains a 
difluorobenzamide moiety bound to diheterorings. PC190723 stabilizes the FtsZ 
filament as suggested by the  cocrystalized structure

17, 18 
. at low µM ranges 

However, neither PC190723 nor its varied benzamide analogs became clinically 
used in medicine, because of pharmacological problems, the generation of 
bacterial FtsZ gene resistant mutations

9, 19 
, and despite been tested in 

combination with other drugs with some success 
20 

. The PC190723-derived 
TXA709, TXA436, TXA541 and TXH9179

21 
 drugs and prodrugs (Taxis 

pharmaceuticals, Monmouth Junction, Nj, USA)
22, 23 

 
15, 16, 24, 25 

 are actually being 
developed to overcome some of those difficulties

21
. Those ligands were identified 

by testing a series of drug-like derivatives (heterorings to reduce LogP, minimal 
numbers of rotatable bonds, introduction  of potential hydrogen donors/acceptors, 
etc) and addition of pro-drug fragments to their molecular backbones. Iterative 
designed FtsZ benzamide-based derivatives monitored by fluorescent FtsZ binding 
assays, identified some related chemotypes that showed similar binding 
concentration than PC190723. Similarly, many other small molecule  inhibitors  
targeting idc have been reported 

23, 26-28 
, however, with similar inhibition 

concentration ranges. Most probably the limited volume, the hydrophobicity and 
the steric constrains of the idc binding-cavity, could explain the similar anti-
bacterial inhibitor concentrations of alternative drugs

27 
. 

 Cocrystal FtsZ complexes with idc ligands, included similar hydrogen 
bonds (V207, L209, N263), and main hydrophobic interactions (T309 ,G196) than those 
observed for FtsZ-PC190723 complexes (i.e.,4dxd). PC190723-resistant bacterial 
mutations confirmed the importance in binding of some of the amino acid residues 

mentioned above such as G196 and T309. On the other hand, an empty cavity 
implicating residues M226, I228, Q192  and  L249  extends above and behind the idc 

9, 

10 
,  similarly to the one described for the Taxol binding site in human ß-tubulin 

29 , 

6, 10 
perhaps waiting for yet unexplored  ligands

2 
.  

 Previous attempts to find new FtsZ idc docking candidates by 
computational screening  of Zinc, MolPort or Mcule libraries containing millions-of 
compounds, identified ~ 100 new ligands with experimental inhibition of bacterial 
cell division, but only at low µM ranges

30-32 
. 

 The main  objective of computational docking is to predict  
conformational poses of each ligand into the binding-cavity  of a targeted protein 
and accurately ranking them according to their affinity. However, no single docking 
algorithm predicts the same conformational poses or docking-scores with high 
accuracy respect to their corresponding binding affinities. Actually, consensus 
docking may be one of the best, yet limited, approach to increase binding 
predictions.  The first consensus averaging docking-scores by several algorithms, 
had poor accuracies predicting known benchmarks. Alternative methods using 
ranks rather than scores outperform the averaged results

33 
. Consensus combining 

conformational pose and ranking approaches from several programs (i.e., 
AutoDockVina, rDock, AutoDock4, PLANTS) improved  their isolated performances 
34-37 

.  Similar consensus have been proposed using exponential consensus and 
RMSD ranks  like DockECR (https://github.com/rochoa85/dockECR)

38 
,  or   

DockingPie (https://github.com/paiardin/DockingPie)
39 

. Those strategies employed 
different algorithms one-by-one and their results were then pooled into different 
calculation methods to quantify a consensus parameter. Despite benchmark 
consensus improvements in docking and conformation accuracies, docking-scores 
and their ranking remain challenging for large screenings.  
 On the other hand, during screening selection based only in docking-
score rank evaluations, the candidates progressively increased in molecular weight 
and hydrophobicity, trending to select unspecific leads

40, 41 
. Alternative 

parameters to improve ligand efficiency have been developed throughout the years 
such a Ligand Efficiency (LE), Lipophilic Ligand Efficiency (LLE), Ligand Efficiency 
Lipophilic Prize (LELP) and many others 

42-45 
. Therefore, corrections for the 

influence of molecular weight/hydrophobicity on ligands should be taken into 
account during the selection of candidates.  
 We proposed here a sequential rather than a simultaneous consensus 
strategy, first using the FtsZ crystallographic small binding-cavity and then the 
wider grid-dependent docking program AutoDockVina (ADV). The search was first 
restricted to the binding cavity to best explore large chemical spaces by random 
generation of children molecular libraries (libraries on automatic demand) and 
automatic selection by fitting the limits of docking-scores, molecular weight and 
hydrophobicity (DataWarrior). After filtering the children libraries for toxicity, a 
consensus docking with AutoDockVina generated a final downsized list of new 
lead chemotypes. Because such strategy allows a first fitting to the selected 
docking-cavity for ligands controlling docking to cavity, sizes and hydrophobicity, 
the ligand efficiency (ligand binding per molecular weight or non-hydrogen 
compounds) may be maintained or even increased during evolution. The 
generated children libraries can then be ranked not only by docking-scores but 
also by ligand efficiency parameters. Additionally, to computationally increase the 
probabilities of bacterial cell wall penetration, some of the bacterial eNTRY rules 
for drugs36-38 were finally applied (i.e., primary amines and globularity). 
 To explore for new chemotypes derived from the PC190723 reference 
idc ligand, this work combined Data Warrior (DW) evolutionary library generation 
with ligand efficiency parameters and AutoDockVina. Rather than screening extra-
big libraries of molecules, evolutionary and sequential consensus docking 
strategies may allow for deeper penetration into the vast chemical space

38, 39
. 

https://github.com/rochoa85/dockECR
https://github.com/paiardin/DockingPie
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Computational Methods 
 

FtsZ interdomain cleft (idc) target 
 The molecular model, corresponding to the open-tense FtsZ  
complexed with the reference ligand PC190723 coded as 4dxd (Research 
Collaboratory for Structural Bioinformatics, RCSB, Protein Data Bank PDB ID) of  
Staphylococcus aureus  was selected for the studies. For docking, this target 
including their GDP nucleotide and idc cavity were centered around a 45x45x45 Å 
grid surrounding most of the whole FtsZ molecule.  

 
Library of S.aureus anti-FtsZ inhibitors 

 To explore the possibilities of docking algorithms to make real 
antibacterial predictions, experimentally identified FtsZ inhibitors with  Minimum 
Inhibitory Concentrations (MIC) data were downloaded from the Chembl database 
(https://www.ebi.ac.uk/chembl/). MIC records corresponding to S.aureus were 
pooled, manually curated and pooled with previously described UCM inhibitor 
compounds

10 
. A library of 90 experimentally tested compounds with MIC data 

were expressed in nM.  
 

The DataWarrior docking program 
 The DataWarrior (DW) docking ("Dock structures into protein cavity") 
limits its docking exploration to the protein cavity (protein  side-chains) supplied as 
the ligand docked conformer (in this work the crystallographic PC190723), in 
contrast to the wider grids used by ADV.  
 The DW last updated version of dw550win.zip was locally downloaded 
(https://openmolecules.org/datawarrior/download.html). The biweekly last updates 
including the DataWarrior.exe, jninnchi.jar, mmtf.jar and opsin.jar were periodically 
substituted at the DW local directory. DW docking uses  MMFF94s+ force-field

46 

for energy minimization. MMFF94s+ preserved the molecular geometries (double 
bonds), in contrast to ADV (data not shown). 
(https://cheminfo.github.io/openchemlib-js/classes/ForceFieldMMFF94.html and 
https://github.com/cheminfo/openchemlib-js/blob/e88e8a0/types.d.ts#L3334).  
 The output DW docking-scores were generated in unit-less relative 
values expanding from -20 to -130. To convert FtsZ DW docking-scores to nM 
units,  the 100-30000 MIC range data obtained from the Chembl bank were 
converted to nM and  then correlated with the unit-less DW docking-scores  by 
polynomial fitting (Figure S1, red continuous curve). To obtain ~ MIC nM values 
for the lower DW docking-scores, the polynomial curve was linearly extrapolated to 
minimal 1 nM MIC as previously suggested 

47 
, and to the corresponding minimal  -

130 DW docking-score observed during our preliminary docking data (Figure S1, 
red dashed line). To estimate their corresponding  docking-scores (ds) expressed 
as ~Kd values, the polynomial and the extrapolated values were exponentially 
fitted by the formula kd=1507-(1331*EXP(-0.001*ds)). The resulting data were then 
converted to ∆G energies in Kcal/mol by the formula ∆G = 1.4*(log(Kd*109)). 
DataWarrior Ligand Efficiency (LE), LLE lipophilic LE and LE lipophilic Price 
(LELP) parameters were calculated from ∆G taking into account the estimated 
maximal -1.5 Kcal/mol affinity reported before 

48 
. 

 
The DataWarrior "Build Evolutionary Library"   

 The algorithm for generation of children molecules from selected 
parents included in the DW package was initiated by copy/paste a 2D image of the 
selected PC190723 parent from a *.sdf file and selection of a *.pdb of the 
crystallographic PC190723 bound to 4dxd. The PC190723 molecular fragments 
that will be preserved during evolutionary random modifications were then selected 

using the lazo tool provided by DW inside the build evolutionary library option. 
Children molecules were generated by randomly adding small molecular 
modifications to the parent fragment selected for modification and evolution. 
Modifications are selected randomly from a list including single atom replacements, 
insertions, single/double bond changes, atom migrations, ring 
aromatization/reduction, etc, by the so called Mutator modifications 
(https://github.com/Actelion/openchemlib/blob/master/src/main/java/com/actelion/re
search/chem/Mutator.java). Molecular modifications were applied to the parent, 
then ranked by their fitting criteria and the best fitting molecules used for further 
modifications in the next generation. After each generation, a calculated weighted 
sum of all the user selected fitting criteria ranks each children fitness.  
 Parent-children generations continued automatically until  a fitness 
plateau was reached or stopped by the user after several hours when reaching the 
~ 60Gb limits of computer memory. To avoid crashing of runs, the Java heap 
memory usage was monitored by the Jconsole of Java19 garbage collector 
(https://download.oracle.com/java/19/latest/jdk-19_windows-x64_bin.msi). The 
Jconsole garbage collector was manually activated when memory reached high 
values to maintain the speed of the program. 
 The fitness criteria and their weight values (wv) applied here as 
preferences to select for children molecules were minimal docking-scores (wv = 4), 
molecular weights < than the 355 Daltons of PC190723 (wv= 2), cLog <2 (wv=1), 
and number of rings <3 (wv= 1). Each generation yielded 128 children molecules 
of which 8  survived to the next generation (default values). Usually, 50 to 150 
generations per parent predicted  ~ 0.6 to 1 % fitness to the multiple fitness 
criteria.  
 Children generations of ~500 - 2000 new molecules  were obtained 
per parent depending on the parent. The raw children results were filtered by 
absence of any DW toxic properties  including mutagenesis, tumorigenicity, 
reproductive interference, irritant, and nasty functions. The DW docking-scores 
were ranked in negative relative units (the more negative, the higher binding).The 
resulting children molecules were saved as *.dwar files for complete evolutionary 
data storage and  to *.sdf (vs3) files by File/Save Special/SD-File, selecting 
Docked Protonation: Structure column,  Docking pose: Atom coordinates and 
including Cavity and Natural Ligand, for visualization opening in PyMol and using 
the PyMol split_states command.  
 

The AutoDockVina docking program 
The AutoDockVina (ADV) dockings were performed in Python vs3.8 

included in the PyRx098/PyRx1.0 package
46

 as described before 
49-51 

. The 
protein structure and ligands were first converted to *.pdbqt files by OpenBabel 
included in PyRx098/PyRx1.0 

52 
 (https://pyrx.sourceforge.io/). The mmff94s 

(Merck) force-field energy minimizations, and atom charge calculations to generate 
individual *.pdbqt files (PyRx-OpenBabel) were chosen for docking 

46, 53, 54 
. The 

conservation of geometries were tested by comparing their InChiKeys calculated 
by DataWarrior and/or MolSoft ICM Browser 

46, 53-56 
.  

A 45x45x45 Å grid automatically centered into the target protein 
surrounding the FtsZ molecule to explore ADV docking-cavity alternatives was 
chosen, in contrast to DW docking to the PC190723-defined binding cavity. ADV 
generates rotatable conformers from input ligands and selects the lower docking-
scores  during iterations 

57 ,58 
. The conformer predicting the lowest binding-score 

is selected for output expressing its binding potency as apparent Kcal/mol. 
Experimental accuracies of ± 2.8 Kcal/mol

59 
are predicted for ADV

50 
 while 

repetition of ADV docking to the same protein target were < 10 % of docking-
scores (n=3-10).  
 

Computational manipulations 
 DataWarrior (Osiris, vs 5.5.0. Idorsia Pharmaceuticals Ltd, 

https://openmolecules.org/datawarrior/download.html)
60 

and MolSoft (ICM 

Molbrowser vs3.9-1bWin64bit, https://www.molsoft.com/download.html) were used 

to visualize and manipulate *.sdf files. The corresponding  in silico physicochemical 

and toxicity parameters predicted by DW (mutagenic, tumorigenic, nasty functions, 

irritant, reproductive effective and nasty functions) were employed post-generation 

to clean up the children data.  

Profiles of DW docking-score ranks and polynomial/exponential fittings 

were performed with the Origin program (OriginPro 2022, 64 bit, Northampton, MA, 

USA) (https://www.originlab.com/). 

The predicted lead-protein complexes were visualized in PyRx 

098/PyRx1.0 (Mayavi), Discover Studio Visualizer v21.1.0.20298 (Dassault 

Systemes Biovia Corp, 2020, https://discover.3ds.com/discovery-studio-visualizer-

download) and PyMOL 2.5.3 (https://www.pymol.org/).  

All work was performed in multithreading multi-core i9 (47 CPU) 

PCSpecialist computer (AMD Ryzen Threadripper 3960X) provided with 64 Gb of 

RAM (Corsair Vengeance DDR4 at 3200 MHz, 4 x 16 GB) 

(https://www.pcspecialist.es/). 

 

 
Figure 1 

Reference FtsZ 4dxd-PC190723 
crystallographic complex  

cartoon 
 S.aureus FtsZ crystalized in the 
presence of the reference FtsZ 
ligand PC190723. 
The antistaphylococcal 
PC190723  defined the idc 
binding-cavity .  
Yellow, FtsZ  central H7 helix 
(amino acid residues 177-203). 
Down blue background,   
PC190723 4dxd crystallographic 
idc binding-cavity.  
Down red stick, PC190723.  
Binding to the idc cavity top the 
diheteroring fragment and to the 
bottom the difluorobenzamide 
fragment. 
Up blue stick, GDPs at the nbd 
of the FtsZ 

https://www.ebi.ac.uk/chembl/
https://openmolecules.org/datawarrior/download.html
https://cheminfo.github.io/openchemlib-js/classes/ForceFieldMMFF94.html
https://github.com/cheminfo/openchemlib-js/blob/e88e8a0/types.d.ts#L3334
https://github.com/Actelion/openchemlib/blob/master/src/main/java/com/actelion/research/chem/Mutator.java
https://github.com/Actelion/openchemlib/blob/master/src/main/java/com/actelion/research/chem/Mutator.java
https://download.oracle.com/java/19/latest/jdk-19_windows-x64_bin.msi
https://pyrx.sourceforge.io/
https://openmolecules.org/datawarrior/download.html
https://www.molsoft.com/download.html
https://www.originlab.com/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://www.pymol.org/
https://www.pcspecialist.es/
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Results 
 
 The reference PC190723 ligand docked to the FtsZ 4dxd 
crystallographic model was selected to study molecular evolution by the  "Build 
Evolutionary Library" of the Data Warrior program.  
 According to preliminary observations,  to obtain children with lower 
docking-scores, fragments of PC190723 rather than the whole molecule generated  
better values when used as parents. Therefore, PC190723 was computationally 
splitted into top diheteroring and bottom difluorobenzamide fragments, to evolve in 
each case their complementary moieties (Figure 2). Once generated, the non-toxic 
children were extracted from the  data and selected to further analysis (non-toxic 
children varied from 32.9 to 55.7 %,  Table S1). Most of the children reduced their 
docking-scores compared to their PC190723 parent.  Evolving all PC190723 
atoms during evolution generated only slightly lower binding-score profiles, despite 
a high number of evolved children (Figure 2, DW25 red). In contrast, evolving 
PC190723 fragments showed that children minimal docking-score profiles were 
similarly predicted  when varying their diheterorings (Figure 2, DW22) or varying 
their difluorobenzamide (Figure 2, DW23). Evolving the diheterorings of the lowest 
DW23 lead parent, predicted  ~10-fold lower docking-score profiles, but their 
molecular sizes and hydrophobicities were higher (unspecific docking), therefore 
those children were discarded for further analysis (not shown).   
 Because the tendency of binding-scores to decrease with increasing 
molecular size and hydrophobicity,  the LELP ligand efficiency

47 
 was calculated 

from the predicted ∆G values to normalize the docking-scores with respect to the 
number of non-hydrogen atoms (molecular weight) and logP lipophilicity 
(hydrophobicity) The graphic comparison between LELP values of children versus 
their DW docking-score rankings predicted ligands below the average LELP of the 
parent PC190723 (the closest to 0, the higher efficiency). Those children ligands 
maintaining their DW docking-scores below < 30 nM and LELP below 3.5 were 
selected as leads for further analysis (Figure 3A, gray rectangle).  
 Similarly, the graphic comparison between ADV docking-scores of 
children versus DW docking-score rankings predicted ligands below the minimal 
ADV docking-scores predicted by PC190723. Those children ligands maintaining 
their DW docking-scores below < 30 nM  and ADV docking-score below 100 mM 
were selected as ADV leads for further analysis (Figure 3B, gray rectangle).  
  The number of leads common to DW and ADV arbitrarily selected 
rectangles (DW+ADV leads) were 8 from DW22 (80-80.0% of the total number into 
the rectangles) and 3 from DW23 (37.5-42.8%). No leads from the DW25 group 
could be found predicting low values similar to the other 2 groups. The common 
DW+ADV leads were tabulated with their properties (Table S1), their 2D structures 
drawn (Figure 4), their complexes with 4dxd PyMol visualized (Figure 5) and their  
corresponding amino acid surroundings at 4 Å identified by PyMol analysis of their 
complexes with FtsZ (Table S2). 
   
 

 
Figure 2 

Ranks of evolved children from PC190723, and fragments 
The PC190723 2D molecule (upper right in the Figure) was computationally splitted into top diheterorings and 
bottom difluorobenzamide  fragments for independent evolution. Top and bottom names were chosen as 
suggested by their relative position within the FtsZ idc cavity. Both the crystallographic 4dxd-PC190723.pdb 
FtsZ complex defining the targeted Protein_Cavity  and the PC190723.sdf  defining the 2D ligand were 
uploaded to the DW DW "Build Evolutionary Library" program.  
Horizontal dashed blue line, DW docking-score of the PC190723 reference ligand. 
Blue (DW22), maintaining the bottom difluorobenzamide  and evolving the top fragment (R)   
Green (DW23), maintaining the top heterorings and evolving the bottom fragment (R) 
Red (DW25),  evolving the whole PC190723 molecule 

 

 
Figure 3 

DW docking-score versus LELP (A) and ADV (B) of children from PC190723 and fragments  
The children molecules were evolved from the parent PC190723 and its fragments (Figure 2). The DW and ADV docking-
scores were transformed to nM as indicated in methods.  
Gray rectangular background, regions selected for consensus 
Horizontal dashed blue line, LELP of the PC190723 parent (A) and minimal ADV docking-score of PC190723 (B) 
Blue (DW22), maintaining the bottom difluorobenzamide of PC190723 and evolving the top fragment (R)   
Green (DW23), maintaining the top heterorings and evolving the bottom fragment of PC190723 (R) 
Red (DW25),  evolving the whole PC190723 molecule 

 
 
 

 
Figure 4 

DW+ADV common lead 2D structures 
Blue background, difluorobenzamide and oxygen link fragments 
Green background, diheterorings fragments 
DW22, bottom difluorobenzamide oxygen link plus variable top containing 2 branches and one benzene (Figure 2). 
DW23, top diheterorings plus variable bottom containing one benzene flanked by 3-4 atoms (Figure 2)  

**, common DW+ADV leads predicting more hydrogen bonds than PC190723 (Table S2) 
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Figure 5 

Representative 4dxd mapping of DW+ADV common lead DW22 and DW23 complexes and detailed 
mapping of the 5762 lead 

 
 The 8 DW+ADV common leads (Figure 3AB) generated by evolving 
the top diheterorings of PC190723, predicted one chemotype  containing the 
difluorobenzamide bottom and 2 branches of 3-5 atoms, one of them terminated by 
a benzene (Figure 4, DW22).  The 3 DW+ADV common leads generated by 
evolving the bottom difluorobenzamide of PC190723, predicted a different 
chemotype containing the top diheterorings and one benzene flanked by 3-4 atoms 
(Figure 4, DW23).  
 As expected, the common DW+ADV ligands mapped to the PC190723 
FtsZ idc binding cavity defined by the crystallographic 4dxd-PC190723 model 
(Figure 1 and Figure 5), except one of the DW22 branches that projected outside 
of the idc cavity (Figure 5, DW22). PyMol visualization of the  docked complexes 
predicted similar docking to a maximum of 26 amino acids expanding a segment 
between the 192 to 311 residues of FtsZ. Most of the identified amino acids 
predicted  hydrophobic interactions of low specificity. However, higher numbers of 
the most specific hydrogen bonds than crystallographic PC190723 (4 hydrogen 
bonds) were predicted for the following leads, 1854 (6 hydrogen bonds), 1856 (6), 
4811 (6) and 5762 (9) (Table S2). According to all these analysis, the resulting top 
leader with higher possibilities to bind FtsZ was the 5762 ligand. Both the  5762 
and the 4811 leads contained 2 primary amines and predicted a DW globularity of 
0.31, lower than the 0.5 threshold proposed by the bacterial eNTRY rules 
(https://github.com/opensourceantibiotics/murligase/issues/31). Both properties  
may favor the penetrability of this no-benzamide leads to bacterial cell walls 

61-63 
. 

 

Discussion 

 
Could DW docking-scores, ligand efficiency and consensus ADV docking  

improve FtsZ binding predictions? 
 Experimental screening for binding affinity may be a valid strategy to 
identify antibacterials since inhibition correlated with FtsZ binding affinities better 
than with either FtsZ  polymerization or GTPase assays

10, 11 
.  

 However, to predict experimental binding is challenging due to the 
limitations of present in silico docking algorithms, such as DW and ADV. Known 
limitations include fixing of the docking-cavity  amino acid side-chains, eliminating 
water molecules, unreliable calculation of docking-scores,  molecular geometry 
changes by force-field energy minimizations 

53-56 
, and unreachable 

chemotype/chemical spaces
38, 39

.  Specially the force-field failures to correctly 
recognize different atom types, would greatly affect the conservation of molecular 
geometries after minimization

47-50
.  Additionally, in the absence of better 

crystallographic data, the 4dxd crystallographic FtsZ model used here has no K+ , 
no Mg++ and GDP instead of GTP, all of which may not completely reflect the 

molecular environment for docking. The work described here have also other 
limitations due to the  number of options discarded during screening (i.e., arbitrary 
selected PC190723 fragments, other multiple fitting criteria, etc). Additionally, 
known experimental alternatives that could be computationally mimicked to reduce 
hydrophobicity have not been explored (i.e., benzene mimics

64 
, non-flat fragment 

or phosphate additions, amino acid ester or glycerol extensions, and many other 
known pro-drug  alternatives21).   Furthermore, other FtsZ docking cavities or FtsZ 
relaxed monomer conformations have not been targeted and possible out-targeting 
to other proteins has not been tested (i.e,  human tubulins and abundant proteins 
in human serum). Although bacterial FtsZ are structurally similar to eukaryotic 
tubulins and share their GTPase activities, eukaryotic tubulin ligands do not usually 
bind FtsZ, and  FtsZ ligands do not bind  bacterial tubulins, but testing for possible 
interferences should be included. It may be also expected that during binding,  
flexibility of the  cavity side chains  as  well as movement of the ligands, could add 
alternative binding cavities depending of environmental variables (i.e. pH, 
temperature, ionic concentrations, etc).  Although Molecular Dynamic simulations 
could help to discard or favor some of the complexes, their reliability is still 
dependent of force-field inaccuracies 

65 
.   

Although experimental bacterial inhibitions were proportional to FtsZ 
bindings, lower docking-score ligands, may not predict higher biological inhibitions. 
Molecular weight and hydrophobicity may also influence the biological activity, 
despite a low docking-score. During screening and selection processes based only 
in docking-score ranks, the candidates increased in molecular weight and 
hydrophobicity resulting in trends to unspecific leads as demonstrated in many 
other systems

40, 41 
. Among the many parameters proposed to correct for such 

unspecificities, the LELP parameter was selected here to monitor docking-scores 
because it reflects in one unique parameter both molecular weight and 
hydrophobicity unspecificities

42-45 
. Ligand efficiency ranks were applied to the lead 

screening and selection process in the hope to improve their accuracies, but 
experimental evidence should be performed to validate these efforts. 

Since at present no scoring algorithm has proven yet to be reliable for 
every chemotype, a consensus between at least two different algorithms seem to 
be necessary to select the many leads generated by explorations of the vast 
chemotype space

66, 67 
. In this work, a minimal consecutive consensus docking by 

ranks has been introduced using DW and ADV to theoretically increase prediction 
accuracies,  as suggested  in other systems

53-56 
.   

Therefore, it may be expected that combining low docking-scores, 
high ligand efficiencies and consensus docking by ranks, helped to improve 
binding predictions. 

 
Could evolutionary libraries contribute to expand the  exploration of the FtsZ 

chemotype space? 
 There are an enormous amount of chemotype possibilities to be 
computationally explored for FtsZ docking ligands 

66, 67 
. Despite  using the  

evolutionary docking to explore libraries on-demand applying fitting criteria, only a 
small percentage of the chemotype space possibilities has been explored here. 
Some sense of possible future work was experienced when combining multiple 
fitness criteria values during the design of PC190723 evolutionary libraries. Much 
large numbers of possible combinations could be generated  than those minimally 
explored here. The DataWarrior parent-children evolutionary algorithm is powerful, 
specially when including docking as fitting criteria. Nevertheless, including access 
to other external docking algorithms or iteration of DW runs with identified leads 
could further increase the DW evolutionary library penetration into the unknown  
chemotype/chemical space.   Developing  new  evolutionary software introducing 
not only consensus docking but also screening for reduced docking to out-target 
proteins (i.e., human tubulins) as new fitting criteria, would automatize the 
optimization and selection processes. Also the inclusion of new fitting criteria such 
as toxicity and ligand efficiency (i.e., several toxicity and LE options) would enrich 
the evolutionary process automatically screening the widest chemical space 
possible and generating children with increased accuracies. 

 Because further computational limitations will remain from unexplored 
physiological environments (i.e., cross-docking to other abundant unknown or 
similar human proteins, and diverse pharmacological properties), a relatively high 
number of chemotype alternatives would be desirable to predict to filter out those 
with undesirable properties. Despite including the maximal number of 
computational criteria, some of those properties may be difficult or impossible to 
predict computationally. Experimental confirmation will be always required.  

 
Concluding remarks 

Combination of DataWarrior evolutionary docking, ligand efficiency 
estimations, and  ADV consensus docking, identified a few  chemotypes predicting 
low nanomolar docking-score ranges targeting known FtsZ cavities. Additionally, 
further in silico predictions of the viability of chemical synthesis of each out-ligand 
chemotype  may help to filter those candidates before chemical synthesis for 
experimental assessment.   The results remain to be confirmed by new docking 
algorithms (additional consensus docking) with improved force-fields 

53-56 
, and in 

vitro/in vivo binding to FtsZ before physiological and pharmacological tests.  

https://github.com/opensourceantibiotics/murligase/issues/31
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Figure S1 
Correlation of anti-FtsZ MIC 

and DW docking-scores   
Compounds with S.aureus 
FtsZ Minimum Inhibitory 
Concentrations (MIC) were 
downloaded from Chembl, 
enriched with UCM 
compounds 

68 
, and filtered to 

<30000 nM before docking. 
Red continuous curve, 9th 
order polynomial fitting of MIC 
vs DW docking-scores (Origin) 
Red dashed line,  
hypothetical  extrapolation to  
minimal  -90 to -130 DW 
docking-scores 

 
Table S1 

Resume of molecular properties of the common DW+ADV leads from Figure 4 
 

Number of %no children DW DW ADV 
 

nH 
   children toxic ID ds nM nM MW A cLogP LE  LELP 

PC190723 ------- ----------- -70.4 79.0 500 355 23 2.1 0.4 4.4 

           DW22 
 

2681 -110.9 19.8 33 453 32 0.1 0.3 0.2 
889 > 55.7 **1856 -107.1 25.5 12 405 29 1.3 0.4 3.4 

  2101 -106.7 26.2 28 438 31 0.1 0.3 0.3 

  
1860 -105.2 28.4 33 421 30 -0.5 0.4 -1.3 

  
2057 -110.7 20.3 91 424 30 1.2 0.4 3.3 

  
2045 -105.8 27.5 23 435 31 1.1 0.3 3.1 

  
1930 -105.8 27.5 17 419 30 0.9 0.4 2.6 

  
**1854 -106.5 26.4 91 422 30 0.8 0.4 2.3 

           DW23 
 

**4811 -110.5 20.5 33 346 23 0.4 0.5 0.8 
1527 >32.9 **5762 -105.7 27.6 5 345 23 1.2 0.5 2.6 

  4896 -106.7 26.1 33 347 23 0.8 0.5 1.7 
             

The parent molecules were selected from fragments of  PC190723 from Figure 3. Common DW+ADV leads were 
identified from the rectangle areas of DW22 and DW23 (Figure 3AB, gray rectangles).The children lead number were 
automatically assigned by DW as ordered by their generation during the evolutionary library building. Similar lead 
structures were tabulated with the same background colors. 

**, leads predicting  more hydrogen bonds than PC190723 (Figure 4). 

 
 Table S2 

Amino acid residues around 4 Å of PC190723, and DW+ADV common children  

p
o

si
ti

o
n

 

A
a 

A
a 

P
C

19
07

23
 

T
X

H
91

79
 

26
81

 

18
56

**
 

18
60

 

21
01

 

20
57

 

20
45

 

19
30

 

18
54

**
 

48
11

**
 

57
62

**
 

48
96

 

192 Q Gln              

193 G Gly              

*196 G Gly  
  H        H  

197 I Ile              

199 D Asp              

200 L Leu 
 

H  H       H H H 

203 V Val 
 

H  H H      H H  

204 S Ser              

205 G Gly H         H    

207 V Val H  H   H H H H H H H H 

208 N Asn  H  H H H     H H  

209 L Leu H  H H H  H H H H H H  

226 M Met 
 

            

227 G Gly 
 

            

228 I Ile 
 

            

261 L Leu              

*263 N Asn H  H H  H H H  H H H H 

265 T Thr   H  H  H H      

295 G               

296 T             H H 

297 V Val         H     

299 N Asn              

307 V Val              

*309 T Thr            H  

310 V Val          H    

311 I Ile          H    

Aa, Amino acid residues  of FtsZ 4dxd at 4 Å distance of the DW+ADV common leads.    
The numbers at the common DW+ADV children columns as in Table S1.  

**, leads predicting more hydrogen bonds than PC190723 (Figure 4).  

Dark red  amino acids at the left column approximating the idc bottom subdomain.  
Light red, amino acid at the left column approximating the idc top subdomain.  

* reported resistant mutants to PC190723 inhibition. 

Head yellow background and rectangles, PC190723 4dxd crystallographic model 
10 

and TXH9179 last 
reported benzamide derivative 21. Head blue background and rectangles,  DW22. Head green 
background and  rectangles, DW23 
H, predicted hydrogen bonds (yellow, blue and green background colored rectangles). 
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