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Abstract 

HsDHODH is a target of the human dehydrogenase enzyme, and HsDHODH inhibitors 

have shown potential applications in treating autoimmune diseases and cancer. Specific 

inhibitors have demonstrated potential therapeutic efficacy in treating autoimmune 

diseases like rheumatoid arthritis and systemic lupus erythematosus. However, the use 

of HsDHODH inhibitors may cause some side effects, such as interfering with DNA 

synthesis and causing apoptosis, which can be harmful to the body. In addition, drug 

resistance may occur during their use. Furthermore, the pharmacological mechanism of 

action of HsDHODH inhibitors is not fully understood, which may limit their use in 

treating specific diseases. Recently, the ASGBIE_ESS method was used to calculate 

the binding free energy between HsDHODH and ascofuranone derivatives. The results 

showed a correlation of 0.9066 with experimental data, indicating the method's 

reliability. The energy decomposition analysis identified several hot-spot residues, 

including M13, L16, Q17, H26, F32, F68, R106, Y326, and T330, that play crucial 

roles in the ligand-protein binding process based on the crystal structure. Combining 

virtual screening with the ASGBIE_ESS method, new compounds with unique 

backbones that have the potential to be valuable inhibitors of HsDHODH were 

identified. Remarkably, the computational predictions for the biological activity of 

these derivatives exceeded experimental results. The analysis showed that the identified 

compounds form stable hydrophobic interactions with residues around the pocket in the 

protein's hydrophobic region. Additionally, the binding ability of these derivatives is 

improved when they form hydrogen bonding interactions with specific residues in the 

pocket. In conclusion, this study provides valuable insights into the mechanism of 

ligand-protein binding for HsDHODH and offers promising leads for developing novel 

inhibitors targeting this enzyme. 
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1.Introduction 

Dihydroorotate dehydrogenase(DHODH) is an enzyme that contains iron and flavin 

and is located in the inner membrane of mitochondria. [1] Until now, DHODH becomes 

an attractive target for anti-malignance due primarily to its importance in tumorigenesis 

and metastasis. There are many canonical DHODH inhibitors have being reported, such 

as leflunomide,[2] BRQ,[3] teriflunomide,[4] ALASN003,[5] and BAY2202234.[6] 

However, the use of HsDHODH inhibitors may cause some side effects, such as 

interfering with DNA synthesis and causing apoptosis, which can be harmful to the 

body. In addition, drug resistance may occur during their use. Furthermore, the 

pharmacological mechanism of action of HsDHODH inhibitors is not fully understood, 

which may limit their use in treating specific diseases.[7, 8]Recently, ascofuranone(AF), 

a natural compound produced by Acremonium sclerotigenum, have been discovered by 

Miyazaki .et.[9] Additionally, they further discover a combination of compounds with 

excellent bioactivity and solve the crystal structure of them(Fig. 1). 

Quantitative understanding of the different binding models of HsDHODH and 

inhibitors is essential to design novel selective HsDHODH inhibitors. However, the 

crystal structure of HsDHODH among AF and other compounds show very similar 

biding pose with a pocket RMSD of 5Å. Therefore, it is difficult to rationalize the 

selectivity based on the static crystal structures alone. 

Computational simulation and accurate calculation of protein-ligand binding free 

energy is a powerful approach in understanding ligand binding mechanisms from a 

dynamic perspective.[10] Free energy perturbation(FEP) and thermodynamic 

integration(TI) are rigorous for binding free energy calculation, but there are not used 

routinely because of its high computational demand for such huge system.[11-15] On 

the contrary, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) is 

a widely used method because of its efficiency in the absolute free energy 

calculation.[16-19] However, in this strategy, the entropy contribution is often 

neglected due to its high computational cost and rough accuracy.[20] Fortunately, Duan 

et al. has developed a method called interaction entropy(IE) for calculating entropy 

contribution which also perform well in other systems.[21, 22] 

In general, although there are many residues around the pocket, only a few of them play 

the decisive role in protein-ligand binding.[23-26] Hence, to improve the binding 

potency and selectivity of ligand, we need to identify these hot-spot residues and 

explore the biding mechanism of protein-ligand. To this end, the alanine scanning (AS) 

approach has been combined with the MM/GBSA_IE method to obtain binding free 

energy of specific residues.[27, 28] In this way, AS is carried out on each residue around 

the pocket in the trajectory after MD simulation which is performed starting from the 

initial complex structure; and then the enthalpy and entropic component are calculated 

with MM/GBSA and IE method.[29] 

The discovery of new inhibitor molecules is urgent in the face of the strong side effects 

of inhibitors of HsDHODH and drug resistance. Virtual screening has become an 

effective method of drug discovery in the past years. Virtual screening has become a 

popular method for identifying potential inhibitors of DHODH. This computational 



approach involves the use of software to screen large databases of chemical compounds 

and predict which ones are likely to bind to the target protein. Several virtual screening 

methods have been developed, including ligand-based and structure-based approaches. 

Structure-based methods, rely on the three-dimensional structure of DHODH to 

identify compounds that are predicted to bind to the protein's active site. These virtual 

screening method has been shown to be effective in identifying novel DHODH 

inhibitors, and several compounds identified using this approach have shown promising 

activity in preclinical studies. 

In this study, We conducted molecular dynamics simulations on the crystal structures 

of the five HsDHODHs, using a sampling method we designed, and combined it with 

ASGBIE. Meanwhile, we analyzed the interaction of the five complex structures and 

identified the essential residue that serve as hot-spots for binding HsDHODH.Using 

this approach, we also performed virtual screening on this target and calculated the 

computational free energy while analyzing its interaction pattern. 

 

Fig1. Binding channels for the crystal structure of HsDHODH. (a) Ligand of 5ZF4 (b) 

Ligand of 5ZF9(c) Ligand of 5ZF8 (e) Ligand of 5ZFA (e) Ligand of 5ZF7 

  



2.METHOD 

2.1MD Simulation 

The five initial structures of HsDHODH (5ZF4, 5ZF7, 5ZF8, 5ZF9, 5ZFDA) were 

obtained from Protein Data Bank (https://www.rcsb.org/). The charge of the ligand was 

calculated using Proteins Plus.[30-32] Gaussian16 was used to obtain the parameter of 

the ligand. The force field utilized for the complex system was ff14SB, while GAFF 

was employed for the ligand. [33, 34] Counterbalance ions in the form of chloride and 

sodium were added to neutralize the system following the placement of the complexes 

into truncated octahedron TIP3P boxes, with a 12.0 Å buffer distance.[35] The 

conjugate gradient minimization method was employed, followed by the steepest 

descent method, to minimize the energy and eliminate any poor contact between solute 

and solvent water molecules.In the minimization process, the solvent water molecules 

are first optimized by constraining the coordinates of other molecules with a force 

constant of 500 kcal/(mol*Å2).After minimizing, the system was heated to 300k within 

300 ps from 0k with all solute atoms restrained with a force constant of 10 

Kcal/(mol*Å2). Next, the whole system was carried for 100 ns simulation in NPT 

ensemble with Langevin dynamics to maintain the temperature and Berendsen barostat 

to control the pressure in 1.0 atm.  

2.2 MM/GB-SA 

The MMGBSA (Molecular Mechanics/Generalized Born Surface Area) method is a 

widely used computational approach for calculating the binding free energy of 

biological macromolecules. The method combines the classical molecular mechanics 

force field (MM) and the GB/SA solvent model (Generalized Born/Surface Area) to 

simulate the structure and dynamics of biological macromolecules and calculate their 

interaction energies. The binding free energy is then computed by combining the 

solvation model and statistical thermodynamics methods. In the MMGBSA method, 

molecules are treated as a series of atoms, and their interaction energies can be 

calculated using classical force fields, which typically include bond energies, angle 

energies, and flexible bond energies. Meanwhile, the MMGBSA method also considers 

the interactions between molecules and the surrounding solvent, including surface 

tension and solvation energy. The MMGBSA method can be applied to study biological 

problems such as molecular binding, protein stability and conformational changes, and 

enzyme catalytic mechanisms. Its advantages include high computational efficiency, 

applicability to large molecules, and the ability to consider solvent effects. 

The most basic principle of this method is to calculate the difference in energy before 

and after binding of the receptor and ligand, which can be expressed by the formula： 

∆𝐺𝑏𝑖𝑛𝑑
0 = ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥

0 − (∆𝐺𝑙𝑖𝑔𝑎𝑛𝑑
0 + ∆𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

0 ) (1) 

In practical calculations, however, a serious problem is encountered - the energy 

contribution comes mainly from inter-solution interactions and the total energy 

fluctuates much more than the binding energy, so that it takes a very long time to 

converge. The total free energy of binding in the solvent is therefore split into the 

binding energy in vacuum and the solvent wah energy, which can be expressed as： 

https://www.rcsb.org/


∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣
0 = ∆𝐺𝑏𝑖𝑛𝑑,𝑣𝑎𝑐𝑢𝑢𝑚

0 + ∆𝐺𝑏𝑖𝑛𝑑,𝑐𝑜𝑚𝑝𝑙𝑒𝑥
0 − (∆𝐺𝑠𝑜𝑙𝑣𝑒,𝑙𝑖𝑔𝑎𝑛𝑑

0 + ∆𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
0 )(2) 

The method for calculating the free energy of binding in a vacuum is the same as the 

previous method for calculating the total free energy of binding，which can be 

expressed as： 

∆𝐺𝑏𝑖𝑛𝑑,𝑣𝑎𝑐𝑢𝑢𝑚
0 = ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥,𝑣𝑎𝑐𝑢𝑢𝑚

0 − (∆𝐺𝑙𝑖𝑔𝑎𝑛𝑑,𝑣𝑎𝑐𝑢𝑢𝑚
0 + ∆𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟,𝑣𝑎𝑐𝑢𝑢𝑚

0 ) (3) 

According to the definition of the free energy of binding, for each molecule, the 

following equation is used: 

∆𝐺𝑣𝑎𝑐𝑢𝑢𝑚
0 = ∆𝐸𝑀𝑀

0 − 𝑇∆𝑆0 = (∆𝐸𝑖𝑛𝑡
0 + ∆𝐸𝑒𝑙𝑒

0 + ∆𝐸𝑣𝑑𝑤
0 ) − 𝑇∆𝑆0 (4) 

𝑇∆𝑆0  is the entropic contribution, which can be obtained by simple normal mode 

analysis. However, in practice, this contribution is usually ignored. Because systems 

calculated using the MMGBSA scheme usually have little conformational change 

before and after receptor-ligand binding, this contribution can be cancelled out in the 

calculation of the difference. 

The solvation energy can be divided into two parts: polar solvation energy and non-

polar solvation energy, which can be expressed as: 

∆𝐺𝑠𝑜𝑙𝑣
0 = ∆𝐺𝑠𝑜𝑙𝑒,𝑝𝑜𝑙𝑎𝑟

0 + ∆𝐺𝑠𝑜𝑙𝑒,𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟
0 (5) 

For polar non-solventing energies there are two main methods：Poisson-Boltzmann 

(PB) and GeneralizedBorn (GB), The non-polar solvation energy can be expressed by 

the following equation: 

∆𝐺𝑠𝑜𝑙𝑒,𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟
0 = 𝛾𝑆𝐴𝑆𝐴 + 𝛽 (6) 

Thus, for each term on the right-hand side of the equation in equation 1, it can be 

expressed as： 

∆𝐺0 = ∆𝐺𝑣𝑑𝑤
0 + ∆𝐺𝑒𝑙𝑒

0 + ∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑜𝑙𝑎𝑟
0 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

0 (7) 

2.3 ASGBIE 

In the recent years, Alanine scanning mutations have solved many computational 

problems as an important computational method in computational biology. Alanine, 

the simplest of the redidues, has only one methyl group in its residue side chain. The 

size of its side chain is so small that it has no effect on the conformation of the side 

chain and has negligible effects on the structure and spatial and electrostatic effects of 

the protein. Using this method, the redidues on the surface of the protein can be mutated 

to alanine, and the difference in free energy of binding before and after the mutation 

can be calculated to determine the importance of these residues in the binding process. 

The residue of interest is mutated to alanine, and the contribution of that residue to the 

binding free energy is determined by referencing the change in binding free energy 



before and after the mutation, which is defined as:  

𝛥𝛥𝐺bind 
𝑥→𝑎 = 𝛥𝐺bind 

𝑎 − 𝛥𝐺bind 
𝑥 = 𝛥𝛥𝐺gas 

𝑥→𝑎 + 𝛥𝛥𝐺sol 
𝑥→𝑎 (8) 

Δ∆𝐺𝑏𝑖𝑛𝑑
𝑥→𝑎 is the contribution of this residue x to the free energy of binding. Δ𝐺𝑏𝑖𝑛𝑑

𝑥  is 

the calculated free energy of binding of the protein to the ligand in the wild type. 

Δ𝐺𝑏𝑖𝑛𝑑
𝑎  is the calculated binding free energy of the mutant with the ligand after the 

mutation of this residue to alanine.The calculation formula of free energy of gas phase 

and solvation is expressed as follows: 

∆∆𝐺𝑔𝑎𝑠
𝑥→𝑎 = ∆𝐺𝑔𝑎𝑠

𝑎 − ∆𝐺𝑔𝑎𝑠
𝑥 (9) 

∆∆𝐺𝑠𝑜𝑙
𝑥→𝑎 = ∆𝐺𝑠𝑜𝑙

𝑎 − ∆𝐺𝑠𝑜𝑙
𝑥 (10)                   

In the formula (9) and (10), 𝛥𝐺gas
𝑥  represents the binding energy in the gas phase and 

𝛥𝐺sol
𝑥  represents the binding energy in the solvent phase. Same to formula (8), gas 

energy and solvent energy also calculate the free energy of binding before and after the 

mutation. Following this method, all redidues in the vicinity of the binding pocket are 

mutated, and the contribution of each residue is calculated, and finally add these 

contributions to calculate the difference in energy before and after the mutation to the 

total binding free energy.𝛥𝐺gas
𝑥  is calculated by IE method: 

∆𝐺𝑔𝑎𝑠
𝑥 = 〈𝐸𝑖𝑛𝑡

𝑥 〉 − 𝑇∆𝑆𝑖𝑛𝑡
𝑥 = 〈𝐸𝑖𝑛𝑡

𝑥 〉 + 𝐾𝑇𝑙𝑛〈𝑒𝛽∆𝐸𝑖𝑛𝑡
𝑥

〉 (11) 

and likewise, for the alanine mutant:   

∆𝐺𝑔𝑎𝑠
𝑎 = {𝐸𝑖𝑛𝑡

𝑎 } + 𝐾𝑇𝑙𝑛〈𝑒𝛽∆𝐸𝑚𝑖𝑛
𝑎

〉 (12)                              

Here, the interaction energies of ligands with residues x and a are represented by 

𝐸𝑖𝑛𝑡
𝑥 and𝐸𝑖𝑛𝑡

𝑎 , respectively.  

〈𝑒𝛽∆𝐸𝑖𝑛𝑡
𝑥

〉 =
1

𝑁
∑ 𝑒𝛽∆𝐸𝑖𝑛𝑡

𝑥 (𝑡𝑖)𝑁
𝑖=1 (13)                     

Where N is the number of MD snapshots. Therefore, equation (9) becomes: 

∆∆𝐺𝑔𝑎𝑠
𝑥→𝑎 = ∆∆𝐸𝑔𝑎𝑠

𝑥→𝑎 − 𝑇∆∆𝑆𝑔𝑎𝑠
𝑥→𝑎 = 〈𝐸𝑖𝑛𝑡

𝑎 〉 − 〈𝐸𝑖𝑛𝑡
𝑥 〉 + [𝑙𝑛〈𝑒𝛽∆𝐸𝑡𝑚

𝑎
〉 − 𝑙𝑛 〈𝑒𝛽∆𝐸

𝑚′
𝑥

〉] (14) 

The polarity term of the solvent wavenumber is calculated under the obc-gbsa model 

using IGB=2, where the dielectric constants of nonpolar, polar and charged residues are 

set to 1, 3 and 5, respectively. The total free energy of binding is calculated as the sum 

of the contributions of each residue within pocket 5Å:  



∆𝐺𝑏𝑖𝑛𝑑 = − ∑ ∆∆𝐺𝑏𝑖𝑛𝑑
𝑥→𝑎

𝑥 (15)                            

When calculating the entropy of the binding freedom, researchers in the past have often 

used the regular mode method to calculate the entropy of protein ligands. But the high 

cost of the calculation has been a deterrent. Recently, our group has developed a new 

method for calculating the entropy in the binding free energy, which is called 

interaction entropy. Compared to old methods, the process of this method is rigorous 

and efficient. Here, the interaction entropy (IE) is defined as: 

                           

−𝑇𝛥𝑆 = 𝐾𝑇 𝑙𝑛 ⟨𝑒𝛽𝛥𝐸𝑝𝑙
𝑖𝑛𝑡

⟩ (16)                      

2.4 Energy Stable Simpling(ESS) 

To address the issue of poor correlation between calculated and experimental results 

due to fluctuations in MD trajectories, a method is defined to identify a stable fragment 

of trajectory energy for the calculation of ASGBIE. The method involves the following 

steps: 

First, calculate the energy of each frame using the formula: 

∆𝐸𝑀𝑀 = ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤 (17) 

where ∆𝐸𝑒𝑙𝑒  is the electrostatic interaction energy and ∆𝐸𝑣𝑑𝑤 is the van der Waals 

interaction energy in the gas phase. 

Then, The sample size needed to calculate based on the length of the trajectory and the 

desired level of accuracy can be determined. For each step i, calculate the root mean 

square deviation (RMS) of the energy over k frames using the formula: 

RMS = √
∑ (∆𝐸𝑀𝑀(𝑖) − 〈∆𝐸𝑀𝑀〉)2𝑖+𝑘−1

𝑖

𝑘
(18) 

where is  〈∆𝐸𝑀𝑀〉 the average energy over the k frames centered on i. Finally, Select 

the section of the trajectory with the smallest RMS value. 

𝑅𝑀𝑆𝑚𝑖𝑛 = min(𝑅𝑀𝑆) (19) 

2.4 Virtual Screening 

The HsDHODH protein used in this study was obtained from the RCSB database 

(PDBID: 5ZF4, resolution: 1.66 Å). To prepare the protein, the crystal structure was 

processed to remove water and other molecules, leaving only the protein and the active 

ligand. The protein structure was then hydrogenated and optimized at pH 7.4 using the 

OPLAS2005 force field. The docking box was positioned around the active molecule's 

geometric center, with a radius of 25 Å. A total of 250,000 ligands were obtained from 

SPECS (https://specs.net/). Before docking, the energy of each ligand was minimized 

using the OPLS 2005 force field. The ligands were generated in all of their ionized 

states at pH 7.4, resulting in a single, low-energy three-dimensional structure while 

preserving the original chiral state of each input structure. Finally, the SP model of 

Glide was utilized for docking scoring.[36] 

https://specs.net/


3.RESULTS AND DISCUSSION 

3.1 Stability of the Complex Systems 

In molecular dynamics (MD) simulation, it is essential to ensure the stability of the 

complex system before performing energy calculations and analyzing the interaction 

mechanism. One of the crucial measures of stability is the root-mean-square deviation 

(RMSD). Therefore, we calculated the RMSD of protein backbones and small 

molecules in five systems, as shown in Figure S1. The RMSD of the ligands in 5ZFA, 

5ZF8, 5ZF9, and 5ZF4 were stable around 1.5 Å, while the RMSD of the ligand in 

5ZF7 had some fluctuations but was still within 2 Å of the average. 

To evaluate the stability of protein-ligand binding, an analysis of the temperature 

anisotropy (B-factors) of the protein backbone was conducted and the results are 

presented in Figure 2. B-factors for the three trajectories of each system were calculated 

and compared to the experimental results. The observed movement trends are consistent 

with those of   the B-factors obtained from the crystal structure, providing further 

evidence of the stability of the protein-ligand complex.Based on these findings, we can 

assume that the MD simulations for the five complex systems are reliable and can be 

used for subsequent energy calculations and interaction analysis. 

 

 

Fig2. B-factors of the protein backbone in the different complex. (a)The complex of 

5ZF4; (b) The complex of 5ZF9; (c) The complex of 5ZF8; (d) The complex of 

5ZFA; and (e) The complex of 5ZF7. Hot-spot residues are marked with blue 

triangles. 

3.2 Analysis of calculation methods 

Binding free energy is a crucial measure of a protein's ability to bind to a ligand. In this 

study, we utilized several approaches, as depicted in Fig. 2, to calculated the binding 

free energy of HsDHODH and ligands, which is used to characterize biological activity 

of the molecules  

Initially, we utilized the conventional GB model (IGB2) to calculate MMGBSA for the 



last 50 nanoseconds of molecular simulation. However,  the correlation of calculated 

and experimental values is negative (-0.7918), as show in Fig. 1, making its calculation 

impractical as a reference. Therefore, we added the method of alanine scanning, which 

increased the correlation between the calculated results and the experimental values to 

0.5825 (Fig. 1). Detail result of binding free energy was shown in Table S1 of the 

Supporting Information. 

We then tested the ASGB method with the addition of the interaction entropy (IE) 

method, which resulted in a correlation increase to 0.8372 (Fig. 3). Recently, a new GB 

model (IGB8) became available, and we evaluated its impact on the method. As shown 

in Fig 3, the traditional MMGBSA approach still exhibits a negative correlation. 

However, after incorporating an alanine scan and the IE method, the IGB = 8 model 

demonstrated improved correlation with experimental values compared to the previous 

model. Nonetheless, the correlation was still not as high as that of the traditional IGB2 

model. 

To further enhance the correlation between calculated results and experimental values, 

we proposed a new sampling method, ESS. We tested the results of adding this new 

sampling method under the IGB2 model, and the correlation significantly improved to 

0.9066. Similarly, under the IGB8 model, this sampling method allowed for a better 

correlation between the calculated results and the experimental values, reaching 0.8423. 

Therefore, we believe that a method such as ASGBIE, combined with the ESS sampling 

method, provides more accurate results for the calculation of the binding free energy in 

HsDHODH-ligand system. 

 
Fig2. Correlation of different calculated results with experimental values. 

 

3.3 Residue-Specific Biding Free Energies 

To better understand the variability in the binding capacity of the five inhibitors, we 

analyzed the contribution of the binding free energy of each residue within the binding 

pocket of 5Å. We identified residue that contribute greater than 1.5 kcal/mol as hot-

spot residues and those that contribute greater than 1.0 kcal/mol as warm-spot residues. 

The three systems with better biological activity (5ZF4, 5ZF9, 5ZF8) had slightly fewer 

warm-spot residues and hot-spot residues than the less biologically active systems 

(5ZFA, 5ZF7). 



While 5ZFA and 5ZF7 have more hot and warm spots, they both have a negative 

contributing residue (GLU23) that forms an electrostatic repulsion with the ligand, 

leading to a negative contribution to the binding. In contrast, the three systems with 

better biological activity do not have many hot-spots and warm-spots in terms of 

quantity. However, since the binding pocket of human HsDHODH is a long channel, 

the number of residues contributing in the range of 0.8-1.0 kcal/mol is high in the three 

systems of 5ZF4, 5ZF9, and 5ZF8, which leads to their excellent biological activity. 

Overall, our analysis suggests that the major binding energy contributions of the less 

biologically active systems were due to individual residue contributions, whereas the 

binding pocket of the more active systems is characterized by a high number of residues 

contributing at a moderate level. 

To analyze the primary binding mechanisms of each system, we aggregated the hot-

spot residues for each one (as shown in Fig. 3). Among them, MET13 emerged as a 

major contributor due to its longer side chain and ability to form larger van der Waals 

interactions with the ligand. In contrast, charged residues such as GLN17 and ARG306 

were found to form highly stable hydrogen bonds with their ligands (e.g., 5ZF7), 

suggesting that molecular designs should consider optimizing for these interactions as 

well. Moreover, our analysis revealed that LEU16 and THR330 make consistent 

contributions across all systems, and therefore, their interactions should also be 

considered during molecular design. Additionally, PHE32 and PHE68 were observed 

to form stable p-π interactions with C atoms on the ligand due to their aromatic side 

chains, which could further enhance binding affinity. In summary, understanding the 

key hot-spot residues and their interactions with the ligand is crucial for designing more 

effective molecular structures. By taking into account the contributions of MET13, 

GLN17, ARG306, LEU16, THR330, PHE32, and PHE68, it may be possible to 

optimize the binding affinity of a given system and improve its overall performance. 

 

Fig4. The contribution of each residue to the binding free energy calculated by the 

ASGBIE_ESS method. (a) Complex of 5ZF4; (b) Complex of 5ZF9; (c) Complex of 

5ZF8; (d) Complex of 5ZFA; (e) Complex of 5ZF7. Residues contributing more than 



1.5kcal/mol are shown in cyan, residues contributing between 1 and 1.5kcal/mol are 

shown in orange and residues contributing less than 1kcal/mol are shown in blue. 

 

Fig5. Contribution of different residues to binding free energy for each system. 

3.4 Virtual Screen and analysis 

In general, molecules with a score of less than -11.8 kcal/mol are considered to have 

potential for bioactivity in virtual screening. In our study, we used a slightly more 

stringent threshold of -12.8 kcal/mol and selected 15 molecules from the SPECS 

database based on this criterion (Table S18).  

To better understand the binding mechanisms and interactions of these molecules, we 

used RDKIT to calculate their similarity to the molecules in the crystal structures (Fig. 

S18). Although the molecules we identified from the screening were structurally 

dissimilar to those in the crystal structures, they all had longer chains in terms of 

conformation, which is consistent with the long, narrow binding pocket of HsDHODH. 

This pocket can accommodate a longer chain molecule that forms stable interactions 

with residues in the vicinity of the pocket. 

We performed MD simulations for all 15 molecules and calculated the RMSD of the 

ligands to ensure that all these molecules were moving within the pocket.(Fig. S2-S16) 

Meanwhile, ASGBIE_ESS was also used to calculate the free energy of binding for 

each complex system.(Table S3-S17) We specifically analyzed the interactions of the 

molecule AK-968/15360669, which had the best calculation results (Fig. 5a). As shown, 

the ligand forms stable hydrophobic interactions with seven redidues surrounding the 

pocket, and also forms a stable hydrogen bonding interaction with Q17 at the mouth of 

the pocket (Fig. 5b). We applied the same approach to analyze the residues around the 

pockets of the other 14 systems and found that molecules that had better predicted 

biological activity tended to bind more strongly to the surrounding residues. Moreover, 

ligands that formed stable hydrogen bonds with Q17 (e.g., AK-968/15360669, AK-



968/15360709, and AG-690/34650025) could significantly enhance their binding 

capacity. 

In summary, our study provides insights into the binding mechanisms and interactions 

of molecules that have potential for bioactivity against HsDHODH. The results of our 

virtual screening and molecular dynamics simulations could pave the way for the 

development of new drug candidates targeting this enzyme. 

 

Table2 Calculation of the ASGBIE_ESS for the fifteen screened to molecules. 

 

 

Fig6. AK-968/15360669 binds to the receptor protein.(a) AK-968/15360669 with 

residues in the periphery of the binding pocket. (b) AK-968/15360669 forms a 

hydrogen bonding interaction with Q17. Hydrogen bonds are shown as red dashed 

lines. 



  

Fig7. Contribution of the energy of the residues around the binding pocket. 

4.CONCLUSION 

Here, we investigate a novel sampling method suitable for calculating binding free 

energies and analyze the mode of action of ascofuranone derivatives binding to 

HsDHODH, which is associated with cancer, tumors, etc., using this method. Our 

results demonstrate that combining this new sampling method with ASGBIE provides 

a more accurate description of protein-ligand interactions. Furthermore, we conducted 

a virtual screening of this target to identify a series of compounds with entirely new 

backbones. These molecules contain numerous halogenated elements that could serve 

as novel lead compounds and be developed into a range of valuable HsDHODH 

inhibitors. 
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