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ABSTRACT: Accurate estimation of the pKa’s of cysteine residues in proteins could inform targeted approaches in hit discovery. 
The pKa of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug dis-
covery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based 
in silico tools are limited in their predictive accuracy of cysteine pKa’s relative to other titratable residues. Additionally, there are 
limited comprehensive benchmark assessments for cysteine pKa predictive tools. This raises the need for extensive assessment and 
evaluation of methods for cysteine pKa prediction. Here, we report the performance of several computational pKa methods, including 
single structure and ensemble-based approaches, on a diverse test set of experimental cysteine pKa’s retrieved from the PKAD data-
base. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine pKa values. Our results 
highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the 
best method (MOE) yielded a mean absolute error of 2.3 pK units — highlighting the need for improvement of existing pKa methods 
for accurate cysteine pKa estimation. Given the limited accuracy of these methods, further development is needed before these ap-
proaches can be routinely employed to drive design decisions in early drug discovery efforts.              

Methods for the accurate calculation of the pKa of ionizable res-
idues in proteins can enable targeted approaches in drug discov-
ery. The pKa of an ionizable residue provides insight into the 
protonation state of a residue at a specific pH and is an im-
portant physicochemical property in the experimental and com-
putational analysis of a protein. Knowledge of the pKa value of 
a titratable residue in a protein is extremely vital in understand-
ing the pH-dependent properties governing the structure and dy-
namics of a protein,1 — as well as in elucidating the catalytic 
mechanisms of enzymatic reactions.2  

Cysteine (Cys) plays diverse functional roles in cell biology,3 
including regulatory and catalytic redox activities.4 Cysteines 
are strong nucleophiles for binding metals and drugs5— and 
have been widely exploited in covalent drug discovery efforts.6–

16 The nucleophilicity of a Cys residue is dependent on the ion-
ization state of the side chain, with the deprotonated thiolate 
form (-S–) being more nucleophilic than its protonated thiol 
form (-SH). The reactivity and susceptibility of a Cys residue 
towards deprotonation and chemical protein modification is 
complex;15,17–20 however, pKa provides information about the 
relative stability of both the neutral and charged states. Cyste-
ines with low pKa’s have readily accessible thiolates that are 
prone to covalent chemical modification by electrophilic inhib-
itors (Figure 1). 

Several methods exist for determining the pKa of ionizable res-
idues in proteins;21 however, in silico approaches are generally 
preferred to experiments — given the challenging and time-
consuming nature of experiments. Computational prediction of 
protein pKa’s often rely on the three-dimensional structure of 
the protein, traditionally determined by X-ray crystallography 
or nuclear magnetic resonance (NMR). The general strategy for 
in silico pKa prediction is to estimate a pKa shift (i.e., ∆pKa) 
from a reference or intrinsic residue pKa in solvent. ∆pKa arises 

from the differences in the electrostatic environment and the in-
teractions experienced by the residue in solvent and in the full 
protein. Many in silico tools exist for protein pKa prediction,22–

30 with a significant majority of methods based on continuum 
electrostatics approaches23–26 and empirical methods.28 Among 
these methods, the empirical PROPKA program27,28 is arguably 
the most popular and widely used due to its speed, simplicity 
and availability. Recently, machine learning techniques based 
on deep-learning representation have been developed for pro-
tein residue pKa predictions.31–34 

Figure 1. Mechanism of Michael addition showing the covalent 
modification of a cysteine residue by an electrophilic compound.  
A low Cys pKa means that a greater proportion of the thiolate anion 
is available to engage in chemical protein modification. 

 



 

Despite the plethora of predictive pKa tools, significant and con-
trasting differences exist in their accuracy and overall predictive 
performance.35–37 Notably, Cys pKa prediction has proven chal-
lenging for these in silico methods38 and very limited bench-
mark studies assessing their performance are present in the lit-
erature today.38–40 Earlier effort by Awoonor-Williams and 
Rowley38 evaluated four pKa methods: continuum electrostat-
ics-based methods (H++, MCCE), empirical PROPKA pro-
gram, and explicit-solvent replica-exchange thermodynamic in-
tegration (RETI) algorithm implemented in GROMACS41 using 
both CHARMM and Amber force fields, to predict 18 Cys 
pKa’s in a test set of 12 proteins. The explicit-solvent RETI ap-
proach with the CHARMM36 force field yielded the lowest 
root-mean-square error of 2.4 pK units from experiment, alt-
hough this performance was comparable to the null model 
(RMSE = 2.7).38 More recent work by the Shen group40 have 
employed generalized Born-Neck2 continuous constant pH 
molecular dynamics (GB-Neck2 CpHMD) in the Amber MD 
suite to compute Cys pKa’s for a dataset of proteins mainly 
comprising the set evaluated in the Awoonor-Williams and 
Rowley benchmark study.38 Their results suggest that GB-
Neck2 CpHMD Cys pKa predictions yielded RMSE of 1.2–1.3, 
surpassing traditional structure-based predictive pKa methods.38 
However, the GB-Neck2 continuous CpHMD code is not freely 
distributed with the Amber MD package for use in our study. 

Here, we revisit the evaluation of methods for predicting cyste-
ine pKa using a combination of freely accessible tools available 
in our setting to assess their predictive accuracies — prior to 
being employed to support medicinal chemistry projects. In our 
approach, we performed benchmark assessments of several dif-
ferent in silico tools to predict Cys pKa’s in proteins for which 
an experimental structure exists and pKa has been determined. 
The experimental dataset was taken from the PKAD database,42  
and consisted of 16 wildtype (WT) and 10 mutant (MT) Cys 
pKa’s. We examined several methods, including industry-lead-
ing molecular modeling tools (MOE,43 Maestro44), continuum 
electrostatics-based methods (H++,22,23 PypKa26), empirical 
PROPKA27,28 tool, deep-learning pKAI predictor,34 and molec-
ular dynamics-based sampling techniques using popular Amber 
and NAMD constant-pH MD codes.45,46 We note that this is the 
largest test to date of cysteine pKa prediction using a wide range 
of different recently-developed methods. Our aim for this study 
is to provide a comprehensive evaluation and assessment of 
these in silico tools for Cys pKa prediction, to inform the 
broader scientific community about their predictive accuracies.  

 

THEORY & METHODS 
 
Data Set.  
The structure files comprising the protein test set were down-
loaded from the Protein Data Bank (PDB).47 Missing residues 
and loops within the protein model system were built using 
Prime48 within Protein Preparation Wizard tool in Maestro. For 
protein systems with multiple chains, only chain A of the pro-
tein was considered. The Cys pKa’s considered in this work 
were for free cysteines and do not include cysteine residues in-
volved in disulfide bonds or post-translational modifications. 
The pKa’s span a broad range of values from depressed to ele-
vated pKa’s relative to the intrinsic solution Cys pKa (8.6).49 A 
cysteine pKa test set comprising of 26 cysteine residues with 
experimentally determined pKa’s in wildtype and mutant 

proteins were obtained from the PKAD database:42 16 wild-type 
(WT) and 10 mutant (MT) proteins. In the mutant test set, pro-
tein structure files were not available, so single point mutations 
were introduced in the wildtype proteins prior to cysteine pKa 
calculation. The pKa’s were determined using a wide range of 
experimental methods such as reaction kinetics, NMR, and 
spectrophotometric titration. Tables 1 and 2 provide a summary 
of the test set of proteins studied in this work.  

 

Table 1. Test Set of Wildtype Protein Cysteine pKa’s. 

Protein PDB ID Cys ID Exptl. pKa 

!-1-antitrypsin 1QLP 232 6.86 (0.05)50
 

AhpC 4MA9 46 5.94 (0.10)51 
Cathepsin B 1THE 29 3.60 (0.04)52 
DJ-1 1P5F 106 5.4 (0.1)53 
HMCK 1I0E 283 5.6 (0.1)54 
uMtCK 1QK1 278 5.6 (0.1)54 
msrA 2L90 72 7.20 (0.12)55 
O(6)-AGT 1EH6 145 5.3 (0.2)56 
Papain 1PPN 25 3.32 (0.01)57 
ppΩ 1PPO 25 2.88 (0.02)57 
Thioredoxin 1ERT 32 6.3 (0.1)58 
PTP1B 2HNP 215 5.57 (0.12)59 
Ubc2 1JAS 88 10.2 (0.2)60 
Ubc13 1JBB 87 11.1 (0.1)60 
UbcH10 1I7K 102 10.9 (0.2)60 
Yersinia PTP 1YPT 403 4.67 (0.15)61 

 

Table 2. Test Set of Mutant Protein Cysteine pKa’s. 

Protein PDB ID Cys ID Exptl. pKa 

ACBPE78C 1NTI 78 11.5 (0.1)62
 

ACBPM46C 1NTI 46 8.2 (0.1)62 
ACBPS65C 1NTI 65 9.0 (0.1)62 
ACBPT17C 1NTI 17 9.8 (0.1)62 
ACBPV36C 1NTI 36 9.5 (0.1)62 
HMCKS285A 1I0E 283 6.7 (0.1)54 
MbA125C 2MGE 125 8.43 (0.03)63 
MbG124C 2MGE 124 6.53 (0.05)63 
msrAE115Q 2L90 72 8.2 (0.1)55 
Yersinia PTPH402A 1YPT 403 7.35 (0.04)61 

 

Methods including traditional single-structure-based and en-
semble-based sampling approaches were evaluated for their 
predictive accuracy in estimating experimental Cys pKa. The 
pKa methods examined include Poisson-Boltzmann continuum 
electrostatics-based approaches such as H++22,23 and PypKa26, 
empirical PROPKA program,27,28 deep-learning pKAI+ predic-
tor,34 and constant-pH molecular dynamics simulations imple-
mented in the Amber64 and NAMD65 codes. Additionally, pKa 
algorithms implemented in industry leading molecular design 
and chemical simulation software suite (MOE43 and Maestro44) 



 

were tested to access their predictive capabilities. For the en-
semble-based pKa calculations, both implicit and explicit sol-
vent models were used for the calculations. In the following 
section, we provide a brief overview of the different pKa meth-
ods used in our benchmark study. For more specific details 
about the input parameters used for the different methods, we 
refer readers to the Supporting Information. 

 

Summary of Predictive pKa Methods Used 
H++ computes residue pKa based on the established continuum 
electrostatics methodology by calculating the energetics of pro-
ton transfer of a titratable group.22,23 The program uses atomic 
resolution structure as input and computes residue pKa in addi-
tion to other molecular properties such as isoelectric point, ti-
tration curves, and protonation states. H++ is accessible via the 
url: http://newbiophysics.cs.vt.edu/H++/index.php  

 

PROPKA computes residue pKa based upon empirical relation-
ships between factors influencing pKa shifts and structures. 
More specifically, the model incorporates hydrogen bonding, 
desolvation, and charge-charge interaction effects into residue 
pKa shifts to account for the environmental perturbation to the 
reference or intrinsic pKa of a titratable group. More recent de-
velopment of the model includes improved treatment of pKa 
shifts in protein–ligand complexes via inductive intra- and in-
ter-ligand coupling interactions.27 In our study, PROPKA328 
was used for cysteine residue pKa prediction. 

 

Chemical Computing Group (CCG) MOE43 and Schrödinger 
Maestro44 software suite which provide access to PROPKA 
program for residue pKa prediction were also used to compute 
Cys pKa’s. For the Maestro software, residue pKa is computed 
based upon PROPKA3 and was accessed through the Refine tab 
of the Protein Preparation Wizard. For the MOE pKa applica-
tion, Cys pKa’s were computed via the Protein Properties win-
dow after structure preparation and refinement.  Also, ensemble 
pKa calculations were also performed by sampling conforma-
tional and protonation states via LowModeMD66 and Proto-
nate3D67 algorithms in MOE software (version 2022.02). De-
fault setting pH range from 6.4–8.4 was used for the ensemble 
property pKa calculations. Residue pKa application in MOE 
program is based upon custom implementation of PROPKA2.68   

 

PypKA is a tool to predict the pKa values of titratable residues 
in proteins using Poisson-Boltzmann/Monte Carlo-based calcu-
lations.26 The DelPhi69 program numerically solves the Poisson-
Boltzmann equation while the Monte-Carlo algorithm samples 
residue protonation/tautomeric states. In this work, cysteine 
pKa’s were calculated using the PypKA webserver which is ac-
cessible via the url: https://pypka.org/.  

 

pKAI+ is a deep learning-based pKa prediction tool trained on 
a database of residue pKa’s estimated from structures using the 
continuum electrostatics-based PypKa program.34 The model 
was trained on a large database consisting of approximately 6 
million pKa values estimated from about 50,000 biomolecular 
structures. The pKAI+ model employed predicts experimental 
pKa’s of titratable residues from a single conformation or pro-
tein structure. The model is accessible from the GitHub reposi-
tory: https://github.com/bayer-science-for-a-better-life/pKAI.  

Constant pH Molecular Dynamics (CpHMD) is capable of 
sampling titratable residue protonation states in conjunction 
with conformational dynamics for accurate pKa estimation. For 
this reason, CpHMD pKa approaches are generally more com-
putationally expensive than traditional single-structure-based 
pKa methods. In this work, we employ the CpHMD methods 
implemented in the Amber and NAMD codes for Cys pKa pre-
diction. For the Amber approach, simulations were carried out 
using both the Generalized Born (GB) implicit solvent model29 
and explicit solvent45 model via the pH-replica exchange MD 
(pH-REMD) algorithm using discrete protonation states. The 
protein was modelled using the Amber FF99SB70 force field 
and simulations were performed in parallel mode by running 
pH-REMD. The pH-REMD runs consisted of 16 replicas and 
were run for either 2 ns or 5 ns for each pH-replica in implicit 
and explicit solvent, respectively. For the NAMD runs, we com-
puted cysteine pKa’s in explicit solvent using the nonequilib-
rium molecular dynamics/Monte Carlo (neMD/MC) constant 
pH approach.46 The CHARMMM36 protein force field was 
used for the simulations which were run in parallel at pH rang-
ing 1–14 in steps of 1.0 pH unit.  For each pH simulation win-
dow, we performed 10 ns sampling yielding a total sampling 
time of 140 ns per protein model system. More details about the 
protocol and the input parameters used in the atomistic CpHMD 
simulations can be found in the Supporting Information.   

 

RESULTS AND DISCUSSION 
We assess the accuracy of the different predictive pKa methods 
employed in estimating the experimental Cys pKa’s and meas-
ure the correlation between the quantities. The different pKa 
methods used were grouped into traditional single-structure-
based and ensemble-based approaches. We refer to traditional 
single-structure-based approaches as methods that compute pKa 
using a single protein structure conformation, whereas ensem-
ble-based sampling methods couple the dynamic dependence of 
titratable residue pKa/protonation state with conformational 
sampling. We discuss the overall performance of these methods 
for both the wildtype and mutant protein test sets.   

 
Wildtype Protein Test Set.  
The wildtype protein test set comprised of 16 proteins with ex-
perimental Cys pKa’s for which a PDB structure exists. Cyste-
ine residue pKa’s were computed for the protein structure after 
system preparation, which includes filling in missing sidechain 
and loops within the protein model system. 

 
Traditional Single-structure-based pKa Methods. 
Figure 2 shows a plot of the predicted Cys pKa versus experi-
ment for the wildtype protein test set using different single 
structure-based pKa methods. The results show a significant var-
iation in the predictive performance and accuracy of the differ-
ent methods for Cys pKa calculation (Figure 2). The average 
root-mean-square error (RMSE) and mean absolute error 
(MAE) of the pKa predictions were 3.9 and 3.3, respectively. 
The results highlight intrinsic limitations and challenges in the 
predictive capabilities of these methods for accurate cysteine 
pKa calculation, Table 3. 

 



 

Among the different pKa methods explored (Figure 2), results 
using the pKa tool in the MOE program yielded the smallest de-
viation from experiment for the wildtype test set, Table 3. The 
MAE for the wildtype Cys pKa predictions using the MOE pKa 
tool was 2.3 pK units, which is ~1 pK unit better than the null 
model (Figure 3). All the other pKa methods performed either 
similarly or worse than the null model for the wildtype test set. 
The null model assumes the reference pKa of 8.6 for all cyste-
ines predicted in the test set. The predictions from the PROPKA 
program gave the largest deviation from experiment (MAE = 
~4.0). The poor agreement between the experimental and pre-
dicted Cys pKa’s for the empirical PROPKA program could 
most likely stem from weak parameterization of the method for 
cysteine residues due to a small amount of training data.68 The 
difficulty of PROPKA in predicting experimental Cys pKa’s has 
been highlighted in previous studies.38,40 

 

 
Figure 2. Predictive versus experimental Cys pKa for wildtype pro-
tein test set using traditional single structure-based pKa methods. 

 

Table 3. Statistical significance in RMSE for the traditional 
pKa methods used for the wildtype protein test set. 

Method " Range for "!"%$  
H++ 4.26 3.07 < $ < 6.27 

Maestro 4.34 3.13 < $ < 6.40 

MOE 2.84 2.05 < $ < 4.19 

PROPKA 4.45 3.21 < $ < 6.56 

PypKa 3.73 2.69 < $ < 5.49 

pKAI+ 3.82 2.75 < $ < 5.62 

Confidence limits in RMSE values (#) were calculated using $-
squared function (Eqn. 74 of ref [71])71 at a range of 95% for N=16. 

 

Figure 3. Mean absolute error (MAE) for Cys pKa predictions us-
ing single structure-based pKa methods on the wildtype protein set. 

 

Although the MOE pKa program showed the best predictive 
performance among the structure-based methods (Figure 3), 
there were a few outliers in the pKa correlation plot (Figure 2). 
For example, cysteine pKa’s in the active site of protein tyrosine 
phosphatases: Cys-403 of yersinia PTP and Cys-215 of human 
PTP1B were significantly downshifted by 5.7 and 4.3 pK units, 
respectively, relative to experiment. In a similar vein, the active 
site Cys-106 and Cys-72 in the proteins DJ-1 and methionine 
sulfoxide reductase A (msrA) were overestimated by 5.5 and 
3.6 pK units, respectively, relative to experiment. Both active-
site cysteines have nearby charged glutamic acid residues in 
typical ionization fashion which destabilize the thiolate cysteine 
form (Figure 4), resulting in elevated cysteine pKa predictions. 
The  magnitude in predicted pKa elevation for Cys-106 of DJ-1 
relative to Cys-72 of msrA is potentially due to the closer prox-
imity of the thiolate and carboxyl groups, Figure 4.  

Figure 4. Representative configuration of the active site cysteine 
thiolates in the proteins (a) DJ-1 and (b) msrA. Both Cys-106 of 
DJ-1 and Cys-72 of msrA have a nearby Glu residue in the crystal 
structure. Figure S2 shows the experimental XRD electron density 
of the Glu18---Cys108 contact in DJ-1. 

The discrepancy between predicted and experimental Cys pKa’s is 
likely due to differences in protein crystal structure conformation 
relative to the biologically relevant state. A major limitation of tra-
ditional single structure-based pKa methods is that they are unable 
to capture dynamic changes in the local environment of ionizable 
residues. In some cases, proteins may be trapped in nonrepresenta-
tive conformations72 or largely coupled between conformational 
and protonation states.73 It is also important to note the variability 
in pKa measurements of titratable residues in proteins. The pKa of 
Cys residue is strongly influenced by protein microenvironment74 
— nearby basic residues decrease Cys pKa by stabilizing thiolate 
state.75 We have examined the immediate environment of Cys res-
idues to explore the presence of nearby basic residues (Table S14 
in SI). We hypothesize that for cases where there are no basic resi-
dues and there is a substantial drop in the reported Cys pKa, such 
values are probably due to variability in experiments. For instance, 
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the very low experimental pKa reported for some Cys residues in 
proteins (e.g., Cys-25 in ppΩ; PDB id: 1PPO)  may be due to metal 
coordination that is present in pH titration experiments. In our pKa 
calculations, such metal–Cys coordination was not considered in 
our model structures. These differences in structure could be a po-
tential contributing factor to the discrepancy between predicted pKa 
estimates and experiment.  

 

Ensemble-based pKa Methods  
A primary source of inaccuracy for traditional single structure-
based pKa methods is that they only use a single protein confor-
mation state to deduce titratable residue pKa and protonation 
states. However, residue protonation state and conformation are 
strongly coupled to each other. Ensemble-based pKa methods 
like constant-pH molecular dynamics are designed to sample 
multiple protein conformation and residue protonation states. 
To account for the coupling between protein conformational 
sampling and titratable residue protonation state changes, we 
employed constant-pH molecular dynamics simulations to cal-
culate cysteine pKa’s. Constant-pH MD simulations can directly 
sample pH-induced conformational changes and its effect on ti-
tratable residue pKa and protonation state. These methods have 
been shown to yield good estimates of experimental pKa’s for 
titratable residues, particularly Asp and Glu residues.72,76,77  

To this effect, we applied the Amber and NAMD CpHMD 
codes to predict Cys pKa’s for the protein model systems stud-
ied. Both implicit and explicit solvent models were used in our 
simulations. We refer to the Amber CpHMD approach as Am-
ber99SB/Amber, while the NAMD CpHMD is referred to as 
Charmm36/NAMD. In addition to the above CpHMD methods 
employed, we also performed ensemble pKa calculations via 
pH-dependent protein conformation sampling using the MOE 
program by combining LowModeMD66 and Protonate3D67 al-
gorithms. Figure 5 depicts a summary of the predicted Cys pKa 
results in comparison with experimental pKa for the wildtype 
protein test set using the ensemble-based pKa methods. Table 4 
reports the statistical significance in RMSE for the results.  

 

 
Figure 5. Predictive versus experimental Cys pKa for a test set of 
wildtype proteins using ensemble-based pKa sampling methods. 

 

Table 4. Statistical significance in RMSE for the ensemble-
based pKa methods used for the wildtype protein test set. 

Method " Range for "!"%$  
Amber99SB/Amber (explicit ) 8.00 5.77 < $ < 11.8 

Amber99SB/Amber (implicit) 6.32 4.56 < $ < 9.32 

Charmm36/NAMD (explicit) 3.55 2.56 < $ < 5.23 

MOE ens pKa 2.67 1.93 < $ < 3.94 

Confidence limits in RMSE values (#) were calculated using $-
squared function (Eqn. 74 of ref [71])71 at a range of 95% for N=16. 

 

Figure 6. Mean absolute error (MAE) for test set of wildtype pro-
teins using ensemble-based pKa sampling methods. 
 

Analogous to the results obtained using the traditional structure-
based pKa approaches (Figure 2), there is a variation in the pre-
dictive accuracies of the different pKa methods used (Figure 5). 
Figure 6 shows the mean absolute error of the ensemble-based 
pKa methods. Among these methods, the ensemble-average Cys 
pKa results obtained using the MOE program yielded the small-
est deviation from experiment (Table 4; Figure 6). The com-
puted Cys pKa’s using the Amber99SB/Amber CpHMD code 
yielded the largest deviation from experiment (Figure 6). For 
both the implicit and explicit solvent models, predicted Cys 
pKa’s were severely overpredicted by the Amber99SB/Amber 
CpHMD code. This appeared to be more significant for simula-
tions carried out in explicit solvent relative to the GB implicit 
solvent model, (Figure 5). To ensure that the large deviation in 
predictive pKa results for the explicit solvent runs were not due 
to poor sampling, we extended the simulations by doubling the 
simulation time for each pH-replica window from 5 ns to 10 ns. 
We did not observe any significant improvement in the predic-
tive Cys pKa results for the extended runs (Table S12 in SI), 
suggesting that the fundamental limitation in the accuracy of the 
method is not as a result of poor conformational sampling. 

Although the mean absolute deviation is lower for the 
Charmm36/NAMD pKa predictions relative to the Amber re-
sults (Figure 6), the predicted Cys pKa values for the 
Charmm36/NAMD method have a narrow dynamic range. So, 
both methods are generally poor for accurate Cys pKa predic-
tion, with no predictive relative ranking among computed 
pKa’s. A plausible reason for the inaccuracy in the Am-
ber99SB/Amber CpHMD pKa predictions can be attributed to 
limitations in the force field model to describe cysteine thiol and 
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thiolate parameters distinctly.78 In previous studies, we have ob-
served that Cys pKa calculations computed using all-atom RETI 
pKa approach in GROMACS yielded slightly better perfor-
mance when Charmm36 force field (RMSD= 2.40) was used 
relative to Amber99SB force field (RMSD= 3.20) for a test set 
oof 18 experimental cysteine pKa’s.38 The Amber force field 
model uses the same Lennard-Jones (LJ) sigma and epsilon pa-
rameters for both thiol and thiolate forms of cysteine (see Table 
S1 in SI) — a limitation which has been shown to impact pro-
tein pKa calculations and the hydration structure of model thio-
lates in free energy calculations.78 This raises the need for the 
development of improved force field parameters to enable ac-
curate Cys pKa calculations. Recent work by Roitberg, Estrin 
and coworkers79 have developed novel set of LJ parameters for 
cysteine relevant species for use in classical Amber MD simu-
lations. The parameters were derived to reproduce solute-water 
radial pair distribution functions g(r) (RDF) from ab initio mo-
lecular dynamics.79  

To investigate the impact of the improved parameters on the 
predictive cysteine pKa results, we performed Amber thermo-
dynamic integration (TI) MD calculations for select few sys-
tems following the thermodynamic cycle depicted in Scheme 1, 
using both default and modified Amber parameters. The modi-
fied cysteine thiolate Amber parameters were derived from the 
recent work of Estrin and coworkers79 (see Table S2 in SI for 
details). 

Scheme 1. Thermodynamic cycle used for the Amber-TI cysteine 
pKa calculations. The model system used is alanine pentapeptide 
with capped termini. ∆∆G refers to the relative free energy differ-
ence between the protein and the model peptide.   

 

For the select protein systems explored, our preliminary results 
from the Amber-TI MD calculations suggest a slight improve-
ment in predictive performance when using the modified cyste-
ine thiolate parameters relative to the default ones (Table S3).  
On average, we observed an improvement of 0.5 ∆pKa units in 
the predicted pKa error estimates when the modified parameters 
were used. However, the calculated Cys pKa shifts are still ele-
vated relative to experiment (Table S3 in SI). The observed 
trend in elevation of the predicted Cys pKa estimates for the 
Amber-TI calculations correlates with the previous results from 
the Amber constant-pH MD simulations. Although the quality 
and variety of the test set is quite limiting to draw any meaning-
ful conclusions from these results, our findings suggest that 
more rigorous validation and parametrization efforts are needed 
for accurate Cys pKa calculations. In particular, for use of the 
improved cysteine thiolate parameters in CpHMD simulations, 
the cysteine GB parameters would need to be updated. In addi-
tion, further improvement and a complete assessment of the pa-
rameters is needed, as they were developed to reproduce Cys 
sulfur and water oxygen interactions, and evaluated in a specific 
system of interest.79 Overall, the analysis indicates that proper 
description and parameterization of cysteine thiol/thiolate pa-
rameters are required to achieve reliable results in MD-based 

simulations, including pKa calculations — highlighting the need 
for improvement in force field parameters for accurate Cys pKa 
prediction. 

The best performing method among the ensemble-based pKa 
sampling approaches employed for the wildtype test set was the 
MOE ensemble pKa approach — which yielded an MAE of 2.4 
pK units (Figure 6). This is on par with the MOE pKa results 
obtained earlier where protein conformation sampling was not 
considered. We note that other factors beyond conformational 
changes in protein structure, including the variability in pH 
measurements and computational methodology may be contrib-
uting to the observed limited performance. In some cases, the 
deviation in the predicted Cys pKa’s from experiment slightly 
improved when pH-dependent conformational sampling was in-
troduced, for example the active site Cys-403 of yersinia PTP. 
In this case, the predictive pKa performance improved by 3.4 
pK units upon sampling protein conformational and protonation 
states, although the predicted pKa of Cys-403 was still down-
shifted by 2.4 pK units from experiment. This is better than the 
initial ~6 pK units downshift predicted relative to experiment 
for the single structure MOE pKa approach. Visual inspection 
of representative configurations from both pKa approaches sug-
gest that rearrangement of protein side chains occur such that 
the active-site Cys-403 in yersinia PTP adopts a different orien-
tation in both states (Figure 7).  

 

 

 

Figure 7. Representative configuration of the active-site Cys-403 
in yersinia PTP from single structure (a) and ensemble-based (b) 
MOE pKa calculations. The active site Cys-403 adopts a different  
position and orientation in both states, which leads to significantly 
different predicted cysteine pKa’s. 



 

The representative position and orientation of Cys-403 of yer-
sinia PTP in the ensemble pKa approach is different from the 
single structure-based pKa approach (Figure 7). Although ade-
quate conformational and protonation state sampling is required 
for accurate pKa prediction, the results highlight the importance 
of conformational sampling and structure dynamics effects in 
pKa calculations, particularly for cysteines. This is particularly 
important for cysteines in catalytic environments (i.e., dyad and 
triad systems) where other residue protonation and rota-
meric/tautomeric states (e.g., histidine) can be largely coupled 
to one another and can influence pKa. 

 
Mutant Protein Test set 
The mutant protein test set consisted of 10 proteins which have 
been listed in Table 2. For the mutant test set of proteins, crystal 
structure files were not available, so single point mutations were 
introduced in the wildtype proteins. The computationally mu-
tated proteins were preprocessed using Protein Preparation 
Wizard in the Schrödinger Maestro program prior to cysteine 
pKa calculation. 

 

Single Structure and Ensemble-based pKa Methods 
Figures 8 and 9 depict the correlation plot between the experi-
mental and predicted Cys pKa’s using the single structure-based 
and ensemble pKa methods for the mutant protein test set. Both 
classes of pKa methods appear to yield reasonable predictive 
performance (average MAE of ~2 pKa shifts) in comparison 
with the wildtype Cys pKa results, (Figure 5). Although the av-
erage performance of these methods seems encouraging for this 
test set, it is important to note that the experimental values have 
a narrow dynamic range for this set (6.5 –11.5), Table 2. The 
average ∆pKa of the test set is ~1 pKa unit, which lies within the 
distribution of the reference solution Cys pKa. So, this data set 
is not representative and comprehensive enough to capture the 
true accuracy and predictive performance of the different meth-
ods. Thus, no meaningful conclusions about the predictive ca-
pabilities of these methods can be drawn from the results since 
they essentially predict the null cysteine pKa. In other words, 
the performance of these methods is on par or worse than the 
null model — so they are not being predictive at all given the 
narrow dynamic range in residue pKa’s. The availability of 
more extensive cysteine pKa datasets could help to better inform 
the predictive accuracies of these methods. 

Although the average performance of these methods seems en-
couraging for this test set, it is important to note that the exper-
imental values have a narrow dynamic range for this set (6.5 –
11.5), Table 2. The average ∆pKa of the test set is ~1 pKa unit, 
which lies within the distribution of the reference solution Cys 
pKa. So, this data set is not representative and comprehensive 
enough to capture the true accuracy and predictive performance 
of the different methods. Thus, no meaningful conclusions 
about the predictive capabilities of these methods can be drawn 
from the results since they essentially predict the null cysteine 
pKa. In other words, the performance of these methods is on par 
or worse than the null model — so they are not being predictive 
at all given the narrow dynamic range in residue pKa’s. The 
availability of more extensive cysteine pKa datasets could help 
to better inform the predictive accuracies of these methods. 

 

 
Figure 8. Cys pKa results for the mutant protein test set using static-
based pKa methods. 

 

 
Figure 9. Cys pKa results for mutant protein test set using different 
MD-based pKa methods. 

 

Limitations of in silico Methods for Cys pKa Calculations 
The results obtained in this study highlight intrinsic limitations 
in existing methods for accurate cysteine pKa prediction. Issues 
stemming from multiple factors, including poor pKa models to 
inadequate protein conformational space and protonation state 
sampling are plausible factors, to name a few. Not to mention, 
the variability in experimental pKa measurements via different 
techniques and the lack of rigorous test sets for cysteine pKa 
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validation. In addition, accurate description of cysteine 
thiol/thiolate parameters is lacking in conventional MM force 
fields and simulated protein structures may deviate from the bi-
ologically relevant or native state structure leading to discrep-
ancies between predicted cysteine pKa’s and experiment. For 
catalytic-site cysteines which typically have depressed pKa’s, 
correct assignment of the protonation/rotameric/tautomeric 
states of neighboring residues (e.g., histidine) is crucial to 
achieve reliable pKa results. This is because the protonation 
states of residues in these microenvironments are typically cou-
pled to one another, which can have significant effect on the 
resultant pKa. A classic example includes active-site cysteines 
(or serine residues) comprising catalytic dyad/triad systems in 
enzymes such as proteases, where neighboring acidic (e.g., 
Asp/Glu) and basic (i.e., His) residues polarize and activate the 
nucleophile for covalent catalysis, Scheme 2. This effect of in-
duced polarization stabilizes the charged state of the nucleo-
phile — lowering the resultant pKa. Polarizable force fields80,81 
may be better suited for describing residue pKa’s in highly-
charged catalytic enzyme sites which is a challenge for conven-
tional force fields. 

 

 
Scheme 2. Schematic representation of the classic catalytic 
triad mechanism showing the coordinated network of residues 
that lead to the polarization and activation of a cysteine nucleo-
phile for covalent modification.  

 

We note that we do not observe marked discrepancies between 
predicted and experimental pKa’s when these methods are used 
to estimate pKa’s for titratable residues other than cysteines 
(e.g., Asp, Glu, His, Lys, Tyr). To demonstrate this, we com-
puted the pKa’s of Asp, Glu, His, and Lys residues in the classic 
hen egg white lysozyme (HEWL) system using all the methods 
discussed in this work. The results suggest that these methods 
are fairly accurate in predicting experimental pKa’s for residues 
in this system (average RMSE = 0.84 pK units), Figure S1. The 
contrast in the performance of these methods for cysteines rel-
ative to other titratable residues may reflect a poorer description 
in the underlying physics that is missing in these models or a 
greater complexity in the acid/base chemistry of cysteines. 

Moving forward, the adoption and development of better pKa 
models that capture the complex electrostatic microenviron-
ment in proteins could prove useful in tackling the limitations 
in existing pKa models for accurate cysteine pKa prediction. In 
addition, more extensive sampling and coupling of the dynamic 
dependence in protein conformation and protonation states is 
another opportunity for improvement for these models. Lastly, 
the availability of large and comprehensive datasets of experi-
mental cysteine pKa’s will enable rigorous validation of pKa 
methods, including emerging machine learning-based pKa pre-
dictors. 

 

CONCLUSION 
In summary, we have employed a broad range of pKa tools to 
assess their predictive performance in accurately estimating 
cysteine pKa’s for a test set of proteins collected from the PKAD 
database. The protein test set consisted of 16 wildtype and 10 
computationally mutated proteins with experimentally meas-
ured cysteine pKa’s. We examined traditional single-structure-
based and ensemble-based pKa approaches, including a deep 
learning-based pKa prediction tool, pKAI+. Overall, the results 
highlight intrinsic limitations in the accuracy and predictive 
performance of in silico methods for cysteine pKa calculation. 
For the wildtype test set of proteins, the performance of the best 
method (MOE) yielded a root-mean-squared error of 2.7 pK 
units. Although we observed a slightly better overall perfor-
mance for the mutant test set, no meaningful conclusion could 
be drawn from the results given the narrow distribution of resi-
due pKa shift for this set (avg. |∆pKa| is ~1 unit from the refer-
ence solution Cys pKa). The ensemble-based sampling and ad-
vanced CpHMD approaches did not significantly improve the 
accuracy of the Cys pKa predictions for the test set evaluated. 
In particular, we found that the Amber CpHMD code using dis-
crete protonation states greatly overestimated predicted Cys 
pKa’s — yielding the most significant deviation from experi-
ment among the pKa methods evaluated. We posit this is due to 
a poor description of the cysteine thiol/thiolate force field pa-
rameters in Amber MD force field, particularly LJ parameters. 
Improvement in the force field description of cysteine parame-
ters could yield more accurate pKa results for MD-based simu-
lations. The continued development and rigorous evaluation of 
these methods on comprehensive datasets of experimental cys-
teine pKa will go a long way to inform and improve their pre-
dictive capabilities. Progress in the calculation and prediction 
of cysteine pKa’s for drug discovery will require collaborative 
efforts from experimentalists and computational scientists,37,82 
— redefining the conceptual framework underpinning the com-
plexity in acid-base chemistry of cysteines in biomolecules. 

 

DATA AND SOFTWARE AVAILABILITY 
Additional data and results for all the calculations performed 
are available in the Supporting Information. The PDB files used 
for the different cysteine pKa calculations can be found at: 
https://github.com/awoonor/Cysteine_pKa_PDB_files.   

The pKa methods explored span a broad range of classes, which 
include continuum electrostatics-based methods to state-of-the-
art enhanced sampling constant-pH MD approaches. The pKa 
method include H++ (http://newbiophysics.cs.vt.edu/H++/), 
PROPKA (https://github.com/jensengroup/propka), PypKA 
(https://pypka.org/run-pypka/), and PKAI+ 
(https://github.com/bayer-science-for-a-better-life/pKAI). 
CCG MOE (https://www.chemcomp.com/) and Schrödinger 
Maestro (https://www.schrodinger.com/products/maestro) 
software suite were also used to compute cysteine residue 
pKa’s. Ensemble-based pKa approaches were computed using 
popular Amber (https://ambermd.org/) and NAMD 
(http://www.ks.uiuc.edu/Research/namd/) software packages. 
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