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ABSTRACT

Molecular representation learning (MRL) has gained tremendous attention due
to its critical role in learning from limited supervised data for applications like
drug design. In most MRL methods, molecules are treated as 1D sequential to-
kens or 2D topology graphs, limiting their ability to incorporate 3D information
for downstream tasks and, in particular, making it almost impossible for 3D ge-
ometry prediction/generation. In this paper, we propose a universal 3D MRL
framework, called Uni-Mol, that significantly enlarges the representation abil-
ity and application scope of MRL schemes. Uni-Mol contains two pretrained
models with the same SE(3) Transformer architecture: a molecular model pre-
trained by 209M molecular conformations; a pocket model pretrained by 3M
candidate protein pocket data. Besides, Uni-Mol contains several finetuning strate-
gies to apply the pretrained models to various downstream tasks. By properly
incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular
property prediction tasks. Moreover, Uni-Mol achieves superior performance in
3D spatial tasks, including protein-ligand binding pose prediction, molecular con-
formation generation, etc. The code, model, and data are made publicly available
at https://github.com/dptech-corp/Uni-Mol.

1 INTRODUCTION

Recently, representation learning (or pretraining, self-supervised learning) [1; 2; 3] has been prevailing
in many applications, such as BERT [4] and GPT [5; 6; 7] in Natural Language Processing (NLP),
ViT [8] in Computer Vision (CV), etc. These applications have a common characteristic: unlabeled
data is abundant, while labeled data is limited. As a solution, in a typical representation learning
method, one first adopts a pretraining procedure to learn a good representation from large-scale
unlabeled data. Then a finetuning scheme is followed to extract more information from limited
supervised data.

Applications in the field of drug design share the characteristic that calls for representation learning
schemes. The chemical space that a drug candidate lies in is vast, while drug-related labeled data is
limited. Not surprisingly, compared with traditional molecular fingerprint-based models [9; 10], recent
molecular representation learning (MRL) models perform much better in most property prediction
tasks [11; 12; 13]. However, to further improve the performance and extend the application scope
of existing MRL models, one is faced with a critical issue. From the perspective of life science, the
properties of molecules and the effects of drugs are mostly determined by their 3D structures [14; 15].
In most current MRL methods, one starts with representing molecules as 1D sequential strings,
such as SMILES [16; 17; 18] and InChI [19; 20; 21], or 2D graphs [22; 11; 23; 12; 24]. This may
limit their ability to incorporate 3D information for downstream tasks. In particular, this makes it
almost impossible for 3D geometry prediction or generation, such as, e.g., the prediction of protein-
ligand binding pose [25]. Even though there have been some recent attempts trying to leverage 3D
information in MRL [26; 27], the performance is less than optimal, possibly due to the small size of
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Figure 1: Schematic illustration of the Uni-Mol framework.

3D datasets, and 3D positions can not be used as inputs/outputs during finetuning, since they only
serve as auxiliary information.

In this work, we propose Uni-Mol, to our best knowledge, the first universal 3D molecular pretraining
framework, which is derived from large-scale unlabeled data and is able to directly take 3D positions
as both inputs and outputs. In particular, Uni-Mol consists of 3 parts. 1) Backbone. A Transformer
based model that can effectively capture the input 3D information, and predict 3D positions directly.
2) Pretraining. Two large-scale datasets: a 209M molecular conformation dataset and a 3M candidate
protein pocket dataset, for pretraining 2 models on molecules and protein pockets, respectively. And
two pretraining tasks: 3D position recovery and masked atom prediction, for effectively learning 3D
spatial representation. 3) Finetuning. Several finetuning strategies for various downstream tasks. For
example, how to use the pretrained molecular model in molecular property prediction tasks; how to
combine the two pretrained models in protein-ligand binding pose prediction. We refer to Fig. 1 for an
overall schematic illustration of the Uni-Mol framework, and the details will be described in Sec. 2.

To demonstrate the effectiveness of Uni-Mol, we conduct experiments on a series of downstream tasks.
In the molecular property prediction tasks, Uni-Mol outperforms SOTA on 14/15 datasets on the
MoleculeNet benchmark. In 3D geometric tasks, Uni-Mol also achieves superior performance. For
the pose prediction of protein-ligand complexes, Uni-Mol predicts 80.35% binding poses with RMSD
<= 2Å, 22.58% relatively better than popular docking methods, and ranks 1st in the docking power test
on CASF-2016 [28] benchmark. Regarding molecular conformation generation, Uni-Mol achieves
SOTA for both Coverage and Matching metrics on GEOM-QM9 and GEOM-Drugs [29]. Moreover,
Uni-Mol can be successfully applied to tasks with very limited data like pocket druggability prediction.

To summarize, Uni-Mol made the following contributions: 1) To our best knowledge, Uni-Mol is the
first pure 3D molecular pretraining framework that can predict 3D positions, and the first molecular
pretraining framework that can be directly used in 3D tasks in the field of drug design. 2) Based on
extensive benchmarks, we build a simple and efficient SE(3) Transformer backbone1, and an effective
3D pretraining strategy in Uni-Mol. 3) Uni-Mol outperforms SOTA in various downstream tasks.
4) The whole Uni-Mol framework, including code, model, and data, will be made publicly available.

2 UNI-MOL FRAMEWORK

2.1 BACKBONE

In MRL, there are two well-known backbone models, graph neural networks(GNN) [22; 23; 12] and
Transformer [24; 11]. With GNN as the backbone model, for efficiency purposes, locally connected
graphs are often used to represent molecules. However, the locally connected graph lacks the ability
to capture the long-range interactions among atoms. We believe that long-range interactions are
important in MRL. Therefore, We choose Transformer as the backbone model in Uni-Mol, as it fully
connects the nodes/atoms and thus can learn the possible long-range interactions.

1Although the backbone can output SE(3)-equivariant positions, it is based on SE(3)-invariant representations.
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Figure 2: Left: the overall pretraining architecture. Middle: the model inputs, including atom
representation and pair representation. Right: details in the model block.

However, Transformer cannot handle 3D spatial data directly as it was originally designed for NLP
tasks. Although there are several recent works extending Transformer to 3D data [30; 31], most of
them are much slower than the standard Transformer due to the complex additional components like
Tensor Field Networks. Considering the pretraining cost in the large-scale dataset, we need an efficient
backbone. To achieve that, based on the standard Transformer with Pre-LayerNorm [32], we introduce
several efficient and necessary modifications, for the ability to take 3D positions as inputs and outputs.

Architecture Overview As illustrated in Fig. 2, the Uni-Mol backbone is a Transformer based
model. It has two inputs, atom types and atom coordinates. And two representations (atom and
pair) are maintained in the model. The atom representation is initialized from atom types, by the
Embedding layer; The pair representation is initialized by invariant spatial positional encoding
calculated from atom coordinates. In particular, based on pair-wise Euclidean distances among
atoms, the pair representation is invariant to global rotation and translation. The two representations
communicate with each other in self-attention module. Details are in the following subsections.

Encode 3D positions Due to its permutational invariance, Transformer cannot distinguish the posi-
tions of inputs without positional encoding. Different with the discrete positions used in NLP/CV [33;
34], the positions in 3D space, i.e. coordinates, are continuous values. Besides, the positional encod-
ing procedure needs to be invariant under global rotation and translation. Several 3D spatial positional
encodings were already proposed to tackle this [35; 36; 37; 38], and we have no interest in reinventing
a new one. Therefore, we benchmark existing encodings (in Appendix D.1), and use a simple and
effective one: Euclidean distances of atom pairs, followed by a pair-type aware Gaussian kernel [39].

Furthermore, since the invariant 3D spatial positional encoding is encoded at the pair level, we
also maintain a pair-level representation in Transformer, to enhance the 3D spatial representation.
Specifically, the pair representation is initialized as the aforementioned spatial positional encoding.
Then, to update pair representation, we use atom-to-pair communication via the result of the multi-
head Query-Key product in self-attention. Formally, the update of ij pair representation is denoted as

ql+1
ij = ql

ij + {
Ql,h

i (Kl,h
j )T

√
d

|h ∈ [1, H]}, (1)

where ql
ij is the pair representation of atom pair ij in l-th layer, H is the number of attention heads,

d is the dimension of hidden representations, and Ql,h
i (Kl,h

j ) is the Query (Key) of the i-th (j-th)
atom in the l-th layer h-th head. Besides, to leverage 3D information in the atom representation,
we also introduce pair-to-atom communication, by using the pair representation as the bias term
in self-attention. Formally, the self-attention with pair-to-atom communication is denoted as

Attention(Ql,h
i ,Kl,h

j ,V l,h
j ) = softmax(

Ql,h
i (Kl,h

j )T
√
d

+ ql−1,h
ij )V l,h

j , (2)

where V l,h
j is the Value of the j-th atom in the l-th layer h-th head. As shown in the above equations,

the proposed pair representation is very simple, and the extra cost of maintaining it is negligible.
And our benchmark in Appendix D also demonstrates its efficiency and effectiveness.
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Algorithm 1 Corrupted Position Generation and Assignment.

Require: X ∈ Rm×3: coordinates of m atoms, r: noise range, re_assign: use re-assignment or not
1: R = X+ δ, where δ ∼ Uniform(−rÅ, rÅ) ▷ Generate corrupted positions
2: if (not re_assign) return R ▷ Return directly if not need the re-assignment
3: D = {D[i, j] = ∥Xi −Rj∥2 | 1 ≤ i, j ≤ m} ▷ Compute distance
4: for i in random_perm(1,m) do ▷ Greedy assignment based a random order
5: k = argmin(Di,:) ▷ Get the nearest position at the i-th row
6: Yi = Rk ▷ Assignment
7: D:,k = inf ▷ Marked the k-th column as used

return Y ▷ Return corrupted positions

Predict 3D positions With 3D spatial positional encoding and pair representation, the model can
learn a good 3D representation. However, it still lacks the ability to directly output coordinates, which
is essential in 3D spatial tasks. To this end, we introduce an SE(3)-equivariant head to predict the
delta positions based on SE(3)-invariant pair representation and equivariant input xi −xj , denoted as

x̂i = xi +

n∑
j=1

(xi − xj)cij
n

, cij = ReLU((qL
ij − q0

ij)U)W , (3)

where n is the number of atoms, L is the number of layers , xi ∈ R3 is the input coordinate of i-th
atom, and x̂i ∈ R3 is the output coordinate of i-th atom, ReLU(y) = max(0, y) is Rectified Linear
Unit [40], U ∈ RH×H and W ∈ RH×1 are the projection matrices to convert pair representation to
scalar. This head is similar to the position update procedure in EGNN [41], but much more efficient
due to Uni-Mol only updating 3D positions in the last layer. Besides, to be consistent with delta posi-
tion prediction, Uni-Mol uses delta pair representation to update coordinates, while EGNN uses pair
representation directly. Our benchmark in Appendix D.3 demonstrates the one in Uni-Mol is better.

Please note that the backbone in Uni-Mol can be replaced with any SE(3) model that can take 3D
positions as inputs and outputs. However, considering the massive pretraining cost in the large-scale
dataset, we favor the efficient backbone. So we only make several simple and necessary modifications
to the standard Transformer model, based on the ablation benchmark results in Appendix D.

2.2 PRETRAINING

Large-Scale dataset For the purpose of pretraining, we generate two large-scale datasets, one
composed of 3D structures of organic molecules, and another composed of 3D structures of candidate
protein pockets. Then, two models are pretrained using these two datasets, respectively. As pockets
are directly involved in many drug design tasks, intuitively, the pretraining on candidate protein
pockets can boost the performance of tasks related to protein-ligand structures and interactions.

The molecular pretraining dataset is based on multiple public datasets (See Appendix A for more
information). After normalizing and deduplicating, it contains about 19M molecules. To generate
3D conformations, we use ETKGD [42] with Merck Molecular Force Field [43] optimization in
RDKit [44] to randomly generate 11 conformations for each molecule, totally 209M conformations.

The protein pocket pretraining dataset is derived from the Protein Data Bank (RCSB PDB) [45], a
collection of 180K 3D structures of proteins. To extract candidate pockets, we first clean the data
by adding the missing side chains and hydrogen atoms; then we use Fpocket [46] to detect possible
binding pockets of the proteins; and finally, we filter pockets by the number of residues. In this way,
We collect a dataset of 3.2M candidate pockets for pretraining.

Pretraining strategies Self-supervised task is vitally important for effective learning from large-
scale unlabeled data. For example, the masked token prediction task in BERT [4] encourages the
model to learn the contextual information. In Uni-Mol, we want to encourage the model to learn
the 3D structural information during pretraining. To this end, we design a 3D position recovery
self-supervised task. The main idea of the task is to recover the correct 3D positions, given the
corrupted input positions. An intuitive way is to mask the positions, like the token masking in BERT.

4



Published as a conference paper at ICLR 2023

However, the positions are continuous values, not discrete values; we cannot use a special value to
represent the mask (like the [MASK] token in BERT).

Therefore, rather than masking, random positions are used as corrupted input 3D positions, and the
model is trained to predict the correct position. Nevertheless, learning the mapping from a random po-
sition to the ground-truth atom position is very challenging. There are two technologies to reduce the
delta positions (between random and ground-truth positions), making the learning more feasible. First,
re-assignment, given m atoms and m random positions, there are m! possible assignments. Among
them, following the stationary-action principle [47], we can use the one with minimal delta positions.
Due to the difficulty of finding an optimal solution, we use an efficient greedy algorithm to find a
sub-optimal re-assignment. Second, noise range, we can limit the space of the random positions, only
allowing the random positions with a noise (r) around the ground-truth ones. There is a tradeoff here;
if r is large, the re-assignment is required to make the learning feasible; if r is small, the re-assignment
may not need. We summarized the algorithm into Alg. 1, and benchmarked several settings, details
in Appendix D.6, and found a simple and effective one: use r = 1 Å, without re-assignment.

Then, with corrupted input coordinates, two additional heads are used to recover the correct positions.
1) Pair-distance prediction. Based on pair-representation, the model needs to predict the correct Eu-
clidean distances of the corrupted atoms pairs. 2) Coordinate prediction. Based on SE(3)-Equivariant
coordinate head, the model needs to predict the correct coordinates for the corrupted atoms.

Finally, the atom types for the corrupted atoms are masked, and a head is used to predict the
correct atom types. For the convenience of finetuning, similar to BERT, a special atom [CLS],
whose coordinate is the center of all atoms, is used to represent the whole molecule/pocket. Both 2
pretraining models use the same self-supervised tasks described above, and Figure 2 is an illustration
of the overall pretraining framework. For the detailed configurations of pretraining, please refer
to Appendix C. Similar to backbone design, we conduct an extensive benchmark for pretraining
strategies (in Appendix D.5 and D.6), and choose the above strategies based on performance.

2.3 FINETUNING

To be consistent with pretraining, we use the same data prepossessing pipeline during finetuning.
For molecules, as multiple random conformations can be generated in a short time, we can use them
as data augmentation in finetuning to improve performance and robustness. For tasks that provide
atom coordinates, we use them directly and skip the 3D conformation generation process. As there
are 2 pretraining models and several types of downstream tasks, we should properly use them in
the finetuning stage. According to the task types, and the involvement of protein or ligand, we can
categorize them as follow.

Non-3D prediction tasks These tasks do not need to output 3D conformations. Examples include
molecular property prediction, molecule similarity, pocket druggability prediction, protein-ligand
binding affinity prediction, etc. Similar to NLP/CV, we can simply use the representation of [CLS],
which represents the whole molecule/pocket, or the mean representation of all atoms, with a linear
head to finetune on downstream tasks. In the tasks with pocket-molecule pair, we can concatenate
their [CLS] representations, and then finetune with linear head.

3D prediction tasks of molecules or pockets These tasks need to predict a 3D conformation
of the input, such as molecular conformation generation. Different from the fast conformation
generation method used in Uni-Mol, molecular conformation generation task usually requires running
advanced sampling and semi-empirical density functional theory (DFT) to account for the ensemble
of 3D conformers that are accessible to a molecule, and this is very time-consuming. Therefore,
there are many recent works that train the model to fast generate conformations from molecular
graph [48; 49; 50; 51]. While in Uni-Mol, this task straightforwardly becomes a conformation
optimization task: generate a new conformation based on a different input conformation. Specifically,
in finetuning, the model supervised learns the mapping from Uni-Mol generated conformations to
the labeled conformations. Moreover, the output conformations can be generated end-to-end by
SE(3)-Equivariant head.

3D prediction tasks of protein-ligand pairs This is one of the most important tasks in structure-
based drug design. The task is to predict the complex structure of a protein binding site and a
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Table 1: Uni-Mol performance on molecular property prediction classification tasks

Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087
# Tasks 1 1 2 12 617 27 1 128 17

D-MPNN 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 77.1(0.5) 86.2(0.1) 78.6(1.4)
Attentive FP 64.3(1.8) 78.4(0.022) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 75.7(1.4) 80.1(1.4) 76.6(1.5)
N-GramRF 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) - 66.8(0.7) 77.2(0.1) - 76.9(0.7)
N-GramXGB 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) - 65.5(0.7) 78.7(0.4) - 74.8(0.2)
PretrainGNN 68.7(1.3) 84.5(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 79.9(0.7) 86.0(0.1) 81.3(2.1)
GROVERbase 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 62.5(0.9) 76.5(2.1) 67.3(1.8)
GROVERlarge 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 68.2(1.1) 83.0(0.4) 67.3(1.8)
GraphMVP 72.4(1.6) 81.2(0.9) 79.1(2.8) 75.9(0.5) 63.1(0.4) 63.9(1.2) 77.0(1.2) - 77.7(0.6)
MolCLR 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) - 58.9(1.4) 78.1(0.5) - 79.6(1.9)
GEM 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 80.6(0.9) 86.6(0.1) 81.7(0.5)

Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3) 88.5(0.1) 82.1(1.3)

molecular ligand. Besides the conformation changes of the pocket and the molecule themselves,
we also need to consider how the molecule lays in the pocket, that is, the additional 6 degrees (3
rotations and 3 translations) of freedom of a rigid movement. In principle, with Uni-Mol, we can
predict the complex conformation by the SE(3)-Equivariant head in an end-to-end fashion. However,
this is unstable as it is very sensitive to the initial docking positions of molecular ligands. Herein,
to get rid of the initial positions, we use a scoring function based optimization method in this paper.
In particular, the molecular representation and pocket representation are firstly obtained from their
own pretraining models by their own conformations; then, their representations are concatenated as
the input of an additional 4-layer Uni-Mol decoder, which is finetuned to learn the pair distances
of all heavy atoms in molecule and pocket. Then, with the predicted pair-distance matrix as a
scoring function, we first randomly place the ligand and then optimize the coordinates of its atoms by
directly back-propagation the loss of the current pair-distance matrix and the predicted pair-distance
matrix. Thanks to the efficiency of back-propagation, this process is very fast, about 100x faster than
traditional docking tools. More details can be found in Appendix C.6.

3 EXPERIMENTS

To verify the effectiveness of our proposed Uni-Mol model, we conduct extensive experiments
on multiple downstream tasks, including molecular property prediction, molecular conformation
generation, pocket property prediction, and protein-ligand binding pose prediction. Besides, we
also conduct several ablation studies. Due to space restrictions, we leave the detailed experimental
settings and ablation studies to Appendix C and D.

3.1 MOLECULAR PROPERTY PREDICTION

Datasets and setup MoleculeNet [52] is a popular benchmark for molecular property prediction,
including datasets focusing on different molecular properties, from quantum mechanics and physical
chemistry to biophysics and physiology. Following previous work GEM [13], we use scaffold
splitting and report the mean and standard deviation by the results of 3 random seeds.

Baselines We compare Uni-Mol with multiple baselines, including supervised and pretraining
baselines. D-MPNN [53] and AttentiveFP [54] are supervised GNNs methods. N-gram [55],
PretrainGNN [22], GROVER [11], GraphMVP [26], MolCLR [12], and GEM [13] are pretraining
methods. N-gram embeds the nodes in the graph and assembles them in short walks as the graph
representation. Random Forest and XGBoost [56] are used as predictors for downstream tasks.

Results Table 1 and Table 2 show the experiment results of Uni-Mol and competitive baselines,
where the best results are marked in bold. Most baseline results are from the paper of GEM, except
for the recent works GraphMVP and MolCLR. The results of GraphMVP are from its paper. As
MolCLR uses a different data split setting (without considering chirality), we rerun it with the same
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Table 2: Uni-Mol performance on molecular property prediction regression tasks

Regression (lower is better ↓)
RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885
# Tasks 1 1 1 1 12 3

D-MPNN 1.050(0.008) 2.082(0.082) 0.683(0.016) 103.5(8.6) 0.0190(0.0001) 0.00814(0.00001)
Attentive FP 0.877(0.029) 2.073(0.183) 0.721(0.001) 72.0(2.7) 0.0179(0.001) 0.00812(0.00001)
N-GramRF 1.074(0.107) 2.688(0.085) 0.812(0.028) 92.8(4.0) 0.0236(0.0006) 0.01037(0.00016)
N-GramXGB 1.083(0.082) 5.061(0.744) 2.072(0.030) 81.9(1.9) 0.0215(0.0005) 0.00964(0.00031)
PretrainGNN 1.100(0.006) 2.764(0.002) 0.739(0.003) 113.2(0.6) 0.0200(0.0001) 0.00922(0.00004)
GROVERbase 0.983(0.090) 2.176(0.052) 0.817(0.008) 94.5(3.8) 0.0218(0.0004) 0.00984(0.00055)
GROVERlarge 0.895(0.017) 2.272(0.051) 0.823(0.010) 92.0(0.9) 0.0224(0.0003) 0.00986(0.00025)
GraphMVP 1.029(0.033) - 0.681(0.010) - - -
MolCLR 1.271(0.040) 2.594(0.249) 0.691(0.004) 66.8(2.3) 0.0178(0.0003) -
GEM 0.798(0.029) 1.877(0.094) 0.660(0.008) 58.9(0.8) 0.0171(0.0001) 0.00746(0.00001)

Uni-Mol 0.788(0.029) 1.480(0.048) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)

data split setting as other baselines. From the results, we can summarize them as follows: 1) overall,
Uni-Mol outperforms baselines on almost all downstream datasets. 2) In solubility (Lipo), free
energy (FreeSolv), and quantum mechanical (QM7, QM8, QM9) properties prediction tasks, Uni-Mol
is significantly better than baselines. As 3D information is critical in these properties [14; 15], it
indicates that Uni-Mol can learn a better 3D representation than other baselines. 3) Uni-Mol fails
to beat SOTA on the SIDER dataset. After investigation, we find that Uni-Mol fails to generate 3D
conformations for many molecules (like natural products and peptides) in SIDER. Therefore, due to
the missing 3D information, it is reasonable that Uni-Mol cannot outperform others.

In summary, by better utilizing 3D information in pretraining, Uni-Mol outperforms all previous
MRL models in almost all property prediction tasks.

3.2 MOLECULAR CONFORMATION GENERATION

We leave the details of molecular conformation generation to Appendix C.4, as paper [57] pointed
out that the current benchmark for molecular conformation generation could be wrong.

3.3 POCKET PROPERTY PREDICTION

Datasets and setup Druggability, the ability of a candidate protein pocket to produce stable binding
to a specific molecular ligand, is one of the most critical properties of a candidate protein pocket. How-
ever, this task is very challenging due to the very limited supervised data. For example, NRDLD [58],
a commonly used dataset, only contains 113 data samples. Therefore, besides NRDLD, we construct
a regression dataset for benchmarking pocket property prediction performance. Specifically, based
on Fpocket tool, we calculate Fpocket Score, Druggability Score, Total SASA, and Hydrophobicity
Score for the selected 164,586 candidate pockets. The model is finetuned to predict these scores.

Baselines On the NRDLD dataset, we compare Uni-Mol with 6 previous methods evaluated in [59].
Accuracy, recall, precision, and F1-score are used as metrics for this classification task. On our
created benchmark dataset, as there are no appropriate baselines, we use an additional Uni-Mol
model without pretraining, denoted as Uni-Molno_pretrained, to check the performance brought by
pretraining on pocket property prediction.

Results As shown in Table 3, Uni-Mol shows the best accuracy, recall, and F1-score on NRDLD.
In our created benchmark dataset, the pretraining Uni-Mol model largely outperforms the non-
pretraining one on all four scores. This indicates that pretraining on candidate protein pockets indeed
brings improvement in pocket property prediction tasks. Unlike Molecular property prediction, due
to the very limited supervised data, pocket property prediction gained much less attention. Therefore,
we also release our created benchmark dataset, and hopefully, it can help future research.
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Table 3: Uni-Mol performance on pocket property prediction

Classification (higher is better ↑) Regression (lower is better ↓)
Dataset NRDLD Our Created

Methods Cavity-DrugScore Volsite DrugPred PockDrug TRAPP-CNN Uni-Mol Methods Uni-Molno_pretrained Uni-Mol

Accuracy 0.82 0.89 0.89 0.865 0.946 0.973 RMSEFpocket 0.1155(0.002) 0.1140(0.001)
Recall - - - 0.957 0.913 1.000 RMSEDruggability 0.1117(0.002) 0.1001(0.001)
Precision - - - 0.846 1.000 0.958 RMSETotal SASA 22.010(0.460) 20.734(0.015)
F1-score - - - 0.898 0.955 0.979 RMSEHydrophobicity 1.4144(0.034) 1.2847 (0.005)

80 84 88 92

GlideScore-XP

LigScore2@DS

ChemPLP@GOLD

GBVI_WSA-dG@MOE

DeepDock

DrugScoreCSD

GlideScore-SP

ΔVinaRF20

AutodockVina

Uni-Mol

Top 1 Success Rate (%)

Figure 3: Docking power evaluation on
CASF-2016 (Top 10 methods)

Ligand RMSD
% Below Threshold ↑

Methods 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
Autodock Vina 44.21 57.54 64.56 73.68 84.56
Vinardo 41.75 57.54 62.81 69.82 76.84
Smina 47.37 59.65 65.26 74.39 82.11
Autodock4 21.75 31.58 35.44 47.02 64.56
Uni-Molno_pretrained 39.65 63.16 72.98 83.51 91.58
Uni-Mol 43.16 68.42 80.35 87.02 94.04

Table 4: Uni-Mol performance on binding pose prediction

3.4 PROTEIN-LIGAND BINDING POSE PREDICTION

Datasets and setup As mentioned above, protein-ligand binding pose prediction is one of the most
important tasks in drug design. And Uni-Mol combines both the molecular and pocket pretraining
models to learn a distance matrix based scoring function, then optimize the complex conformations.
For the benchmark dataset, referring to the previous works [28; 60], we use CASF-2016 as the test set.
For the training data used in finetuning, we use PDBbind General set v.2020 [61] (19,443 complexes).
Notably, to examine the generalization ability, we further filter out the training complexes that are
similar to the ones in the test set (CASF-2016). In particular, the complexes with both high protein
sequence similarity (MMSeqs2 [62] similarity above 40%) and high molecular similarity (fingerprint
similarity above 80%) are filtered out, and there are 18,404 complexes after filtering.

Two benchmarks are conducted: 1) Docking power, the default metric to benchmark the ability of
a scoring function in CASF-2016. Specifically, it tests whether a scoring function can distinguish
the ground truth binding pose from a set of decoys or not. CASF-2016 provides 50-100 decoy
conformations of the same ligand for each ground truth. Scoring functions are applied to rank them,
and the ground truth is expected to be the top 1. 2) Binding pose accuracy. Specifically, we use the
semi-flexible docking setting: keep the pocket conformation fixed, while the ligand conformation
is fully flexible. We evaluate the RMSD between the prediction and the ground truth. Following
previous works, we use the percentage of results below predefined RMSD thresholds as metrics.

Baselines For the docking power benchmark, the baselines are DeepDock [60] and the top 10
scoring functions reported in [28], including both conventional scoring functions and machine
learning-based ones. For the binding pose accuracy, the baselines are Autodock Vina [63; 64],
Vinardo [65], Smina [66], and AutoDock4 [67].

Results From the docking power benchmark results shown in Figure 3, Uni-Mol ranks the 1st, with
the top 1 success rate of 91.2%. For comparison, the previous top scoring function AutoDock Vina [63;
64] achieves 90.2% of the top 1 success rate in this benchmark. From the binding pose accuracy
results shown in Table 4, Uni-Mol also outperforms other baselines. Notably, Uni-Mol outperforms
the second best method by relatively 22.58% under the threshold of 2Å. This result indicates that
Uni-Mol can effectively learn the 3D information from both molecules and pockets, as well as their
interaction in the 3D space. Even without pretraining, Uni-Mol (denoted as Uni-Molrandom) also
performs very well. This demonstrates the effectiveness of Uni-Mol backbone, as it effectively learns
the 3D information by limited data. In summary, by combining molecular and pocket pretraining
models, Uni-Mol significantly outperforms the widely used docking tools in the protein-ligand binding
tasks. We leave the efficiency benchmark and visualization for binding pose prediction to Appendix E.
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4 RELATED WORK
Representation learning In recent years, representation learning [1; 2; 3] has received much
attention and has been prevailing in many applications, like in NLP [4; 5; 68; 6; 7], CV [8; 69; 70], or
multi-modal[71; 72; 73]. It is not doubted that representation learning becomes a default technology
in various tasks.
Molecular representation learning Representation learning on large-scale unlabeled molecules
attracts much attention recently. SMILES-BERT [18] is pretrained on SMILES strings of molecules
using BERT [4]. Subsequent works are mostly pretraining on 2D molecular topological graphs [23;
11]. MolCLR [12] applies data augmentation to molecular graphs at both node and graph levels, using
a self-supervised contrastive learning strategy to learn molecular representations. Further, several
recent works try to leverage the 3D spatial information of molecules, and focus on contrastive or
transfer learning between 2D topology and 3D geometry of molecules. For example, GraphMVP [26]
proposes a contrastive learning GNN-based framework between 2D topology and 3D geometry.
GEM [13] uses bond angles and bond length as additional edge attributes to enhance 3D information.
SE(3)-Equivariant models In many-body scenarios such as potential energy surface fitting, SE-(3)
equivariance is usually required. A series of SE(3) models are proposed, such as SchNet [74], tensor
field networks [30], SE(3) Transformer [31], DimmNet [75], equivariant graph neural networks
(EGNN) [41], GemNet [37] and SphereNet [76]. Most of these models are designed for supervised
learning with energy and force.
Pocket druggability prediction Druggability prediction of protein binding pockets is crucial for
drug discovery as druggable pockets need to be identified at the beginning. Since proteins undergo
conformation changes that might alter the druggability of pockets, it is necessary to utilize 3D
spatial data beyond sequential information. Early methods, such as Volsite [77], DrugPred [58], and
PockDrug [78], predict druggability based on the predefined descriptors of pockets’ static structures.
Later, TRAPP-CNN [59], based on 3D-CNN, proposes the analysis of proteins’ conformation changes
and the use of such information for druggability prediction.
Protein-ligand binding pose prediction In structure-based drug design, it is crucial to understand
the interactions between protein targets and ligands. The in vitro estimation of the binding pose
and affinity, such as docking, allows for lead identification and guides molecular optimization. In
particular, docking is one of the most important approaches in structure-based drug design and has
been developed for the past decades. Tools such as AutoDock4 [67], AutoDock Vina [63; 64], and
Smina [66] are among the most used docking programs. Also, machine learning-based docking
methods, such as ∆V inaRF20 [79] and DeepDock [60] have also been developed to predict protein-
ligand binding poses and assess protein-ligand binding affinity. Equibind [80] is a recent graph deep
learning based methods. However, Uni-Mol cannot have an apple-to-apple comparison with Equibind,
due to Equibind being proposed for Blind Docking. While Uni-Mol is currently designed for Targeted
Docking, which follows most previous traditional tools in docking [81]. The difference is that Blind
Docking uses whole protein for docking, while Target Docking directly uses the pocket. We will
extend Uni-Mol to Blind Docking tasks in future work.

5 CONCLUSION

In this paper, to enlarge the application scope and representation ability of molecular representation
learning (MRL), we propose Uni-Mol, the first universal large-scale 3D MRL framework. Uni-Mol
consists of 3 parts: a Transformer based backbone to handle 3D data; two large-scale pretraining
models to learn molecular and pocket representations respectively; finetuning strategies for all kinds
of downstream tasks. Experiments demonstrate that Uni-Mol can outperform existing SOTA in
various downstream tasks, especially in 3D spatial tasks.

There are 3 potential future directions. 1) Better interaction mechanisms for finetuning two pretraining
models together. As the interaction between the pretraining pocket model and the pretraining
molecular model is simple in the current version of Uni-Mol, we believe there is a large room for
further improvement. 2) Large Uni-Mol models. As larger pretraining models often perform better, it
is worthy of training a large Uni-Mol model on a bigger dataset. 3) More high-quality benchmarks.
Although there have been many applications in the field of drug design, high-quality public datasets
have been lacking. Many public datasets cannot satisfy real-world demand due to the low data quality.
We believe the high-quality benchmarks will be the lighthouse of the entire field, and will significantly
accelerate the development of drug design.
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A PRETRAINING DATA

Molecular dataset The pretraining datasets we use consist of two parts: one part is a database
collection of 12 million molecules that can be synthesized and purchased (See Table 5), and the
other part is taken from a previous work [23], whose molecules are collected from the ZINC [82] and
ChemBL [83] databases. After normalizing and duplicating, we obtain 19 million molecules as our
pretraining dataset. To generate 3D conformations, we use ETKGD [42] with Merck Molecular Force
Field [43] optimization in RDKit [44] to randomly generate 11 conformations for each molecule,
totally 209M conformations. In these 11 conformations of one molecule, there is a special flattened
3D conformation (atoms with zero z-axis coordinates) that is directly from the molecular graph. This
flattened 3D conformation is used for the cases where RDKit failed to generate 3D conformations,
like the peptides in the SIDER task.

Candidate protein pocket dataset The pretraining dataset for candidate protein pockets is derived
from the Protein Data Bank (RCSB PDB 2) [45], a collection of 180K structural data of proteins.
We first pre-process the raw data by adding missing side chains and hydrogen atoms, and then we
use Fpocket [46] to detect candidate binding pockets of the proteins. After filtering the raw pockets
by the number of residues they have contact with (10~25) and including water molecules inside the
pockets, we collect a pretraining dataset of 3,291,739 candidate pockets.

B DOWNSTREAM DATA SUPPLEMENTS

B.1 MOLECULAR PROPERTY PREDICTION

We conduct experiments on the MoleculeNet[52] benchmark in the molecular property prediction
task. MoleculeNet is a widely used benchmark for molecular property prediction. The details of
the 15 datasets we used are described below.

• BBBP Blood-brain barrier penetration (BBBP) contains the ability of small molecules to penetrate
the blood-brain barrier.

• BACE This dataset contains the results of small molecules as inhibitors of binding to human
β-secretase 1 (BACE-1).

• ClinTox This dataset contains the toxicity of the drug in clinical trials and the status of the drug for
FDA approval[84].

• Tox21 The dataset contains toxicity measurements of 8k molecules for 12 targets.

• ToxCast This dataset is derived from toxicology data from in vitro high-throughput screening and
contains toxicity measurements for 8k molecules against 617 targets.

• SIDER The Side Effect Resource (SIDER) contains side effects of drugs on 27 system organs.
These drugs are not only small molecules but also some peptides with molecular weights over
1000.

• HIV This dataset contains 40k compounds with the ability to inhibit HIV replication.

• PCBA PubChem BioAssay (PCBA) is a database of small molecule bioactivities generated by
high-throughput screening. This is a subset containing over 400k molecules on 128 bioassays.

• MUV Maximum Unbiased Validation (MUV) is another subset of PubChem BioAssay, containing
90k molecules and 17 bioassays.

• ESOL This dataset contains the water solubility of the compound and is a small dataset with 1128
molecules.

• FreeSolv The dataset contains hydration free energy data for small molecules, of which we use the
experimental values as labels.

• Lipo Lipophilicity contains the solubility of small molecules in lipids, of which we use the
octanol/water distribution coefficient as the label.

2http://www.rcsb.org/
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Table 5: Database collection of 12M purchasable molecules

Database Molecules Link

Targetmol 10,000 https://www.targetmol.com/
Chemdiv 1,613,931 https://www.chemdiv.com/
Enamine 2,734,581 https://enamine.net/
Chembridge 1,557,942 https://www.chembridge.com/
Life Chemical 509,975 https://lifechemicals.com/
Specs 208,670 https://www.specs.net/
Vitas-M 1,409,339 https://vitasmlab.biz/
InterBioScreen 48,627 https://www.ibscreen.com/
Maybridge 53,352 https://www.thermofisher.in/
Bionet-Key Organics 259,244 https://www.keyorganics.net/
Asinex 530,881 https://www.asinex.com/
UkrOrgSynthesis 688,952 https://uorsy.com/
Eximed 61,009 https://eximedlab.com/
HTS Biochemie Innovationen 58,437 https://www.hts-biochemie.de/
Princeton BioMolecular 1,532,542 https://princetonbio.com/
Otava 270,835 https://otavachemicals.com/
Alinda Chemical 202,332 https://www.alinda.ru/
Analyticon 42,664 https://www.analyticon-diagnostics.com/

• QM7, QM8, QM9 The molecule in QM7 contains up to 7 heavy atoms, QM8 is 8 and QM9 is
9. These datasets provide the geometric, energetic, electronic and thermodynamic properties of
the molecule, which are calculated by density functional theory (DFT)[85]. QM9 contains several
quantum mechanical properties of different quantitative ranges, and we select homo, lumo and gap
of similar quantitative range, following the setup of the previous work[13].

B.2 MOLECULAR CORFORMATION GENERATION

Following the settings in previous works [49; 86], we use GEOM-QM9 and GEOM-Drugs [87]
dataset in this task.

• GEOM This dataset contains 37 million accurate conformations generated for 450,000 molecules
by advanced sampling and semi-empirical density functional theory (DFT). Of these, 133,000
molecules are from QM9, and the remaining 317,000 molecules have biophysical, physiological,
or physical chemistry experimental data, i.e., Drugs.

B.3 POCKET PROPERTY PREDICTION

NRDLD [58] is a benchmark dataset for pocket druggability prediction. As NRDLD and other
existing benchmark datasets are too small, we construct a regression dataset to benchmark pocket
property prediction performance.

• NRDLD The dataset contains 113 proteins, and a predefined split is provided: 76 proteins constitute
the training set and 37 proteins constitute the test set. It labels 71 proteins as druggable in that they
noncovalently bind small drug-like ligands [59]. The rest 42 proteins are labeled as less-druggable
because none of the ligands they cocrystallized satisfy the following requirements simultaneously:
the rule of five, clogP ≥ -2, and ligand efficiency, as defined in [29], ≥ 0.3 kcal mol−1 / heavy
atom.

• Our created benchmark dataset The dataset contains 164,586 candidate pockets, and four scores
(Fpocket Score, Druggability Score, Total SASA, and Hydrophobicity Score) calculated by the
Fpocket tool. These four scores are indicators of the druggability of candidate pockets. To avoid
leaking, the selected pockets are not overlapped with the candidate protein pocket dataset used in
Uni-Mol pretraining.
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Table 6: Uni-Mol hyperparameters setup during pre-training

Hyperparameter Molecular pretraining Pocket pretraining

Layers 15 15
Peak learning rate 1e-4 1e-4
Batch size 128 128
Max training steps 1M 1M
Warmup steps 10K 10k
Attention heads 64 64
FFN dropout 0.1 0.1
Attention dropout 0.1 0.1
Embedding dropout 0.1 0.1
Weight decay 1e-4 1e-4
Embedding dim 512 512
FFN hidden dim 2048 2048
Gaussian kernel channels 128 128
Corrupt ratio 0.15 0.15
Activation function GELU GELU
Learning rate decay Linear Linear
Adams ϵ 1e-6 1e-6
Adams (β1, β2) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1.0 1.0
Atom loss function and its weight Cross entropy, 1.0 Cross entropy, 1.0
Coordinate loss function and its weight Smooth L1, 5.0 Smooth L1, 1.0
Distance loss function and its weight Smooth L1, 10.0 Smooth L1, 1.0
Vocabulary size (atom types) 30 9

B.4 PROTEIN-LIGAND BINDING POSE PREDICTION

We use PDBbind General set v.2020 [61], excluding the similar complexes in CASF-2016 [28], as
the training set. And CASF-2016 is used as the test set. In particular, we define the pocket for each
protein-ligand pair as residues of the protein which have at least one atom within the range of 6Å
from a heavy atom in the ligand. All atoms of the selected residues are included. In addition, we draw
the smallest bounding box covering all of the atoms in the pocket and regard the water molecules in
the bounding box as a part of the pockets, too.

• PDBbind General set v.2020 This dataset contains 19,443 protein-ligand complexes with binding
data and processed structural files originally from the Protein Data Bank (PDB). Only complexes
with experimentally determined binding affinity data are included in the general set. Notably, to
examine the generalization ability, we further filter out the training complexes that are similar to the
ones in the test set (CASF-2016). In particular, the complexes with both high protein sequence sim-
ilarity (MMSeqs2 [62] similarity above 40%) and high molecular similarity (fingerprint similarity
above 80%) are filtered out, and there are 18,404 complexes after filtering.

• CASF-2016 CASF-2016 is the widely used benchmark for docking and scoring. This dataset,
whose primary test set is known as the PDBbind Core set, contains 285 protein-ligand complexes
with high-quality crystal structures and reliable binding constants from PDBbind General set. For
each protein-ligand complex, CASF-2016 provides 50~100 decoy molecular conformations of the
same ligand for evaluation.

C EXPERIMENTS DETAILS & REPRODUCE

C.1 MOLECULAR PRETRAINING SETUP

We report the detailed hyperparameters setup of Uni-mol during pretraining in Table 6. Uni-Mol
training loss is summed up by three components, atom (token) loss, coordinate loss, and pair-distance
loss. Atoms are masked, and noise is added to coordinate as described in sections 2.1 and 2.2. Since
the values of the above three components differ significantly, to make them have a similar influence,
we enlarge the coordinate loss and distance loss. Molecular pretraining runs on 8 V100 GPUs (32GB
memory, the same below), and the training time is about 20 hours.

18



Published as a conference paper at ICLR 2023

Table 7: Search space for small datasets: BBBP, BACE, ClinTox, Tox21, Toxcast, SIDER, ESOL,
FreeSolv, Lipo, QM7, QM8, for large datasets: PCBA, MUV, QM9, and for HIV

Hyperparameter Small Large HIV

Learning rate [5e-5, 8e-5, 1e-4, 4e-4, 5e-4] [2e-5, 1e-4] [2e-5, 5e-5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40 ,60, 80, 100] [20, 40] [2, 5, 10]
Pooler dropout [0.0, 0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0, 0.1]

C.2 POCKET PRETRAINING SETUP

The pocket Uni-Mol model is slightly different from molecule ones during pretraining: 1) We use
a residue-level masking strategy instead of the original atom-level, as residue granularity is non-
redundancy and integrity in protein. 2) Hydrogen is removed in pocket Uni-Mol pretraining, to
reduce the number of used atoms and thus improve efficiency. 3) All weights of loss functions are set
1, as the residue-level masking strategy makes the 3D denoising task much harder. 4) A different
vocabulary is used in pocket pretraining. In pocket data, there are amino acids, whose atoms are
mostly C, N, O, S and H. While in molecule data, the atom types are more diverse, so a larger
vocabulary is used. Other settings are listed in Table 6. Pocket pretraining runs on 8 V100 GPUs, and
the training time is about 2 days and 20 hours.

C.3 MOLECULAR PROPERTY PREDICTION

• Data split In our experiments, referring to previous work GEM[13], we use scaffold splitting[88]
to divide the dataset into training, validation, and test sets in the ratio of 8:1:1. Scaffold splitting
is more challenging than random splitting as the scaffold sets of molecules in different subsets
do not intersect. This splitting tests the model’s generalization ability and reflects the realistic
cases[52]. Since this splitting is according to the scaffold of the molecule, we find that whether or
not chirality is considered when generating the scaffold using RDKit has a significant impact on
the division results. From the results, the splitting considering chirality makes the task harder. The
original implementation of MolCLR does not consider chirality, and we reproduce the experiment
by considering it. In all experiments, we choose the checkpoint with the best validation loss, and
report the results on the test-set run by that checkpoint.

• Hyperparameter search space Referring to previous works, we use a grid search to find the best
combination of hyperparameters for the molecular property prediction task. To reduce the time
cost, we set a smaller search space for the large datasets. The specific search space is shown in
Table 7. For small datasets, we run them on a single V100 GPU; for large datasets and HIV, we run
them on 4 V100 GPUs.

C.4 MOLECULAR CONFORMATION GENERATION

• Datasets and setup Following the settings in previous works [49; 86], we use GEOM-QM9 and
GEOM-Drugs [87] dataset to perform conformation generation experiments. As described in
Sec. 2.3, in this task, Uni-Mol optimizes its input generative conformations to the labeled ones.
To construct the finetuning data, we leverage RDKit to generate input conformations. For each
input, we calculate the RMSD between it and labeled conformations, and choose the one with
minimal RMSD as its optimizing target. For the inference in the test set, we generate the same
number of conformations (twice the number of labeled conformations) as previous works do. And
we also use the same metrics, Coverage (COV) and Matching (MAT) as in previous works. Higher
COV means better diversity, while lower MAT means higher accuracy.

• Metrics In this task, following previous work [89; 90], we use the Root of Mean Squared Deviations
(RMSD) of heavy atoms to evaluate the difference between the generated conformation and the ref-
erence one. Before computing RMSD, the generated conformation is first aligned with the reference
one, and the function Φ aligns conformations by applying rotations and translations to them:

RMSD(R, R̂) = min
Φ

(
1

n

n∑
i=1

||Φ(Ri)− R̂i||2)
1
2 (4)
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where R and R̂ are the generated and reference conformation, i is the i-th heavy atom, and n
is the number of heavy atoms.
We use Coverage (COV) and Matching (MAT) to evaluate the performance of the conformation
generation model. Higher COV means better diversity, while lower MAT means higher accuracy.
Formally, COV and MAT are denoted as:

COV(Sg, Sr) =

∣∣∣{R ∈ Sr|RMSD(R, R̂) < δ, R̂ ∈ Sg

}∣∣∣
|Sr|

(5)

MAT(Sg, Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂) (6)

where Sg and Sr are the set of generated and reference conformations, respectively, and δ is a
given RMSD threshold. Following previous work [49; 86], for GEOM-QM9, the threshold is 0.5Å,
and for GEOM-Drugs, the threshold value is 1.25Å.

• Baselines We compare Uni-Mol with 10 competitive baselines. RDKit [42] is a traditional
conformation generation method based on distance geometry. The rest baseline can be categorized
into two classes. GraphDG [48], CGCF[49], ConfVAE [91], ConfGF [86], and DGSM [92]
combine generative models with distance geometry, which first generates interatomic distance
matrices and then iteratively generates atomic coordinates. CVGAE [50], GeoMol [51],
DMCG [93], and GeoDiff [94] directly generate atomic coordinates.

• Results The results are shown in Table 8. We report the mean and median of COV and MAT on
GEOM-QM9 and GEOM-Drugs datasets. ConfVAE [91] and DGSM’s [92] results are from their
papers, respectively. GeoMol[51] results are from DMCG [93] paper, which DMCG reproduced
after aligning the data split. We found the test sets used in GeoDiff [94] and DMCG [93] are
slightly different from baselines (different filtering conditions), so we use the released model
parameters of GeoDiff to reproduce the results on the same test set. For DMCG, as model
parameters are not released, we use its open-source codes to reproduce from scratch. Other baseline
results are from ConfGF’s paper. As shown in Table 8, Uni-Mol exceeds existing baselines in
both COV and MAT metrics on both datasets.

• Experiments details We report the detailed hyperparameters setup for molecular conformation
generation in Table 9. And we run this task on a single V100 GPU. Since this is a 3D-related task,
we only use coordinate loss and distance loss. Following AlphaFold [38], we use "recycling" to
iteratively refine the output atom positions. We leverage RDKit (ETKGD) for generating inputs in
molecular conformation generation tasks. Specifically, in finetuning, we randomly generate up to
2000 conformations and cluster them into 10 conformations, as the model input. A similar pipeline
is used in the inference of test data. For most baselines, as they aim to generate conformations
from scratch, RDKit-generated conformations are not leveraged.

C.5 POCKET PROPERTY PREDICTION

The hyperparameters we search are listed in Table 10. We run this task on a single V100 GPU. When
we use the Fpocket [46] tool in our experiments, it outputs four values: Fpocket score, Druggability
score, Total SASA, and Hydrophobicity Score. Specifically, the Fpocket score is a custom score
by Fpocket; the druggability score is an empirical score calculated from evolution and homologous
information. Besides, to verify the effectiveness of the Fpocket tool on real-world data, we test this
tool on NRDLD. Table11 shows the performance of Fpocket tool on NRDLD dataset.

C.6 PROTEIN-LIGAND BINDING POSE PREDICTION

• Data split The training set is PDBbind General set v.2020 excluding the similar complexes covered
by CASF-2016. We perform data preprocessing, such as adding missing atoms to both proteins
and ligands and manually fixing file-loading errors, before constructing the training set. And we
filter the complexes based on the number of residues contained in the pockets (>= 5 ). Besides, we
filter similar complexes in PDBbind with CASF-2016 in consideration of protein sequence and
ligand similarity. MMseqs2 [62] similarity above 40% and RDKit FingerprintSimilarity [44] above
80% are used as filtering conditions. The test set is CASF-2016, which contains 285 protein-ligand
complexes.
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Table 8: Uni-Mol performance on molecular conformation generation. Please note the previous
conformation generation models were not pretrained.

Dataset QM9 Drugs

Methods COV(↑, %) MAT(↓, Å) COV(↑, %) MAT(↓, Å)
Mean Median Mean Median Mean Median Mean Median

RDKit 83.26 90.78 0.3447 0.2935 60.91 65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GraphDG 73.33 84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247
ConfVAE 80.42 85.31 0.4066 0.3891 53.14 53.98 1.2392 1.2447
ConfGF 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629 1.1596
GeoMol 71.26 72.00 0.3731 0.3731 67.16 71.71 1.0875 1.0586
DGSM 91.49 95.92 0.2139 0.2137 78.73 94.39 1.0154 0.9980
GeoDiff 92.65 95.75 0.2016 0.2006 88.45 97.09 0.8651 0.8598
DMCG 94.98 98.47 0.2365 0.2312 91.27 100.00 0.8287 0.7908

Uni-Molno_pretrained 97.00 100.00 0.1907 0.1754 91.68 100.00 0.8102 0.8041
Uni-Mol 97.95 100.00 0.1831 0.1659 91.91 100.00 0.7863 0.7794

Table 9: Hyperparameters setup for molecular conformation generation

Hyperparameter QM9 Drugs

Learning rate 2e-5 5e-5
Batch size 128 128
Epochs 50 70
Warmup ratio 0.06 0.06
Recycling times 4 4
Coordinate loss function and weight MSE, 1.0 MSE, 1.0
Distance loss function and weight MSE, 1.0 MSE, 1.0

• Model architecture and finetuning As shown in Figure 4, the binding pose model is an encoder-
decoder architecture consisting of two 15-layer Uni-Mol as encoders and a 4-layer Uni-Mol as a
decoder. The decoder block follows the same setting as the pretraining ones. During finetuning,
Uni-Mol is trained towards to cross distances (between pocket and ligand) and holo distances
(pair distances in ligand itself) with MSE loss. The hyper-parameters used in fine-tuning are listed
in Table 12. The Dist_threshold is introduced to alleviate the large MSE loss from long-range
atom pairs and thus stabilize the training. In particular, the atom pairs with distances larger than
Dist_threshold are ignored in the loss calculation. Following AlphaFold [38], we use "recycling" to
iteratively refine the output atom positions. We finetune model on 4 V100 GPUs.

• Binding pose prediction As aforementioned, Uni-Mol does not directly predict the binding pose
in finetuning. We use a scoring function based method to optimize the input coordinates. We first
construct a scoring function by the difference between the current pair-distance matrix and the
predicted pair-distance matrix. Given the coordinates of pocket atoms and ligand atoms, we can
compute its pair-distance matrix. We use the mean square error to get the difference between the
current pair-distance matrix and the predicted one from the model. Notably, as listed in Table 12,
different weights are used in cross distances and holo distances in calculating mean square error.
Then, to get the binding pose, we directly apply back-propagation from the scoring function to

Table 10: Search space for pocket property prediction

Hyperparameter NRDLD Our Created

Learning rate [5e-5, 1e-4, 3e-4] 3e-4
Batch size [1, 2, 4, 8, 16] 32
Epochs 40 20
Pooler dropout [0, 0.1, 0.2, 0.3] 0
Warmup ratio [0.0, 0.1] 0.1
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Table 11: Performance of Fpocket tool on NRDLD

Accuracy Recall Precision F1-score

Fpocket Score 0.73 0.83 0.76 0.79
Druggability Score 0.78 0.83 0.83 0.83
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Figure 4: protein-ligand binding pose model: 1) Encoder: molecular representation and pocket
representation are obtained from their own pretraining Uni-Mol models; 2) Decoder: representation
is concatenated with atom and pair-level, as inputs of a 4 layers Uni-Mol block learning from scratch
with recycling. 3) Output: The complex representation is used as a project layer to learn the pair
distances of molecule and pocket.

input coordinates. We choose to use LBGFS [95] with a learning rate of 1.0 as the optimizer
for efficiency. We use 10 randomly generated molecular conformations with randomly placed
positions (6 degrees of freedom) as data augmentation, and choose the one with the lowest loss
after back-propagation as the final result.

• Exhaustiveness search for docking tools To ensure that the comparison between Uni-Mol and
popular molecular docking software is unbiased, we increase the exhaustiveness of the global
search (roughly proportional to time) of the molecular docking software to observe the effect of
computational complexity on docking power on CASF-2016 benchmark. As shown in Table 13,
when exhaustiveness is above 16, the popular molecular docking software can no longer improve
the performance by increasing the computational complexity.

D ABLATION STUDY

D.1 3D SPATIAL POSITIONAL ENCODINGS BENCHMARK

We investigate the performance of different 3D spatial positional encodings on the 3D molecular
pretraining. In particular, we benchmarked:

• Gaussian kernel (GK), a simply Gaussian density function.

• Gaussian kennel with pair type (GKPT) [39]. Based on GK, an affine transformation according
to the pair type is applied on pair distances, before applying the Gaussian kernel.

• Radial Bessel basis (RBB) [75]. A Bessel based radial function.

• Discretization categorical embedding (DCE). We convert the continued distances to the discrete
bins, by Discretization. With binned distances, embedding-based positional encoding is directly
used.

• Delta coordinate (DC) [36]. Following Point Transformer [36], the deltas of coordinates are
directly used as pair-wise spatial relative positional encoding.
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Table 12: Hyperparameters setup for binding pose prediction

Hyperparameters for finetuning Value

Learning rate 3e-4
Batch size 32
Epochs 50
Warmup ratio 0.06
Dropout 0.2
Dist_threshold 8.0
Recycling times 3
Cross distance loss function and weight MSE, 1.0
Holo distance loss function and weight MSE, 1.0

Hyperparameters for binding pose prediction Value

Optimizer LBFGS
Learning rate 1.0
Max iterations 100
Early stopping 5
Dist_threshold 4.5
Conformation size 10
Cross distance weight 1.0
Holo distance weight 5.0

Table 13: Exhaustiveness study of popular docking tools on CASF-2016

Ligand RMSD
% Below Threshold ↑

Methods Exhaustiveness 0.5 Å 1.0 Å 1.5 Å 2.0 Å
Autodock Vina 1 21.40 35.79 47.02 52.28
Autodock Vina 8 23.86 44.21 57.54 64.56
Autodock Vina 16 25.61 45.96 60.70 66.67
Autodock Vina 32 25.96 45.96 60.00 66.32
Vinardo 1 16.84 33.33 43.16 49.82
Vinardo 8 23.51 41.75 57.54 62.81
Vinardo 16 23.51 45.26 60.70 66.67
Vinardo 32 23.86 44.56 59.30 65.61
Smina 1 23.51 39.65 50.53 56.14
Smina 8 23.51 47.37 59.65 65.26
Smina 16 28.77 49.47 61.40 67.72
Smina 32 28.07 51.23 61.75 67.37
Autodock4 1 4.91 18.95 26.67 28.87
Autodock4 8 7.02 21.75 31.58 35.44
Autodock4 16 6.32 24.56 34.04 38.95
Autodock4 32 6.32 23.16 34.04 38.25
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• Gaussian kennel with pair type and local graph (GKPTLG). Based on GKPT, we set up a
model with locally connected graphs. In particular, the cutoff radius is set to 6 Å.

We summarize the validation loss during pretraining for them in Fig. 5. From the results, we can find:

• The performance of DCE and GK are almost the same, and outperform RBB and DC. And we
choose GK as the basic encoding.

• Compared with GK, GKPT convergences faster. This indicates the pair type is critical in the 3D
spatial positional encoding.

• Compared with GKPT, GKPTLG convergences slower. This indicates the locally cutoff graph is
not effective for self-supervised learning, and the default fully connected graph in Transformer is
more effective.

• As GKPT outperforms all other encodings, we use it in the backbone model of Uni-Mol.

Figure 5: Validation loss in pretraining for different 3D spatial encodings

Table 14: Ablation studies, molecular property prediction classification tasks

Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV

Uni-Mol w/o pretraining 69.0(0.7) 80.9(5.4) 68.3(2.2) 75.8(0.4) 63.8(0.1) 61.9(0.5) 76.2(2.4) 86.1(0.5) 62.8(4.0)
Uni-Mol w/o pair representation 71.6(1.3) 85.4(2.7) 85.5(1.7) 79.4(0.1) 69.3(0.1) 64.3(0.9) 80.2(0.2) 88.4(0.1) 71.0(7.7)
2D shortest path encoding 71.6(2.1) 85.6(1.1) 83.6(4.0) 79.6(0.7) 68.8(0.8) 63.7(0.1) 78.9(0.4) 88.0(0.2) 78.2(0.6)
1D relative positional encoding 70.3(1.9) 77.8(3.7) 64.2(2.0) 73.3(0.7) 64.9(0.2) 61.5(1.6) 75.6(0.3) 77.2(1.4) 68.7(1.0)
Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3) 88.5(0.1) 82.1(1.3)

Table 15: Ablation studies, molecular property prediction regression tasks

Regression (lower is better ↓)
RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9

Uni-Mol w/o pretraining 0.924(0.037) 1.880(0.206) 0.745(0.012) 45.2(0.6) 0.0174(0.0002) 0.00653(0.00040)
Uni-Mol w/o pair representation 0.807(0.027) 1.582(0.068) 0.611(0.004) 45.2(1.0) 0.0158(0.0001) 0.00573(0.00004)
2D shortest path encoding 0.831(0.007) 1.482(0.070) 0.605(0.003) 60.6(0.2) 0.0164(0.0001) 0.00650(0.00001)
1D relative positional encoding 0.929(0.035) 2.237(0.074) 0.866(0.004) 77.5(2.7) 0.0283(0.0007) 0.02283(0.00078)
Uni-Mol 0.788(0.029) 1.480(0.048) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)
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D.2 PAIR REPRESENTATION BENCHMARK

Pair representation is a new component proposed in Uni-Mol for enhancing 3D spatial positional
encodings. To check its effectiveness, we conduct an ablation benchmark. We add a setting that only
uses spatial positional encoding as attention bias in attention layers, and the attention weights of the
last layer are used for the coordinate update and distance prediction. The downstream molecular
property prediction results, shown in Tables 14 and 15, demonstrate that the one without pair
representation is worse. Besides, according to the efficiency benchmark in Table 17, we can find the
extra cost introduced by pair representation is very small. This result demonstrates the efficiency of
the proposed pair representation.

D.3 SE(3) COORDINATE HEAD BENCHMARK

As aforementioned in Sec. 2.1, in SE(3) coordinate head, we use delta pair representation to calculate
the coordinate updates, while previous work EGNN [41] did not. Here we conduct a benchmark on
molecular conformation generation. As shown in Table 16, Uni-Mol’s SE(3) head outperforms the
one in EGNN. The result indicates the effectiveness of the proposed SE(3) coordinate head.

Table 16: Benchmark on SE(3)-equivariant coordinate head.

Dataset QM9 Drugs

Methods COV(↑, %) MAT(↓, Å) COV(↑, %) MAT(↓, Å)
Mean Median Mean Median Mean Median Mean Median

Uni-Mol w/ EGNN head 96.94 100.00 0.1873 0.1730 91.93 98.80 0.7952 0.7821
Uni-Mol 97.95 100.00 0.1831 0.1659 91.91 100.00 0.7863 0.7794

D.4 EFFICIENCY BENCHMARK

Due to the massive pretraining cost in the large-scale data, we favor the efficient backbone model.
And the backbone model in Uni-Mol is designed based on the principle. To demonstrate the efficiency
of our designed backbone, we compared it with vanilla Transformer and SE(3)-Transformer [31] in
terms of speed. We use the same benchmark dataset, QM9, in SE(3)-Transformer NVIDIA version
3, to test the training speed, and summarize the results in Table 17. We can see that Uni-Mol
backbone model is only slightly slower than the vanilla Transformer and much faster than SE(3)-
Transformer(and NVIDIA optimized version). The result explicitly demonstrates that our design
backbone model is indeed very efficient.

Table 17: Efficiency benchmark, we test vanilla Transformer and add our components based on it.
Besides, SE(3) Transformer [31] is also benchmarked. "seconds" is the average cost seconds for a
batch. "ratio" is the slowdown ratio compared with vanilla Transformer.

Methods Params. seconds ratio

vanilla Transformer 47.57M 0.062 1.00
vanilla Transformer + spatial position encoding 47.59M 0.063 1.02
vanilla Transformer + spatial position encoding + pair repr. 47.60M 0.064 1.03
Uni-Mol 47.61M 0.066 1.06
SE(3)-Transformerpublic [31] 46.77M 14.776 238.32
SE(3)-Transformernvidia 47.02M 0.388 6.26

D.5 PRETRAINING STRATEGIES BENCHMARK

We investigate and benchmark several pretraining strategies with Uni-Mol framework.

• Masked autoencoders (MAE). Following MAE [96], the uncorrupted atoms are used as input of
the encoder, while corrupted atoms are not. Then a decoder accepts both uncorrupted and corrupted
atoms as input. The MAE is proven effective in image-related tasks.

3https://github.com/NVIDIA/DeepLearningExamples/tree/master/DGLPyTorch/DrugDiscovery/SE3Transformer
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• Masked atom prediction only (MAP). This setting only uses masked atom prediction, without
3D position recovery.

• MAP+3D. The setting in Uni-Mol, with MAP and 3D position recovery.
• MAP+3D+CL(Contrastive Learning). A contrastive loss [97; 98] is further added for the 3D

conformations. In particular, two conformations are treated as "positive" if they are from the same
molecule; otherwise, they are treated as "negative." The loss is combined together with 3D position
recovery and masked atom prediction tasks.

Besides the above strategies, we also add two additional methods. 1) Single Conformation. This
method only uses one 3D conformation for each molecule, to examine the performance brought by
more 3D conformations. 2) Local-Connected Graph. This method uses the local-connected graph, by
radius cutoff 6 Å, to examine the performance brought by the fully connected graph in Transformer.

The results are shown in Table 18, and we can find the pretraining strategies in Uni-Mol (MAP+3D)
is very effective, outperforming the other settings.

From the result of Single Conformation, we can find that more 3D conformations can slightly boost
the performance of the molecular property prediction tasks. As for the results of the Local-Connected
Graph, we can find the performance brought by the fully connected graph in Transformer is quite
significant.

Table 18: Pretraining strategies benchmark

ROC-AUC %, higher is better ↑ RMSE↓ MAE↓
BBBP BACE ClinTox SIDER ESOL FreeSolv Lipo QM7

MAE 71.7(0.6) 86.4(0.6) 82.7(3.2) 63.8(0.4) 0.851(0.008) 1.586(0.034) 0.605(0.008) 45.7(0.7)
MAP 71.3(0.3) 86.1(0.5) 90.2(2.8) 62.5(1.1) 0.835(0.015) 1.562(0.035) 0.595(0.010) 46.6(0.2)
MAP+3D (Uni-Mol) 72.9(0.6) 85.7(0.2) 91.9(1.8) 65.9(1.3) 0.788(0.029) 1.480(0.048) 0.603(0.010) 41.8(0.2)
MAP+3D+CL 72.4(0.9) 84.2(0.6) 88.8(0.7) 65.2(0.9) 0.846(0.026) 1.499(0.020) 0.604(0.004) 44.6(2.7)

Single Conformation 73.6(0.7) 85.8(1.0) 91.3(2.8) 65.6(0.6) 0.796(0.022) 1.479(0.051) 0.607(0.007) 43.7(0.8)
Local-Connected Graph 70.2(1.1) 87.5(0.6) 87.5(3.8) 64.2(1.7) 0.826(0.029) 1.580(0.050) 0.593(0.011) 47.3(1.2)

D.6 CORRUPTED POSITION GENERATION AND ASSIGNMENT

To generate corrupted positions for corrupted atoms, we proposed Alg.1, which first generates random
positions based on ground-truth ones, plus with noises; then, an optional permutational re-assignment
is used to further reduce the delta positions. Since there is a tradeoff between noise range and
re-assignment, we benchmarked several settings, and list the result in Table 19.

From the result, we can find:

• "r=1Å" is better than "r=1Å, re-assign". This indicates, when r is small, the re-assignment is not
needed.

• "r=1.5Å, re-assign" is better than "r=1.5Å". This indicates, when r is large, the re-assignment is
needed.

• when r is large, e.g. 2Å, the final performance is not good.

• "r=1Å" performs best in our benchmark, and we use it as our final setting for corrupted position
generation.

Table 19: Corrupted Position Generation and Assignment

ROC-AUC %, higher is better ↑ RMSE↓ MAE↓
BBBP BACE ClinTox SIDER ESOL FreeSolv Lipo QM7

r=2Å, re-assign 70.7(1.1) 84.9(1.4) 87.4(0.8) 65.1(1.2) 0.827(0.016) 1.557(0.013) 0.601(0.017) 43.1(0.5)
r=1.5Å, re-assign 72.2(0.3) 85.0(1.3) 90.4(3.9) 64.6(0.5) 0.826(0.019) 1.526(0.072) 0.599(0.007) 43.8(1.1)
r=1.5Å 71.7(0.9) 85.0(1.5) 88.3(3.4) 64.4(1.2) 0.819(0.030) 1.484(0.072) 0.588(0.011) 43.8(0.7)
r=1Å, re-assign 72.1(3.2) 86.5(1.2) 88.0(0.8) 64.6(2.0) 0.825(0.012) 1.613(0.092) 0.600(0.008) 44.9(0.2)
r=1Å 72.9(0.6) 85.7(0.2) 91.9(1.8) 65.9(1.3) 0.788(0.029) 1.480(0.048) 0.603(0.010) 41.8(0.2)
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D.7 PRETRAINING OR NOT

From Tables 14 and 15, it is clear that pretraining can significantly boost the downstream performance.

D.8 1D/2D POSITIONAL ENCODINGS

We also investigate the impact of 3D spatial positional encoding on molecular property prediction
tasks. Specifically, to demonstrate the effectiveness of introducing 3D information, we replace the
original invariant spatial position encoding with a 2D Graphormer-like[24] shortest path positional
encoding and a 1D BERT-like[4] relative positional encoding on atoms. The results are summarized
in the following table. Tables 14 and 15 show the results of the ablation studies. We can find that 3D
spatial positional encoding largely improves the performance of molecular property prediction. It is
clear that 3D information indeed helps the performance of downstream tasks.

E MORE RESULTS FOR BINDING POSE PREDICTION

Efficiency benchmark We compare Uni-Mol binding pose prediction with popular docking tools
in efficiency. The baseline results are taken from EquiBind [99] paper.And Uni-Mol binding pose
prediction is run on a single V100 GPU. For each molecule, Uni-Mol is run with 10 different initial
conformations, and the total time cost is reported. As shown in Table 20, Uni-Mol is significantly
faster than traditional docking tools, about 250x faster.

Table 20: Efficiency on binding pose prediction. The average seconds per ligand are reported.

Methods QVINA-W GNINA SMINA GLIDE (C.) Uni-Mol

seconds 49 247 146 1405 0.2

Visualization We show protein-ligand binding pose prediction in CASF-2016 test dataset in
Figure 6. Green molecules are the Uni-Mol predictions while red ones are the ground truth in
complexes. From the Figure, we can find that Uni-Mol can predict the accurate binding complexes,
with large overlapping with ground-truth ligands.

PDBID: 3o9i
Smiles: 
CCC(CC)CN(C[C@@H](O)[C@H](Cc1ccccc1)NC(
=O)O[C@H]1CO[C@H]2OCC[C@@H]12)S(=O)(=
O)c1ccc2ncsc2c1
RMSD: 1.928

PDBID: 1o3f
Smiles: NC(=[NH2+])c1ccc2[nH]c(-c3cccc(-
c4ccccc4)c3O)cc2c1
RMSD: 0.379

PDBID: 4ty7
Smiles: Nc1[nH]nc2cc(-
c3nc([C@H](Cc4ccccc4)NC(=O)[C@H]4CC[C@H](
C[NH3+])CC4)[nH]c3Cl)ccc12
RMSD: 0.379

Figure 6: Binding pose prediction visualization in CASF-2016
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Ligand conformation performance As shown in Table 4, Uni-Mol cannot outperform popular
docking tools in RMSD below 1.0Å. After investigation, we found it is due to the RMSD of ligand
itself is not good, as shown in Table 21. We hypothesize that the binding pose prediction in Uni-
Mol is not end-to-end, and gradient descent based optimization is not physics/chemical aware, so
it may generate inaccurate ligand conformations. In contrast, popular docking tools are mostly
physics/chemical aware, like sampling ligand conformations by enumerating rotatable bonds [65].
To tackle this, a simple workaround is to combine the Uni-Mol and docking tools: Uni-Mol mostly
focuses on binding positions, while docking tools focus on ligand conformation. Considering the
physics/chemical constraints and predicting binding pose end-to-end are also worthy to try. We leave
the further optimizations as future work.

Table 21: Ligand-only conformation performance on CASF-2016

Ligand RMSD
% Below Threshold ↑

Methods 0.5 Å 1.0 Å 2.0 Å
Uni-Molrandom 14.39 57.54 89.82
Uni-Mol 17.20 57.19 93.33

F TRAINING STABILITY

With Pre-LayerNorm [32] backbone and mixed-precision training, the pretraining sometimes diverges.
After investigation, we found there are large numerical values in the intermediate states when
divergence happens. We hypothesize that the Final-LayerNorm layer in the Pre-LayerNorm backbone
results in the problem. Specifically, Final-LayerNorm is applied to the sum of all encoder layers,
denoted as

oi = LayerNorm(si), si =

L∑
l=1

ol
i (7)

where L is the number of layers, ol
i is the output of the i-th position in the l-th layer, and oi is the

final output of the i-th position, after Final-LayerNorm. Therefore, due to normalization, si can be
arbitrarily large (or arbitrarily small), without affecting model results. However, a too large or too
small numerical value will cause the numerical unstable, especially in the mixed-precision training.
To tackle this, we introduce a simple loss, to restrict the value range of si. Formally, the loss is
denoted as

Lnorm = meani

(
max

(∣∣∣∥si∥ − √
d
∣∣∣− τ, 0

))
, (8)

where d is the dimension size of si, τ is the tolerance factor. In Uni-Mol, we set τ = 1, and both
atom-level and pair-level representations are constrained by this loss. Besides, to avoid affecting
other loss functions, we set a very small loss weight (0.01) to Lnorm.

G SELF-ATTENTION MAP VISUALIZATION

For better interpretability, we conduct a visualization on the self-attention map and pair distance of
the molecule, shown in the Figure 7. We can easily find the average weight of all attention heads (in
the right-most figures) is very similar to the distance matrix. However, when we check these heads
independently, there are different patterns, and are different with distance matrix. For example, most
attention weights are asymmetric, while the distance matrix is symmetry. Besides, the long-range
interaction could be captured by the attention (like in Head 11 and 13). The learned long-range
interaction patterns reflect our motivation for using Transformer as the backbone model.
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Figure 7: Visualization on self-attention map of multi heads independently.

H VISUALIZATION FOR PRETRAINING TASKS.

We visualize 3D position recovery ability in Uni-Mol pretraining process. As shown in Figure 8,
Uni-Mol recovers coordinates and atoms with almost no mistakes in conformational space.

noise molecule target molecule recovery molecule noise - target

Figure 8: Visualization of 3D position recovery in pretraining.
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Moreover, we plot the pretraining masked atom predictions accuracy and the coordinate recovery
loss of the validation set. As shown in Figure 9, during pretraining, Uni-Mol can accurately predict
the atom type of the masked atoms and recover the corrupted 3D positions.

(a) Accuracy of masked atom prediction (b) Loss of coordinate recovery

Figure 9: Validation losses in pretraining.

I COMPARISON WITH GRAPHORMER AND 3D-GRAPHORMER

The positional encoding (the shortest path) used in Grahpormer can only handle 2D molecular graphs,
not 3D positions. In the Uni-Mol backbone, we added several modifications to make the model
have the ability to handle 3D inputs and outputs. Further, there is a concurrent following-up work
called 3D-Graphormer [35], adapting Graphormer to 3D molecules. There are several differences
between us: 1) Both Uni-Mol and 3D-Graphormer use the pair-wise Euclidean distance and Gaussian
kernel to encode 3D spatial information. 3D-Graphormer has an additional node-level centrality
encoding, which is the sum of spatial encodings of each node. 2) 3D-Graphormer doesn’t have pair
representation. 3) Our SE(3) Coordinate Head is different from the "node-level projection head"
in 3D-Graphormer. The method used in 3D-Graphormer is an attention layer for 3 axes in 3D
coordinates. 4) 3D-Graphormer is not designed for self-supervised pretraining.

J ONE TABLE FOR MOLECULAR PROPERTY PREDICTION

This section is one clear table 22 to associate the pretraining dataset information and the corresponding
results from Table 1 and Table 2 for molecular property prediction.

K NEURIPS 2022 REVIEW COMMENTS

The Neurips 2022 review comments of Uni-Mol can be found at https://openreview.net/
forum?id=IfFZr1gl0b for reference.
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