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Abstract

In this work, we develop a molecular dynamics method, combining the simple Maxwell-Boltzmann statistics with the
generally applicable standard Wigner sampling. The resulting implemented single-parameter procedure, termed sim-
plified Wigner sampling, has been extensively benchmarked by calculating vibrationally averaged rotational constants
and vibrational spectra of several molecules and by comparing with results from other methods. The procedure has
been also combined with the Andersen thermostat for simulation of NV T -ensembles.

1 Introduction

Molecular dynamics (MD) is a very powerful tool for modeling of molecular systems at normal and elevated tem-
peratures T ≥ 300 K.[1–3] However, the simulation of nuclear quantum effects (NQEs) is still a challenging topic in
MD.[1] At normal temperatures, the path-integral molecular dynamics (PIMD) approach[1, 4, 5] is very effective for
modelling equilibrium properties of molecular systems. This technique takes advantage of the exact mapping between
the quantum-mechanical system and its representation as a set of N interconnected replicas (also termed as beads)
with the N -times elevated temperature. Taking enough beads of this so-called ring polymer, when their respective
temperature (T × N) overcomes the Debye temperature TD = hν/kB of the highest possible vibrational mode with
frequency ν, the representation approaches the exact limit. The minimally required number of beads is thus estimated
as Nmin = hν

kBT . Therefore at low temperatures, this number is getting very large thus diminishing the applicability of
PIMD.

Rotational or vibrational spectroscopy techniques in the gas phase often applied to molecules in the ground vibra-
tional state,[6] especially if cooling techniques, such as the supersonic expansion, are used.[7] The most computationally
inexpensive and simple vibrational model is the harmonic approximation. This approach assumes that the potential
energy surface (PES) in the vicinity of the equilibrium geometry (local minimum) can be expressed with the second-
order Taylor expansion. For a diatomic molecule, in which the only vibrational coordinate is the interatomic distance
r, it reads as

V (r) =

Vh(r)︷ ︸︸ ︷
V (re) +

V2
2
ξ2 +

Wa(r)︷ ︸︸ ︷
V3
6
ξ3 +

V4
24
ξ4 + . . . ≈ Vh(r) . (1)

Here, V denotes the potential energy, re is the equilibrium distance between atoms, ξ = r − re is the displacement
of the structure from the equilibrium geometry, Vn = ∂nV

∂rn (re), Vh(r) is the harmonic potential, and Wa(r) is the
anharmonic correction to the harmonic potential. The quantum harmonic oscillator is one of the simplest quantum
mechanical problems with known analytical solution.[8] For a molecule with reduced mass µ, the stationary vibrational
states |v⟩ (v = 0, 1, 2, . . .) have energies of Ev = h̄ω(v + 1/2), where ω =

√
V2/µ is the angular vibrational harmonic

frequency. The vibrationally averaged displacement ⟨ξ⟩ = ⟨v|ξ|v⟩ = 0, since the harmonic potential is symmetric with
respect to inversion of the displacement, Vh(+ξ) = Vh(−ξ). On the other hand, the vibrational amplitude l, defined
as

l2 = ⟨r2⟩ − ⟨r⟩2 (2)

for the harmonic oscillator state |v⟩ is greater than zero:

l2v = ⟨v|r2|v⟩ − ⟨v|r|v⟩2 = ⟨v|ξ2|v⟩ = h̄

µω

(
v +

1

2

)
. (3)
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The harmonic approximation combined with the frequency scaling is a very robust, computationally affordable,
and simple way for calculation of vibrational properties.[9] For instance, the root-mean-squared deviation (RMSD)
for the scaled harmonic frequencies from the experimentally-obtained fundamental transitions is only around 20 cm−1

at B3LYP/def2-TZVP level of theory.[10] However, the direct comparison of computed in this way theoretical values
with experimental data may be of limited use, because real observables in the rotational or vibrational spectroscopy
are generally anharmonic.[10, 11] For instance, in the classical mechanics the angular vibrational frequency can be
approximately expressed as[12]

ωanh ≈ ω +

∆ω︷ ︸︸ ︷
ωl2

8

(
V4
V2

− 5

3

V 2
3

V 2
2

)
. (4)

As one can see, the anharmonic shift ∆ω is proportional to the square of the amplitude (l2) and is also induced by the
anharmonic terms of the PES Taylor expansion (Equation (1)). This dependence indicates larger deviations from the
harmonic frequency at higher vibrational excitations. A similar situation is observed in the rotational spectroscopy,
where rotational constants B can be considered as observables. For a diatomic molecule with the moment of inertia
I = µr2, dependent on the internuclear distance r, the rotational constant is given as[8]1

B =
h̄

4πc

〈
1

I

〉
≈ Be −

2Be

re
⟨ξ⟩ , (5)

where c is the speed of light, and Be = h̄(4πcIe)
−1 = h̄(4πcµr2e )

−1 is the rotational constant corresponding to the
structure at the equilibrium with distance re. The average displacement in the harmonic approximation is zero.
Therefore, the vibrationally-averaged rotational constant at the harmonic approximation is equal to the equilibrium
rotational constant. However, the asymmetric terms of the PES Taylor expansion may introduce a vibrationally-
averaged displacement. For example, due to the term V3ξ

3/6 we have[13]

⟨ξ⟩ = − V3
2V2

l2 .

For bond stretch vibrations typically V3 < 0 and V2 > 0. Therefore, equilibrium rotational constants are usually larger
than respective vibrationally-averaged rotational constants.

The full-dimensional quantum-mechanical treatment is the most accurate way to describe anharmonic motions of
nuclei. The full solution of the vibrational Schrödinger equation is a computationally and theoretically challenging
task.[14, 15] First, it requires extensive quantum-chemical calculations to produce the numerical potential energy
surface (PES). Often these data are approximated with a suitable analytical form. Finally, it requires advanced
techniques for solving multidimensional Schrödinger equations. The associated with these procedures difficulties limit
the widespread usage of such methods.

The simplest quantum approach that offers the anharmonic treatment of the molecular vibrations is the second-
order perturbation theory, usually denoted as VPT2.[16, 17] In this approach, harmonic, cubic (∝ V3ξ

3) and semi-
diagonal quartic force fields (∝ V4ξ

4) are taken into consideration. Since the harmonic potential is symmetric and
the cubic part is antisymmetric with respect to the displacements from the equilibrium values, the perturbative first
order (PT1) energy correction with the cubic force field is zero. However, the quartic semi-diagonal part of the field
with the terms of the form V4,ijξ

2
i ξ

2
j , where i and j enumerate displacements along different modes, gives nonzero

corrections at the PT1 level. The second order corrections (PT2) are thus being performed only for the cubic part of
the potential. Such procedure can be automated and is already implemented in multiple popular quantum-chemistry
software, such as Gaussian,[18] ORCA,[19] GAMESS US,[20] and Cfour.[21] However, with the increasing number of
atoms N in a molecule the computational cost of VPT2 increases dramatically due to the growing amount of cubic
force field elements, which scales as N3. For large molecules MD simulations may become computationally more
effective.[15] Therefore, it is important to develop procedures for computation of molecular vibrational properties at
low temperatures using classical MD simulations.

Wigner sampling[22, 23] is one of possibilities for producing initial conditions in MD simulations, that emulate
the quantum harmonic ground vibrational state.[24–26] In this work, we combine this sampling routine with constant
energy MD (NV E MD) simulations to provide anharmonic vibrational properties of molecules. In addition, we also
propose another simplified routine, based on the Wigner sampling, that does not require preliminary calculations of
molecular Hessian.

In this paper we first introduce and compare possible sampling routines, including our simplified version of the
Wigner sampling. Then we perform a benchmarking of vibrationally-averaged rotational constants. We demonstrate
the proof-of-principle for the approach using the diatomic system of the molecular hydrogen cation. Then, a benchmark
set of five small (no more than six atoms) molecules is used to evaluate a method for calculation of rotational
constants from MD trajectories. The resulting procedure is applied to another two moderately-sized molecules (20
and 62 atoms). Then we show the application of the sampling routines for the calculation of vibrational spectra for
difluoromethane. In particular, we demonstrate the application of the novel sampling routine in conjunction with the
Andersen thermostat.[28] In the end, we show the application of the developed methods to different systems with
known experimental data. All molecular systems used throughout this work are provided in Figure 1.

1Since 1
I
∝ 1

r2
= 1

(re+ξ)2
≈ 1

r2e
·
(
1− 2ξ

re

)
.
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+ H2O

C2H4 CH2F2
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+)
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+

Figure 1: Testing molecules. Standard Jmol[27] coloring scheme is used for the atoms: white (H), gray (C), blue (N),
red (O) and green (F).

2 Initial conditions

2.1 Maxwell-Boltzmann sampling

The classical procedure for the generation of initial conditions in MD simulations is the Maxwell-Boltzmann sampling
(MBS).[29] Starting nuclear coordinates are defined externally, for example, they may correspond to the equilibrium
molecular structure. Initial velocities of nuclei are generated from the Maxwell-Boltzmann distribution, e.g. for the
temperature T the velocity vα along a certain axis (α = x, y, z) of a nucleus with the mass m is distributed as

vα ∼ exp

(
− mv2α
2kBT

)
,

where kB is the Boltzmann constant. This generation of the initial conditions is very effective for classical ensembles.
However, we can also use MBS for crude simulation of NQEs. In simulations at elevated temperatures, pair distribution
functions (PDFs) are similar to those in the classical case. The squared vibrational amplitude (Equation 2) for the
interatomic distance r in the classical harmonic approximation is:[13]

l2class =
kBT

µω2
,

whereas in the quantum case it is[13]

l2quant =
h̄

2µω︸︷︷︸
l20

coth

(
h̄ω

2kBT

)
, (6)

where l0 is the vibrational amplitude for the ground vibrational state (see Equation 3), which can also be defined as
l0 = lquant(T = 0). For each given temperature, the classical vibrational amplitude does not exceed the quantum one
(lclass ≤ lquant). However, it is possible to find the specific temperature at which the classical ensemble shows the same
PDF as in the quantum case at T = 0. From the equation lclass = l0, we obtain

T =
h̄ω

2kB
=
TD
2

,

i.e., at the half of the Debye temperature TD = hν/kB the classical PDF of the harmonic oscillator is equivalent to
the PDF of the ground vibrational quantum state.
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2.2 Wigner sampling

One of the currently popular sampling techniques is based on Wigner quasiprobability distributions obtained at the

harmonic approximation.[23, 24, 26, 29] Let us consider the Hamiltonian Ĥ = 1
2µ p̂

2 + µω2

2 ξ2 for a single vibraional
mode with ξ being the displacement of the coordinate from the equilibrium position and p̂ = −ih̄∂ξ. The ground
vibrational state is then given by the wavefunction

ψ0(ξ) =
1√√
2π · l0

· exp
(
− ξ2

4l20

)
,

where l0 is defined in Equation 6. The corresponding Wigner quasi-probability function for the momentum p can be
obtained from any given wavefunction ψ via transformation [22]

W (p, ξ) =
1

πh̄

+∞∫
−∞

ψ∗(ξ − s) exp

(
2i · p · s

h̄

)
ψ(ξ + s)ds .

For the ground state of the harmonic oscillator ψ = ψ0 we get

W0(p, ξ) =
1

πh̄
exp

(
− ξ2

2l20
− 2l20p

2

h̄

)
=

1

πh̄
· exp

(
− ξ2

2σ2
ξ

)
· exp

(
− p2

2σ2
p

)
. (7)

Thus, the resulting Wigner function is a product of two Gaussian distributions: for the coordinate ξ and the momentum
p with widths σξ = l0 and σp = h̄/(2l0), respectively. The product σξ · σp = h̄/2 fulfills the Heisenberg inequality
σξ · σp ≥ h̄/2.

In the case of a polyatomic molecule, there is a mapping between independent one-dimensional vibrational modes
and the Cartesian coordinates and their corresponding momentums of atoms. The linear displacement of the atoms
in the Cartesian coordinates r from their equilibrium positions (re) can be related to the vector of displacements of
vibrational modes ξ through the matrix of the mode shapes L: R = (r − re) = Lξ. A similar relation connects the
Cartesian momentums of the atoms P = −ih̄∂R to the momentums of the independent modes p = −ih̄∂ξ: P = L−1p.
The Wigner function for ξ and p is just a product of the one-dimensional quasi-probability distributions (Equation
7), and it can be written as

W0(p, ξ) ∝ exp

(
−1

2
ξ†Σ−1

ξ ξ − 2

h̄2
p†Σξp

)
,

where matrix Σξ = diag(σ2
ξ,1, σ

2
ξ,2, . . .) is the variance matrix, and the momentum variance is obtained from the

Heisenberg equality relation. This distribution can be rewritten in terms of displacements (R = Lξ) and momentums
P = L−1p in Cartiesian coordinates:

W0(P,R) ∝ exp

−1

2
R†

Σ̃−1
R︷ ︸︸ ︷

L†Σ−1
ξ LR− 2

h̄2
P†

Σ̃R︷ ︸︸ ︷
(L−1)†ΣξL−1 P

 . (8)

Here, the effective variance matrix Σ̃R is non-diagonal, unlike the initial Σξ, which indicates the correlation between
atomic displacements due to the collective nature of the vibrational modes. The replacement of the variables {p, ξ} →
{P,R} is unitary, since dpdξ = L−1dRLdP = dRdP. Using this distribution, it is possible to simultaneously
sample both the linear displacements of the nuclei from the equilibrium geometry and nuclear velocities in polyatomic
molecules.[23] This and similar sampling procedures for initial conditions are called Wigner sampling (WS). If we
replace l0 for each vibrational mode with the temperature-dependent lquant from Equation 6, we can also sample
temperature-averaged vibrational states.

2.3 Simplified Wigner sampling

WS requires initial optimization of molecular structure and calculation of its harmonic potential. However, we can
try to construct a simplified sampling procedure similar to WS.

Let us consider the motion of a nucleus with the mass m along the coordinate x. The momentum p and the
coordinate x should fulfill the uncertainty principle, which can be ensured by using the Wigner function similar to
that in Equation 7:

W (p, ξ) =
1

πh̄
· exp

(
− ξ2

2σ2
x

)
︸ ︷︷ ︸

∝ρx

· exp
(
− p2

2σ2
p

)
︸ ︷︷ ︸

∝ρp

, (9)

where ξ is the displacement of the coordinate x, p = mv is the corresponding momentum of the nucleus along the
coordinate. By choosing a fixed σx we can parameterize the sampling procedure that fulfills the uncertainty principle
along each given degree of freedom in the molecule.
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The construction of the Wigner distribution requires solving the quantum-mechanical problem. However, we can
try to apply heuristic considerations to make a self-sustained procedure for generating such distributions. As a starting
point, we need to consider that the uncertainties of the coordinate and momentum should at least fulfill the Heisenberg
equality principle (σx · σp = h̄/2). This principle makes both distributions for the coordinate ρx and the momentum
ρp dependent on each other: the more uncertainty is for the momentum (σp is large), the less it is for the coordinate
(σx is small), and vice versa. We can think of this uncertainty as the amount of information we have about x and p.
As a guiding principle, we require the same information about x and p, i.e. the uncertainty in the distributions ρx
and ρp should be approximately the same.

A simple way to define a metric between distributions ρa and ρb is the Kullback–Leibler (KL) divergence[30] defined
as

DKL(ρa||ρb) =
+∞∫

−∞

ρa(q) ln

(
ρa(q)

ρb(q)

)
dq .

This function is not symmetric with respect to swapping ρa and ρb. Hence, here we will use the symmetrized KL
distance:

JKL(ρa, ρb) = JKL(ρb, ρa) = DKL(ρa||ρb) +DKL(ρb||ρa) .
In the case of the Gaussian distribution ρn(q) =

1√
2πσn

exp(−(q − µn)
2/(2σn)) we get[31]

JKL(ρa, ρb) =
1

2

(
(µa − µb)

2 ·
(

1

σ2
a

+
1

σ2
b

)
+
σ2
a

σ2
b

+
σ2
b

σ2
a

− 2

)
.

For the case of ρx and ρp the expectation value for the displacement and the momentum are µx = µp = 0. However,
we cannot compare position and momentum distributions since they have different units. To correct for that, instead
of the ρx(ξ), we will consider an another distribution of the new parameter

X =
m · ξ
τ

,

which shows the momentum originating from the displacement after some time τ . The distance between distributions
ρX (with σX = mσx

τ ) and ρp is

JKL(ρX , ρp) =
1

2

(
m2σ2

x

τ2σ2
p

+
τ2σ2

p

m2σ2
x

− 2

)
.

Due to the relation σx = h̄/(2σp), we can find a condition of JKL(ρX , ρp) → min as dJKL

dσp
= 0, which leads to

σ2
p =

h̄m

2τ
⇒ σ2

x =
h̄τ

2m
. (10)

The resulting parameterization of the displacement (ρx) and momentum (ρp) distributions depends on the single
parameter τ in units of time. Although this approximation is physically less sound than the standard WS, it has
the advantage of simplicity due to single control parameter τ and due to the independence on equilibrium molecular
geometry.

The sampling procedure is simple. After choosing a reasonable τ , for each coordinate (x, y, z) of all nuclei we
generate a displacement and velocity according to the distribution given in Equation 9. We denote this as simplified
Wigner sampling (SWS). This procedure can also be rewritten in terms of sampling the multivariate quasi-distribution
for all Cartesian coordinates and momentums, similar to the Equation 8. In this case, the sampling is done on the
basis of the distribution

W0(P,R) ∝ exp

(
−1

2
R†Σ−1

R,SWSR− 2

h̄2
P†ΣR,SWSP

)
,

where ΣR,SWS = h̄τ
2 diag(. . . , 1

mk
, . . .) and k enumerates all the Cartesian coordinates.

A reasonable value for τ can be chosen from general physical considerations. The largest displacement will be
observed for the lightest nuclei, most commonly for hydrogen with the mass of 1 a.m.u. A displacement of more
than 20% of the corresponding bond length will probably introduce too much energy into the system, that can even
lead to a spurious fragmentation. Therefore, we require σx to be smaller than about 0.2 Å. For m = 1 a.m.u. this
is achieved with τ < 13 fs. From the other side, the momentum distribution σ2

p = h̄m
2τ can be thought in terms of

temperature, since for MBS σ2
p,MB = mkBT , i.e. the effective temperature is defined as Teff = h̄

2kBτ . For velocities of
nuclei Teff ≤ 5000 K can be achieved at τ > 0.8 fs. This provide a small range of reasonable values for τ , 1 ≤ τ ≤ 10
fs.

Introducing temperature effects in the distribution 9 is rather straightforward. This can be done in a classical
sense as the addition of the momentum δp, which is distributed according to the Maxwell-Boltzmann statistics (δp ∼
exp(−δp2/(2mkBT ))). By replacing p with p+ δp we need to average W (x, p) over δp, which leads to

WT (ξ, p) =
1√

2πmkBT

+∞∫
−∞

exp

(
− δp2

2mkBT

)
·W (p+ δp, ξ)dδp =

1

2πσxσp,T
exp

(
− ξ2

2σ2
x

)
︸ ︷︷ ︸

∝ρx

· exp

(
− p2

2σ2
p,T

)
︸ ︷︷ ︸

∝ρp,T

,
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Figure 2: PDF of the molecular cation H2
+. The solid line shows the anharmonic ground vibrational state density

|ψ0|2, the dashed line is the density distribution from the harmonic approximation. The blue bar plot shows the PDF
obtained from the WS routine. The red bar plot shows the PDF from MD simulations with initial conditions from
the WS routine (WS+MD).

where σ2
p,T = σ2

p +mkBT . In the case of σx = 0 and σp = 0, this sampling procedure is equivalent to the standard
MBS.

3 Results and discussion

3.1 A simple case of H+
2

To illustrate the general idea of WS and SWS in application to molecular vibrations, we have done calculations for
a simple diatomic model, the molecular cation H+

2 . Here we focus on the interatomic pair distribution function, as
this provides a general representation of the molecular ensemble, from which other observables can be computed. For
example, the rotational constant of the diatomic molecule can be explicitly expressed via the average interatomic
distance (Equation 5).

To simplify simulations, we calculated potential energy at the HF/aug-cc-pV6Z level using ORCA software[19]
and then approximated it with Morse potential E(r) = Ee + De · (1 − exp(−β · (r − re)))

2, where Ee = −0.606674
Ha is the equilibrium electronic energy, De = 0.103666 Ha is the equilibrium dissociation energy, re = 1.07691 Å is
the equilibrium distance, and β = 1.46583 Å−1 is the parameter, that controls the steepness of the potential. The
one-dimensional stationary Schrödinger equation for the vibrational motion was solved with help of the MOLINC
package,[32] employing sinc-DVR kinetic energy representation.[33] The comparison of the numerical anharmonic
vibrational wavefunction with that from the harmonic approximation is shown in Figure 2. The asymmetry of the
anharmonic potential with respect to the equilibrium geometry re leads to the shift of the probability distribution into
the range of larger interatomic distances r.

The Wigner distribution at the harmonic approximation gives symmetric probability distribution, as it is obtained
from the model symmetric potential. Therefore no anharmonic shifts of the interatomic distance can be observed from
the ensemble of structures sampled in this case. Although MD can be used with anharmonic PES, being a classical
simulation technique, it cannot recover quantum effects (NQEs). Nevertheless, some successful examples of modified
MD describing quantum properties exist in the literature.[34, 35] It is possible to replace the classical vibrational
amplitude l =

√
⟨r2⟩ − ⟨r⟩2 with its quantum analogue in harmonic approximation.[13, 15, 36] This substitution is

justified by the domination of the harmonic potential in the second moment of the interatomic distribution.
The same logic can be transferred to WS. By default, the initial ensemble of the structures produced from the

harmonic wavefunction via WS (Equation 7) has no anharmonicity. However, the system evolves at the anharmonic
PES for some time, thus allowing the classical dynamics capturing the anharmonicity to some extent. In other words,
the WS procedure ensures the quantum behavior, while the anharmonicity of the PES is considered through MD. To
test this, we ran 150 trajectories with three sampling routines, MBS at various initial temperatures, WS, and SWS
with different τ parameters ranging from 0.1 to 100 fs. The total time of each simulation was 0.5 ps with a time step
of 0.5 fs.

The simplest characterization of the one-dimensional interatomic distribution is through its first two moments,
the averaged distance ⟨r⟩ and the amplitude l (Equation 2). The corresponding values calculated for H+

2 are given
in Figure 3. The harmonic oscillator model and the pure WS result in ⟨r⟩h = re because the harmonic potential is
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Figure 3: Mean internuclear distances ⟨r⟩ and vibrational amplitudes l (Equation 2) for the ground vibrational state
of the molecular cation H+

2 . The horizontal lines show the results of the harmonic (index “h”, black line), anharmonic
(“anh”, blue line), and MD with WS (“WS+MD”, red line). The curves show the results of the MBS+MD and
SWS+MD simulations at different τ = h/(kBT ).
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Figure 4: Vibrational energies Evib (above) and vibrational nuclear temperatures T = 2⟨Ekin⟩/(NfkB) (below). Hori-
zontal lines show the energy levels calculated in the harmonic (index “h”, black line), anharmonic (“anh”, blue line),
and WS+MD (red line) approximations. The curves show the results of the SWS+MD simulations at different τ .

symmetric. However, MD simulations with initial conditions from WS (WS+MD) produce an average value ⟨r⟩WS+MD

very close to that computed with the numerical ground state anharmonic wavefunction ⟨r⟩anh. In the case of the
diatomic molecule, the SWS distribution can be exactly mapped to WS. Therefore we can get the same solution
⟨r⟩SWS+MD = ⟨r⟩WS+MD by scanning the parameter τ . The resulting curve has a single minimum at τ = 2 fs
where ⟨r⟩SWS+MD = ⟨r⟩WS+MD = ⟨r⟩anh. Figure 3 also shows the results from MBS+MD simulations at various
temperatures, where the temperature T is mapped to τ through the Debye temperature relation τ = ν−1 = h/(kBT ).
The resulting value coincides with the expected one at T around 3000 K (τ = 16 fs). The trend for MBS shows only
the growth of ⟨r⟩ with the increase in temperature. Thus MBS requires an a priori knowledge of the appropriate
temperature, in contrast to SWS+MD, where the best τ can be found in the variational procedure by minimizing the
⟨r⟩. The results for the amplitude l (Figure 3) show that the harmonic value is close to those from anharmonic and
WS+MD calculations. This is expected since the second moment of the internuclear distribution is dominated by the
harmonic potential.[13, 36, 37]

The single minimum of ⟨r⟩ and l in the SWS+MD simulations suggest a similar behavior for other observables,
which can be used for finding optimal parameter τ for larger molecules. The obvious choice is an energy-related
parameter, for example, the average total energy (electronic and nuclear) ⟨Etot⟩. The other option is the kinetic
energy of nuclei (⟨Ekin⟩), which is often expressed in terms of temperature through the relation ⟨Ekin⟩ = NfkBT/2,
where Nf is the number of degrees of freedom. For example, Nf = 1 in the case of the diatomic molecule H2

+. The
results in Figure 4 show that the minimum energy is reached at τ = 2 fs. Note, at this value the average distance ⟨r⟩
and the amplitude l are minimal, as Figure 3 shows. The total vibrational energy Evib = ⟨Etot⟩ − Ee was compared
to the quantum zero-point vibrational energy (ZPVE) of the system. Similar to the amplitude, ZPVE is dominated
by the harmonic potential. Therefore, the harmonic and anharmonic ZPVE values are very close. There is also
another consideration regarding the τ parameter. According to the equipartition theorem,[38] which also assumes the
dominating role of the harmonic potential, the nuclear temperature can be used to guide the choice of the τ parameter
in SWS. This is also confirmed by the numerical test demonstrated in Figure 4.
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3.2 Rotational constants

To test the applicability of WS+MD for the calculation of anharmonic corrections to rotational constants we have
chosen five small molecules (see Figure 1): water (H2O), ethylene (C2H4), difluoromethane (CH2F2), trans and cis
isomers of 1,2-difluoroethylene (C2H2F2). For each of these molecules, we have computed vibrational corrections to
rotational constants using numeric cubic force fields as implemented in the VPT2[39] procedure in the Gaussian 16
[18] program package. For small semi-rigid molecules, this level of approximation combined with a sufficient treatment
of electronic problem can provide accurate reference values.[40, 41] As an alternative method, MD simulations for
these molecules were done for 0.5 ps. The slowest harmonic vibration among the test molecules was in cis− C2H2F2

with the frequency of 219 cm−1, which corresponds to the vibrational period of 0.15 ps. Thus during 0.5 ps this
motion was likely sampled three times. The time step was 0.5 fs. For each of the molecules, 50 MD trajectories with
WS and SWS initial conditions were started. The gradients for the molecules were obtained using ORCA 5.[19] The
used quantum-chemical approximation for the electronic problem in all cases was PBE/def2-SVP.[42, 43] The WS
procedure was performed using scripts from the SHARC-MD package.[44–46] Rotational and translational motions in
the molecules at the beginning of the simulations were frozen. In SWS+MD simulations, the τ parameter was not
scanned but fixed at the optimal value found for the H+

2 ion (τ = 2 fs). MD simulations were run with the BOMoND
script from the PyRAMD repository.[47, 48] Obtained MD trajectories were processed with scripts from the MOLINC
repository.[32]

First, a proper way of computing the averaged rotational constants from the MD trajectories should be chosen.
For this, there are at least three ways.

• The simplest approach is the calculation of rotational constants Bα (α = a, b, c) at every time step with the
following averaging of the Bα over the complete MD trajectory. This procedure is denoted as mean rotational
constants (MRC).

• A more sophisticated procedure, in which the complete tensor of inertia I is calculated at each MD step. The
inverted tensor I−1 is averaged along the trajectory, producing ⟨I−1⟩. The eigenvalues of ⟨I−1⟩ are I−1

a ≥
I−1
b ≥ I−1

c , which are related to the rotational constants as Bα = h̄
4πcI

−1
α (α = a, b, c). Since the rotation is

frozen during the simulation, we may assume, that the principal axes of the molecule do not deviate significantly
from the initial positions. Therefore there is no need for a reorientation of the molecule with respect to the
reference structure. This procedure is denoted as mean inverse inertia tensor unoriented (MIITU).

• A method similar to the previous but with the orientation of all molecular frames with respect to the reference
equilibrium structure. The orientation is done by minimizing the mass-weighted functional

∑
imi(ri − re,i)

2,
where i enumerates all the nuclei in the molecule, m are the masses and r are the coordinates of the nuclei,
the index “e” denotes the reference equilibrium configuration of the nuclei. The minimization can be efficiently
performed using the Kabsch algorithm.[49] This way of computing the mean rotational constants is denoted as
mean inverse inertia tensor oriented (MIITO).

Each MD trajectory we can consider as a single measurement of the system with the resulting constants ⟨A⟩ = ⟨Ba⟩,
⟨B⟩ = ⟨Bb⟩, ⟨C⟩ = ⟨Bc⟩ obtained by either one of the MRC/MIITU/MIITO procedures. The actual result, however,
requires averaging over several of such MD trajectories started from different initial conditions. Therefore, final values
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from the MD are results of double averaging from multiple trajectories, defined as

Bα,MD = ⟨⟨Ba⟩⟩ =
1

Ntrj

Ntrj∑
n=1

⟨Ba⟩n , α = a, b, c

where Ntrj is the total number of MD trajectories, and ⟨Ba⟩n are the mean rotational constants obtained from n-th
trajectory. To quantify the statistical significance and convergence of the simulation, one can use the standard errors,
calculated as

SEα =

√
⟨⟨Ba⟩2⟩ − ⟨⟨Ba⟩⟩2

Ntrj
,

where ⟨⟨Ba⟩2⟩ = 1
Ntrj

∑Ntrj

n=1⟨Ba⟩2n.

Table 1: Pearson correlation coefficients ρ between the normalized rotational constant shifts (Be −B0)/Be, computed
from the VPT2 model and the MD simulations with different procedures. See text for further details.

MRC MIITU MIITO
ρ(WS +MD,VPT2) 0.77 0.76 0.80
ρ(SWS +MD,VPT2) 0.83 0.89 0.90

Using these three procedures, we have calculated the vibrational shifts of rotational constants Be,α − ⟨Bα⟩, which
were compared with those from the standard VPT2 computations. Since the values of the shifts are very sensitive to
the values of rotational constants, in statistical assessments (Table 1, Figure 5) we have used the normalized quantities
(Be,α−⟨B⟩)/Be,α = 1−⟨B⟩/Be,α. In general, results from all tested combinations of methods for trajectory simulations
(WS+MD, SWS+MD) and for calculation of rotational constants (MRC, MIITU, MIITO) correlated reasonably with
reference VPT2 values. The MIITU and MIITO routines are the most physically justified, since the vibrationally-
averaged rotational parameter appears from the averaging of the rotational Hamiltonian as Ĥrot = ⟨0| 12 L̂

†I−1L̂|0⟩ =
1
2 L̂

†⟨0|I−1|0⟩L̂, where |0⟩ is the ground vibrational state, and L̂ are the angular momentum operator. To quantify the
performance of the methods, we have computed Pearson correlation coefficients ρ for the observed normalized rotational
constant shifts from the MD trajectories and VPT2. The results are summarized in Table 1. MIITO showed the best
performance among all of the routines applied, and therefore it was further used as a default procedure for calculation
of vibrationally-averaged rotational constants from MD trajectories. The resulting vibrational corrections to rotational
constants are listed in Table 2. As one can see, the MD values correlate quite well with the reference values from the
VPT2 model.

A very important aspect is that MD simulations with frozen out rotations cannot recover centrifugal effects.
Centrifugal expansion is a few orders of magnitude smaller than the anharmonic shift (see Table 2) and negligible in
comparison to standard errors of our MD values. Thus, even with allowed rotations the uncertainty of MD prevents
its usage for calculation of this particular effect. On the other side, it is mostly dominated by the harmonic potential
and therefore is well predicted in the harmonic approximation with a much smaller computational cost.[16]

Table 2: Equilibrium rotational constants Be and their anharmonic shifts in the ground vibrational state Be −B0 for
the five model asymmetric top molecules.a The uncertainties of the MD-based values are the ± standard errors.

Molecule A/B/C Be Be −B0

VPT2 VPT2+cent. WS+MD SWS+MD(τ = 2 fs)

H2O
A 2505.328 −31.632 −32.781 −12± 17 −71± 33
B 1456.758 10.273 10.567 12± 3 11± 3
C 921.145 23.594 24.057 28± 3 29± 4

C2H4

A 475.622 4.457 4.457 10± 1 12± 1
B 98.657 0.678 0.679 1.2± 0.1 1.8± 0.1
C 81.708 0.821 0.820 0.9± 0.1 1.2± 0.1

CH2F2

A 164.710 1.710 1.710 2.5± 0.3 2.1± 0.4
B 34.706 0.206 0.206 0.28± 0.03 0.4± 0.1
C 30.442 0.230 0.230 0.34± 0.03 0.5± 0.1

trans− C2H2F2

A 190.383 2.230 2.230 4.4± 0.3 9± 1
B 13.199 0.046 0.046 0.06± 0.01 0.04± 0.01
C 12.343 0.058 0.058 0.06± 0.01 0.05± 0.01

cis− C2H2F2

A 71.606 0.670 0.670 1.0± 0.1 0.2± 0.4
B 18.895 −0.002 −0.003 −0.01± 0.01 0.04± 0.04
C 14.950 0.051 0.051 0.04± 0.01 0.12± 0.02

a The quantum-chemical approximation used for simulation was PBE/def2-SVP. All values given are in m−1 (for
conversion to cm−1, the values must be divided by 100). All the MD values were obtained from the MIITO routine.
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Figure 6: Vibrational infrared (IR) spectra of CH2F2. The bars indicate the harmonic and VPT2 anharmonic spectra.
The lines show the spectra obtained from the MD simulations.

Two additional tests of the proposed computational methods were done using the moderate-size molecular systems
(see Figure 1), 6,6-dimethyl-1,5-diazabicyclo[3.1.0]hexane (C6H12N2) and syn-conformer of 6,6’-bis(3-oxadiamantane)
(C26H34O2). Both structures were investigated experimentally [50, 51] using gas electron diffraction (GED). For the
latter molecule GED data were supplemented by rotational constants from microwave measurements. Due to the
larger role of dispersion interactions in the structures of these systems, the applied in our work quantum-chemical
approximation included D3BJ empirical corrections.[52] Optimizations of the molecular structures and calculations of
VPT2 corrections were done using Gaussian 16[18]. The lowest and the highest harmonic frequencies among vibrations
in both molecules were 78 and 3110 cm−1, which correspond to the vibrational periods of 430 and 11 fs, respectively.
To provide an approximate coverage of at least three vibrational periods for each of the modes, the total duration of
MD trajectories was set to 1.5 ps. The time step for the simulation was chosen to be 1 fs, to be at least ten times
smaller than the period of the fastest vibration. For C6H12N2 and C26H34O2 35 and 46 WS+MD trajectories were
obtained, respectively. The comparison of the resulting anharmonic corrections to the rotational constants (Be−B0) is
given in Table 3. The relative deviations of the WS+MD corrections from the VPT2 values are about the same order
of magnitude as for the smaller systems. Thus, WS+MD can probably be applied to larger and more complicated
molecules.

Table 3: Equilibrium rotational constants Be (in m−1) and their anharmonic shifts in the ground vibrational state
Be −B0 for C6H12N2 and C26H34O2 molecules. The uncertainties of the MD-based values are the ± standard errors.

A/B/C Be Be −B0

VPT2 VPT2+cent. WS+MDa

C6H12N2

A 12.02 0.12 0.12 0.16± 0.01
B 5.85 0.06 0.06 0.10± 0.01
C 5.79 0.07 0.07 0.11± 0.01

C26H34O2

A 1.3151 0.0126 0.0126 0.0164± 0.0002
B 0.5286 0.0060 0.0060 0.0078± 0.0001
C 0.5281 0.0061 0.0061 0.0078± 0.0001

aThe values were obtained using the MIITO routine.
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3.3 Vibrational spectra

Another possible application of MD is the prediction of vibrational spectra. Here we discuss only infrared (IR)
one-photon spectra. The intensity of IR spectra can be computed as[53]

I(ν) =

∣∣∣∣∫ ⟨ḋ(τ)ḋ(τ + t)⟩τ exp(−i2πνt)dt
∣∣∣∣ ,

where ⟨ḋ(τ)ḋ(τ + t)⟩τ is the autocorrelation function (ACF) of the dipole moment time-derivative (ḋ), t the is time,
and ν is the frequency. Other types of vibrational spectra, such as Raman or vibrational circular dichroism, can
be computed similarly.[53, 54] The duration (ttot) and the time step (∆t) of ACF are the same as for the original
MD trajectory. In discrete Fourier transform, the frequency resolution is determined by the trajectory duration as
∆ν ∝ t−1

tot, while the time step determines the maximal frequency as νmax ∝ ∆t−1. Generally, it is recommended to
use small time steps in MD simulations, otherwise large integration steps can lead to artificial blue shifts in the high-
frequency region.[55] However, such shifts can be corrected using a simple replacement of Fourier-transform frequencies
νFT with[56]

ν =

√
2 · (1− cos(2π ·∆t · νFT))

2π ·∆t
.

We also applied this correction throughout the work.
It is worth to mention practical limitations of NV E MD simulations due to the limited total number of collected

frames N , determined by available computational and time resources. We calculate Nt trajectories each with Ns steps,
so that the total number of frames is N = Nt · Ns. For the predefined constant N we may balance Nt and Ns but
cannot increase both parameters. Smaller Ns cause the lowering of the spectral resolution, because of the duration
of trajectories t = Ns ·∆t, where ∆t is the integration time step. On the other side, smaller Nt will result in poorer
phase-space sampling. To overcome this problem of NV E MD, we can try switching to NV T MD with a thermostat,
in which the phase space sampling is done on-the-fly. In this case, with a similar number of computational operations
it is possible to obtain fewer trajectories (smaller Nt) but with larger lengths (larger Ns) and optimal phase space
sampling. However, the thermostat must not interfere too much with the dynamics of the system.[15]

Andersen thermostat is the most straightforward to implement.[28] The WS method relies on equilibrium molecular
geometry and cannot be used for anything except for sampling of initial conditions. SWS, on the other hand, has the
same principle as MBS and thus can be used in combination with the Andersen thermostat. We have performed two
simulations for difluoromethane with SWS and Andersen thermostat (abbreviated as SWS-AT+MD) with the collision
period of 300 fs, time step of 1 fs and total trajectory duration of 10 ps at two different temperatures, T = 0 K and
T = 300 K. Three and four trajectories were collected in simulations for T = 0 K and T = 300 K, respectively. For
comparison, we also performed classical constant temperature MD simulations with the Andersen thermostat applying
the MBS scheme (MBS-AT+MD).

Figure 6 shows the computed vibrational spectra for the CH2F2 molecule. Classical MBS introduces relatively
small vibrational amplitudes. Therefore, high-frequency vibrations from MBS-AT+MD are essentially harmonic.
Taking into account nuclear quantum effects in WS+MD, SWS+MD, and SWS-AT+MD simulations leads to a better
agreement of the MD-based spectra with the VPT2 calculations. Short lengths of MD trajectories in the NV E MD
simulations limit the frequency resolution in the WS+MD and SWS+MD simulations. The much longer SWS-AT+MD
simulations show results very similar to WS+MD and SWS+MD, which is seen in the similar shapes and positions
of the peaks in the spectra. However, due to the much longer trajectories duration the spectral resolution of SWS-
AT+MD exceeds by far the spectral resolution in WS+MD and SWS+MD. On the basis of the obtained results we
can recommend the SWS-AT+MD technique for calculation of vibrational spectra.

3.4 Examples

To further demonstrate the applicability of WS+MD and SWS+MD for the calculation of vibrational properties of
molecules and to compare the performance of MD with harmonic and VPT2 vibrational models, we have performed
three additional sets of calculations for different molecular systems (see Figure 1). We have chosen benzene (C6H6),
protonated methane cation (CH+

5 ) and protonated serine octamer (Ser8H
+, (C3H7NO3)8H

+). For all of them there
have been published high quality experimental and theoretical data.[57–64] Benzene is an example of a simple and
semi-rigid system, for which are available experimental rotational constants with respective theoretical anharmonic
corrections [57, 59], vibrational [58] and photoelectron (PE) spectra [60]. CH+

5 was taken as a system with large
amplitude motions (LAMs) requiring treatment beyond the localized vibrational harmonic and VPT2 approximations.
Ser8H

+ is used to demonstrate the increasing computational expenses of the VPT2 approach compared to MD.

3.4.1 Benzene

To provide the comparison with experimental and high-level theoretical data, we have performed various types of MD
simulations for benzene at the PBEh-3c level of theory[65] using BOMoND and ORCA 5. The following numbers of
trajectories were obtained: 50 for WS+MD, 24 for SWS-AT+MD at T = 0 K, 47 for SWS-AT+MD at T = 300 K
and 35 for MBS-AT+MD at T = 300 K. The time step in all cases was 1 fs, the total lengths of each trajectory were
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Figure 7: Experimental and theoretical infrared (IR) vibrational spectra of benzene. The horizontal arrow indicate
the anharmonic VPT2 shift.

2 ps, collision period for AT was 300 fs. From the WS+MD trajectories we have computed vibrational corrections to
rotational constants, Be − B0 = 0.192 ± 0.01 m−1 and Ce − C0 = 0.083 ± 0.004 m−1. 12C6

1H6 benzene is an oblate
symmetric top molecule, thus the A = B rotational constants cannot be obtained directly from experiment. For the
C-constant our value of the vibrational correction is in reasonable agreement with the reference theoretical value of
0.14 m−1.[59]

Experimental vibrational IR spectra were taken from NIST Chemistry WebBook [58] and compared with calculated
in this work, see Figure 7. Since the PBEh-3c model is not implemented in Gaussian, we also performed harmonic
and VPT2 frequency calculations using ORCA 5. As the VPT2 module of ORCA does not compute anharmonic
intensities, we used respective values from the harmonic approximation. The IR spectra from all the MD simulations
were calculated for each trajectory separately (gray lines in Fig. 7) with subsequent their averaging for each simulation
type set (colored lines in Fig. 7). First 0.5 ps in each trajectory were considered as equilibration phase and therefore
ignored. The resulting spectra were convoluted using Gaussian function with the full width at half maximum (FWHM)
parameter of 50 cm−1. The averaged IR spectra from SWS-AT+MD and WS+MD reproduce all experimental bands.
MBS-AT+MD underestimates intensity for the overtones in the 1700-2000 cm−1 range (not shown in harmonic and
VPT2 plots). It is interesting to observe variations of the C-H stretching peak, corresponding to vibrations with
highest Debye temperature in benzene. Its position in MBS-AT+MD (3260 cm−1) is essentially the position of the
harmonic vibration (3262 cm−1). This is explained by underestimation of vibrational amplitudes in the classical MD
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treatment (see discussion of Equation 4). The WS+MD results show larger anharmonic shift with the peak maximum
at 3223 cm−1. In SWS-AT+MD at both temperatures (0 and 300 K) this band has the same position at 3185 cm−1.
Notably, all MD models underestimate the anharmonic shift and cannot reproduce accurately the experimental band
at 2874 cm−1. However, we see acceptable general agreement of the experimental IR spectrum with theoretical from
MD methods accounting for NQEs within the WS paradigm.

We also computed photoelectron spectra (PES) of benzene and compared them with the experimental data [60]
extracted using the WebPlotDigitizer software.[66] The three types of calculations were performed. First, conventional
Franck-Condon factors were computed for the ground electronic states of the neutral benzene and for its cation using
the ezFCS software.[67] As a preliminary step, structure optimizations and harmonic frequency calculations were done
for C6H6 and C6H6

+. However, C6H6
+ is a well known example [68, 69] of the Jahn-Teller effect. Therefore, the same

procedures cannot be applied to the excited electronic states of C6H6
+ and only the first band of the PE spectrum

could be calculated using this procedure.
Next we tried to account for the vibrational motions by sampling 150 structures of benzene using the WS procedure

and harmonic vibrational modes at the PBEh-3c level. For these structures ionization potentials (IPs) were calculated
using ADC(2)/cc-pVTZ method. Binning the obtained IPs allowed us to computed an approximate PE spectrum, see
Figure 8. This is a simplistic treatment of vibrational degrees of freedom in the harmonic approximation.

For anharmonic treatment of vibrational motions, 5 structures were randomly taken from each of 24 SWS-AT+MD
(T = 0 K) trajectories, providing 120 structures in total. For them single-point IPs were computed at the ADC(2)/cc-
pVTZ level. Then, doing a similar binning, we obtained the corresponding PE spectrum (Fig. 8). The conventional
Franck-Condon modeling directly evaluates the vibrational structure. However, this requires optimization of cationic
excited states, which can be considerably complicated due to their strong multireference character, as in the case
of benzene. Alternatively WS can be used as a fast and simple method for estimation of line shapes. The spectra
computed on the basis of MD are slightly red-shifted in the first three bands with respect to the WS-based values.
This is probably an effect of anharmonicity.

3.4.2 Protonated methane cation

Protonated methane (CH+
5 ) is a strongly nonrigid molecular system. There have been measured vibrational spectra

[61, 62] and investigated its structure and dynamics.[63, 70–72] Due to the significant flexibility of this system, we
use it as a test case for the calculation of vibrational spectra. Four sets of MD simulations were performed, MBS-
AT+MD at T = 300 K (29 trajectories), WS+MD (45 trajectories), SWS-AT+MD at T = 0 K (21 trajectories) and
T = 300 K (23 trajectories). The gradients were calculated at the PBEh-3c level of theory. The time step was 1 fs
for each trajectory. The total time span for each trajectory was set to 4 ps, except for WS+MD with 2 ps. First 0.5
ps were removed from each trajectory due to equilibration. To compare with standard models, harmonic and VPT2
calculations were performed in ORCA 5.

Vibrational spectra of CH+
5 were measured using action spectroscopy [61], monitoring the yield of the OCOH+

cation according to the reaction
CH+

5 +CO2 + hν → CH4 +OCOH+ , (11)
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Figure 9: Experimental [61] (retrieved with WebPlotDigitizer [66]) and theoretical IR spectra of CH+
5 . Arrows indicate

anharmonic VPT2 shifts.
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Figure 10: Experimental (black lines below) and theoretical IR vibrational spectra of the protonated serine octamer
(Ser8H

+). The two independent sections of the experimental data (1100–2200 cm−1 and 2900-3700 cm−1) were
independently scaled for a better view. Vertical bars (below) show the harmonic fundamentals.

where hν is the IR photon. To account for this, we multiplied our IR spectra with a factor (see Appendix for details)

f(ν) =

{
0 , hν ≤ D,

1− D
hν , hν > D,

(12)

where ν is the photon frequency, and the D is the energy threshold for the observed reaction. In our work we assumed
D = 383 cm−1, which corresponds to the Gibbs free energy of the probing reaction (Equation 11), computed in
the following hybrid scheme. Geometry optimizations and frequency calculations were done at the PBEh-3c level of
theory for 298 K, whereas single point energies were computed using the ae-CCSD(T) theory applying complete basis
set (CBS) extrapolation technique based on the cc-pVTZ and cc-pVQZ sets.[73–75] The resulting spectra are shown
in Figure 9. VPT2 fails by producing a negative value for the lowest fundamental frequency. MBS-AT+MD shows
the fine band structure of the spectra, whereas the WS-based methods demonstrate broadening of the peaks without
significant shifts.

3.4.3 Protonated serine octamer

The protonated serine octamer (Ser8H
+, C24H57N8O24

+, see Figure 1) is a relatively large molecular system comprising
113 atoms. Its structure was investigated using helium-tagging IR spectroscopy by comparing harmonic frequencies
with experimental spectra.[64] The VPT2 method for this system with 3 × 113 − 6 = 333 vibrational degrees of
freedom requires calculation in total 667 Hessians – for two displaced structures along each of the 333 modes plus for
the equilibrium structure. Our simple timing benchmark in Orca 5 has shown that a parallel VPT2 calculation for
this system using a GGA functional with the 6-31G basis set[76] is equivalent to a MD simulation of about 13,000
frames. As it has been shown the VPT2 method is not reliable in application to vibrations with large amplitudes. On
the other side, using molecular dynamics a decent representation of the Ser8H

+ molecular ensemble can be reached
even with fewer than 13,000 frames.
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To demonstrate that, we have performed two MD simulations of Ser8H
+ at the BLYP-D3BJ/6-31G level of theory,

MD-AT+MD at T = 300 K and SWS-AT+MD at T = 0 K. The lengths of trajectories in both simulation sets were 3
ps. First 100 fs of the trajectories were discarded due to equilibration. Since experimental spectra were obtained using
helium tag,[64] we applied the intensity correction factor given in Equation 12. The helium detachment energy D in
the He− Ser8H

+ complex was estimated to be 379 cm−1, on the basis of GFN2-xTB[77] semi-empiric calculations.
Figure 10 shows comparison of experimental and calculated spectra. The MD results demonstrate a much better
agreement with experimental data in comparison to harmonic calculations.

4 Conclusions

Wigner sampling (WS) technique combined with classical molecular dynamics (MD) is a powerful combination de-
scribing nuclear quantum effects (NQEs) and vibrational anharmonicity at a reasonable computational cost. We
have performed a benchmark evaluation of respective procedures for computing vibrationally-averaged ground state
rotational constants for a set of molecules. The most robust way is the calculation of the mean inverse tensor of
inertia along the trajectory. Molecular structures at each snapshot of trajectory should be oriented with respect to
the reference structure.

The physically-justified WS procedure can also be reduced to a one-parameter heuristic procedure denoted as
simplified Wigner sampling (SWS). The single parameter τ with the dimension of time controls the SWS method.
The determined interval of optimal τ is 1 ≤ τ ≤ 10 fs and the value of τ = 2 fs is optimal starting approximation for
MD simulations. The adjustment of τ can be done using a variational procedure by minimizing the mean energy or
temperature of the system.

WS and SWS also allow for effective treatment of NQEs in calculations of vibrational spectra. A better frequency
resolution can be gained by combining the phase-space sampling with long trajectory duration. Constant tempera-
ture MD with the Andersen thermostat combined with the SWS routine partially allows to recover NQEs at a low
computational cost.
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7 List of abbreviations

• MD – molecular dynamics,

• NQEs – nuclear quantum effects,

• PIMD – path-integral molecular dynamics,

• RMSD – root-mean-square deviation,

• PES – potential energy surface,

• VPT2 – vibrational perturbation theory of the second order,

• PTn – perturbation theory of the n-th order,

• MBS – Maxwell-Boltzmann sampling,

• PDF – pair distribution function,

• WS – Wigner sampling,

• SWS – simplified Wigner sampling,

• MRC – mean rotational constants,

• MIITU – mean inverse inertia tensor (unoriented),

• MIITO – mean inverse inertia tensor (oriented),
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Figure 11: Scheme of the heuristic derivation of the damping factor in the action-type spectroscopy. See text for
details.

• AT – Andersen thermostat,2

• FWHM – full width at half maximum,

• IR – infrared (spectrum),

• PE – photoelectron (spectrum),

• IP – ionization potential.

8 Appendix: derivation of the heuristic damping function for the action
spectroscopy

Action spectroscopy detects absorption of photons by tracing down photon-induced changes in the molecular system.
For example, in the case of tag spectroscopy the molecular system is tagged by a weakly bounded inert particle like inert
gas atom or nitrogen molecule. If a vibrational mode absorbs a single photon with frequency ν, the resulting energy hν
is redistributed between modes, such that this leads to the detachment of the tag. Let us assume the existence of two
vibrational modes in the molecule: #1, which is photoexcited, and #2 corresponding to the dissociation of the tag.
We also assume that vibrations are classical and thus the total energy (kinetic plus potential) of each mode En ≥ 0
(n = 1, 2). Upon the photon absorption, the total energy of the system E = E1 + E2 increases by the photon energy
hν and becomes E = hν = E1+E2. The energy of the second mode (E2) during redistribution process may overcome
the dissociation energy (D). In this case a signal is produced and detected. We can imagine the total number of states
N with the redistributed energy hν as a straight line hν = E1 + E2 (0 ≤ E1, E2 ≤ hν) in coordinates E1 − E2 (see

Figure 11) and N = hν · cos(45◦) =
√
2hν
2 . The number of tag-dissociating states is then a subsection of this line with

D < E2 ≤ hν. If the photon energy is smaller than the dissociation energy (hν ≤ D), the removal of the tag cannot
happen, and thus the number of dissociated molecules is Ndiss = 0. Otherwise, when hν > D, the number of the

dissociated molecules is calculated as Ndiss = (hν −D) · cos(45◦) =
√
2(hν−D)

2 (see Figure 11). Thus we can find the
quantum yield of the dissociation per absorbed photon with frequency ν as

f(ν) =
Ndiss

N
=

{
0 , hν ≤ D,

1− D
hν , hν > D.

We can approximate the final observable action spectroscopy signal as I(ν)·f(ν), where I(ν) is the absorption spectrum
of the molecule and f(ν) is the quantum yield of the dissociation.
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