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Abstract 

 

Benchmarks are crucial for driving progress in scientific disciplines. To be effective, benchmarks 

should closely mimic real-world tasks while being computationally efficient, allowing for 

accessibility and repeatability. Developing surrogate models that can be indistinguishable from 

the ground truth observation within the explored dataset bounds dramatically reduces the 

computational burden of running benchmarks without sacrificing quality, but this requires a large 

amount of initial data. In the fields of materials science and chemistry, relevant optimization 

tasks can be challenging due to their complexity, which includes hierarchical, noisy, multi-

fidelity, multi-objective, high-dimensional, and non-linearly correlated variables. Additionally, 

they may include mixed numerical and categorical variables that are subject to linear and non-

linear constraints. Simulating or experimentally verifying such tasks can be difficult, which is why 

benchmarks are essential. This study aimed to overcome these challenges by generating 

173219 quasi-random hyperparameter combinations across 23 hyperparameters and using 

them to train CrabNet on the Matbench experimental band gap dataset (Computational runtime: 

387 RTX-2080-Ti GPU days). The results were stored in a free-tier shared MongoDB Atlas 

dataset, creating a regression dataset that maps hyperparameter combinations to metrics such 

as MAE, RMSE, computational runtime, and model size for the CrabNet model trained on the 

Matbench experimental band gap benchmark task. To simulate the actual simulations, 

heteroskedastic noise was incorporated into the regression dataset, and bad hyperparameter 

combinations were excluded. Percentile ranks were computed within each group of identical 
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parameter sets to capture heteroskedastic noise, rather than assuming Gaussian noise as is 

done in traditional approaches. This approach can be applied to other benchmark datasets, 

bridging the gap between optimization benchmarks with low computational overhead and 

realistically complex, real-world optimization scenarios. 

Specifications table 

 

Subject 
Computational materials science 

Specific subject area 
Composition-based experimental band gap prediction 

Type of data 
Table 
Figure 

How the data were 

acquired 

The data was obtained by executing CrabNet v2.0.8 (available at 

https://github.com/sparks-baird/CrabNet) for each of the five folds of 

the Matbench experimental band gap task 

(https://matbench.materialsproject.org/Leaderboards%20Per-

Task/matbench_v0.1_matbench_expt_gap/). Python code in 

https://github.com/sparks-baird/matsci-opt-

benchmarks/blob/7c4346624895a7826ada07ff5e44c2f49eb42b9d/s

cripts/crabnet_hyperparameter/crabnet_hyperparameter_submitit.py 

was used for orchestration, with the University of Utah's Center for 

High-performance Computing (CHPC) resources. Jobs were sent to 

the SLURM scheduler using Submitit 

(https://github.com/facebookincubator/submitit), and results were 

logged in JSON format using the MongoDB Data API. The matsci-

opt-benchmarks code used for this study can be found at 

https://github.com/sparks-baird/matsci-opt-benchmarks/tree/v0.2.1 

(https://dx.doi.org/10.5281/zenodo.7694289). 

Data format 
Analyzed 
Filtered 
Raw 

Description of data 

collection 

The Ax Platform was used to perform a quasi-random Sobol 

sampling of 65536 parameter combinations, varying 23 

hyperparameters within a constrained search space, with 5 repeats 

resulting in a total of 327680 training runs. Out of these, 173219 

completed successfully, consuming 387 RTX-2080-Ti GPU days or 

4614.29 CUDA core years, resulting in 41550 unique sets. To rank 

repeat simulations, the "dense" method with pct=True was used in 

pandas.core.groupby.GroupBy.rank. 

https://github.com/sparks-baird/CrabNet
https://matbench.materialsproject.org/Leaderboards%20Per-Task/matbench_v0.1_matbench_expt_gap/
https://matbench.materialsproject.org/Leaderboards%20Per-Task/matbench_v0.1_matbench_expt_gap/
https://github.com/sparks-baird/matsci-opt-benchmarks/blob/7c4346624895a7826ada07ff5e44c2f49eb42b9d/scripts/crabnet_hyperparameter/crabnet_hyperparameter_submitit.py
https://github.com/sparks-baird/matsci-opt-benchmarks/blob/7c4346624895a7826ada07ff5e44c2f49eb42b9d/scripts/crabnet_hyperparameter/crabnet_hyperparameter_submitit.py
https://github.com/sparks-baird/matsci-opt-benchmarks/blob/7c4346624895a7826ada07ff5e44c2f49eb42b9d/scripts/crabnet_hyperparameter/crabnet_hyperparameter_submitit.py
https://github.com/facebookincubator/submitit
https://github.com/sparks-baird/matsci-opt-benchmarks/tree/v0.2.1
https://dx.doi.org/10.5281/zenodo.7694289
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Data source location 
Free-tier Shared Cluster MongoDB Atlas Database 

Data accessibility Repository name: Zenodo 

Data identification number: 7694268 

Direct URL to data: https://doi.org/10.5281/zenodo.7694268 

  

Value of the data 

• The dataset is valuable for benchmarking adaptive design methods applied to high-

dimensional, constrained, multi-fidelity optimization tasks. 

• Practitioners of optimization in the physical sciences can leverage this dataset to 

simulate real-world materials optimization tasks, such as alloy discovery, and achieve 

improved performance. 

• The dataset is also useful in gaining insights into the hyperparameter optimization 

strategies used for developing compositionally restricted material property prediction 

models. 

Objective 

 

Industry-relevant optimization tasks in the physical sciences are often “hierarchical, noisy, multi-

fidelity1,2, multi-objective3,4, high-dimensional5,6, and non-linearly correlated while exhibiting 

mixed numerical and categorical variables subject to linear7 and non-linear constraints.”8,9 

Existing benchmark datasets10–15, while very useful, typically are single-objective, single-fidelity, 

low-dimensional, and ignore or simplify the influence of noise. The inclusion of heteroskedastic 

noise in a surrogate model enables us to establish a "Turing test" scenario where the surrogate 

model is virtually identical to the actual simulation. This approach bridges the gap between low-

cost surrogate function evaluations using benchmark datasets and costly, real-world objective 

function evaluations by considering a multi-objective, multi-fidelity, and high-dimensional task 

while accounting for heteroskedastic noise. 

Data description 

 

The regression dataset contains hyperparameter sets (including repeats) spanning twenty-three 

hyperparameter sets and their corresponding MAE, RMSE, computational runtimes, and model 

size for training CrabNet. 

 

For histogram data for the number of successful repeats see Figure 1. 

https://doi.org/10.5281/zenodo.7694268
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For histograms of the mean absolute error, root-mean-square error, runtime, and model size, see 

Figure 2, Figure 3, Figure 4, and Figure 5, respectively. 

 
Figure 1. Histogram of number of parameter groups vs. number of successful repeats within a given group. The 

lowest number of repeats for a parameter set is 1, with approximately 2.6 repeats on average. 



5 

 
Figure 2. Histogram of number of training runs vs. mean absolute error using CrabNet on the Matbench experimental 
band gap task. 

 
Figure 3. Histogram of number of training runs vs. root-mean-square-error using CrabNet on the Matbench 

experimental band gap task. 
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Figure 4. Histogram of number of training runs vs. GPU runtime on an RTX 2080-Ti using CrabNet on the Matbench 
experimental band gap task. The y-axis is log-scaled. 

 
Figure 5. Histogram of number of training runs vs. model size using CrabNet on the Matbench experimental band gap 

task. 

Experimental design, materials and methods 

A vast number of CrabNet models, totaling to 173219, were trained with different hyperparameter 

combinations using the Ax platform's quasi-random Sobol sampling function to generate unique 

parameter combinations. While there can be other uses, this dataset is primarily intended as a 

multi-objective, multi-fidelity, high-dimensional benchmark dataset for formulation-based 
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optimization scenarios by scaling each of the numerical parameters to the range of 0 to 1 and 

applying a contrived constraint that the sum of all parameters must equal one. To realistically 

capture noise in the benchmark dataset, simulations were repeated for each quasi-random 

parameter combination. To improve efficiency and reduce latency, hyperparameter sets 

(including repeats) were shuffled and divided into batches, then sent to a high-performance 

computing environment for asynchronous evaluation. Despite some results not being completed 

due to either timeout or preemption, this trade-off was deemed reasonable for the efficiency and 

completion gains. 

 

Results were logged to a free-tier MongoDB Atlas database and then aggregated and prepared 

as machine-learning-ready datasets via Python in Jupyter notebooks. For implementation 

details, see https://github.com/sparks-baird/matsci-opt-

benchmarks/tree/main/scripts/crabnet_hyperparameter and https://github.com/sparks-

baird/matsci-opt-benchmarks/tree/main/notebooks/crabnet_hyperparameter. 
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