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Abstract 

 The physical and chemical properties of the sea surface microlayer (SSML) are dynamic 

and complex. With an enrichment of organics from dissolved organic carbon (DOC) and many 

mechanisms for their release into the atmosphere, high-throughput analysis of SSML samples is 

necessary. Collection of more detailed information about the SSML would enable greater 

understanding of the release of ice nucleating and cloud condensation particles and provide critical 

feedback for climate models. The work presented herein details an investigation to determine the 

most accurate and precise machine learning (ML) model for analyzing SSML samples. Support 

vector regression (SVR) models predict the true saccharide concentration best and we evaluate 

unknown SSML samples using the model to predict the amount of carbohydrate present. Model 

predictions were 60-90 mM saccharide concentrations from SSML samples. Our work presents an 

application combining fast spectroscopic techniques with ML to analyze SSML chemistry more 

efficiently, without sacrificing accuracy and precision.  
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Introduction 

 

The sea surface microlayer (SSML) is a multifaceted, deeply complex region of the 

ocean.1–7 As the interface between the Earth’s atmosphere and ocean, the SSML performs vital 

functions that affect climate5,8–10 and ice formation.4,11–13 Because of unique interfacial 

anisotropy,14–17 the physical and chemical properties of the SSML are of interest for their 

divergence from bulk water behavior. Generally, the SSML is enriched with saccharides, lipids, 

and proteins that are all components of dissolved organic carbon (DOC).18–22 Understanding the 

chemical composition of the SSML provides insight into the biological activity and productivity 

within the SSML and enables predictions of cloud condensation23 or ice nucleation,4 ultimately 

aiding climatological models.24–27 The dynamic nature and chemical complexity of the SSML 

make monitoring the region equally more difficult and more necessary. 

Our work is motivated by the need for fast, accurate analysis of SSML samples to establish 

a method that enables exponentially more SSML chemical measurements. Current methods to 

analyze SSML samples are limited to mass spectrometry,5,28,29 which requires extensive organic, 

solid-phase extraction processes; nevertheless, these methods have provided invaluable 
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information on SSML (and sea spray aerosol) chemical composition. To reduce the sample 

preparation process and expedite analysis of results, we developed methods that utilize attenuated 

total reflectance Fourier transform infrared (ATR-FTIR) spectra to estimate the sugar 

concentration via machine learning (ML) implementations. ATR-FTIR spectroscopy also provides 

concentration and chemical composition, although we note lower detection limits are well known 

for IR methods as opposed to the high sensitivity for mass spectrometry. Rather than mass 

separation, IR probes bond vibrational responses at specific wavenumbers.30  

ML provides a unique avenue to explore relationships among data that cannot be otherwise 

deduced and the applications to improve or expand chemical systems are broad and present 

throughout all chemistry fields. Materials design,31,32 novel drug discovery,33,34 catalyst 

optimization,35,36 and clean energy production37,38 are some of the many fields where knowledge 

has expanded because of ML. Recent work emphasizes the improved application of FTIR 

spectroscopy, and more broadly vibrational spectroscopy, for qualitative and quantitative 

assignment, especially when combined with ML models. Takamura and colleagues explored 

methods to identify donor biological sex from urine samples.39 They presented several ML 

applications, including partial least-squares discriminant analysis with and without a genetic 

algorithm, to explore the chemical information contained in their FTIR spectra. They found that 

the increased computational complexity of an artificial neural network resulted in comparable 

results to their discriminant analysis model’s predictive power. Butler and coworkers presented 

successful use of support vector machines (SVM) in predicting brain cancer from ATR-FTIR 

spectra.40 Their high-throughput approach featured high sensitivity and specificity in the prediction 

of benign versus malignant samples. 
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SVMs have also been employed in classification of Raman spectra to identify Alzheimer’s 

Disease in mice; a relevant features map is utilized to identify pertinent peaks that are from 

molecules known to be associated with the disease. A study from 2022 reports comparable 

classification accuracy of microplastic Raman microscopy samples from k-nearest neighbors 

(KNN), multi-layer perceptron (MLP), and random forest (RF) models.41 These literature 

examples highlight the diverse applications of ML and develop techniques that expand the 

applications of chemistry, as we present herein. 

We chose ML methods of increasing complexity to evaluate the training data and 

investigate new data, including field samples with unknown composition. More specifically, while 

not quantitative, principal component analysis (PCA) provides a useful unsupervised classification 

technique.42 PCA is common in chemometrics;43 examples in the literature include identifying 

trace elements in wheat,44 analysis of time of flight-secondary ion mass spectra from organic 

monolayers,45 detecting sparse compounds via FTIR spectra,46 and identifying peak shape changes 

in chromatography.47 Specifically, PCA does not mathematically consider a known value, such as 

concentration, when fitting data. Instead, the matrix of wavenumbers and corresponding intensity 

for each sample spectrum goes through a dimensionality reduction such that the most variance is 

explained by the first component. Successive components explain less variance than the previous 

component. In chemistry applications, the chemical system has some known, or estimated, number 

of species that provide a baseline for determining the number of principal components. 

 Fitting data to a linear model, or LR, is common for absorbance data, such as fitting to the 

Beer-Lambert Law to determine physical constants or identify concentrations of unknown 

samples.48 Absorbance FTIR spectra follow a linear relationship of intensity with respect to 

concentration, which is advantageous for determining new sample composition. Recent work has 
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utilized multiple LR to identify heavy metals, including investigating the effect of surface 

chemistry on vanadium49 and lead50 toxicity. However, the simplicity of the method ultimately 

restricts the model usefulness in more complex, dynamic systems.  

 Of the techniques considered, SVR is the most mathematically advanced ML model.51 SVR 

fits training data to the best function by minimizing the distance of each value from the fitting 

equation to be able to predict discrete values, rather than a group assignment. Not all data is 

appropriate for SVR, but in cases where concentration is being predicted and it is linearly 

correlated with absorbance SVR can be a well-suited model. A 2020 report by Mohammadi and 

colleagues presented an application of SVR to predict different functional group fractions in crude 

oil.52 As another example, ATR-FTIR and SVR were employed by Chen et al. 2022 to predict bio-

oil characteristics quickly.53 Our review of the literature and ML methods indicates that the SVR 

model will perform best for predicting sugar concentration. 

 The work described herein provides a discussion on an improved approach to monitoring 

the SSML. We explore ML approaches to achieve precise and accurate quantitative analysis of 

proxy-samples with a relatively simple training dataset. The utilization of ML in conjunction with 

vibrational spectroscopy enables greater exploration of chemical space and identifying 

connections between data. Our results present, to our knowledge, a first account of predicting sugar 

concentration from FTIR spectra of proxy-SSML samples using ML. 

Methods 

Training Solution Preparation, Data Collection, and Data Preprocessing 

All chemicals were used as received and all solutions requiring water were prepared using 

ultrapure water (18 mΩ) from a MilliQ system. A 1M stock solution of glucose (Sigma Aldrich, 

99.5% (GC)) in ultrapure water was prepared. A 5 mg/mL stock solution of ovalbumin (Sigma 
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Aldrich, 62-88%, agarose gel electrophoresis) in ultrapure water was prepared. The solution matrix 

was prepared by dispensing the relevant amount of each stock solution via auto pipette and diluting 

with the relevant amount of water. Specific details of each solution, including concentration, 

relative ratio, and volume of stock solution are provided in the SI. Briefly, we selected this system 

and concentrations to have reasonable complexity. Both the protein and sugar have IR responses 

from 1800 to 900 cm-1. The peaks were well resolved, with minimal convolution of responses. 

Inorganic salts were excluded in our matrix, but we provide spectra of the O-H stretching region 

in the SI to emphasize the limited effect that they have on the IR response. Concentrations were 

selected based on literature precedent from field study results.26,27,29 Solutions were measured in 

triplicate via ATR-FTIR spectroscopy on a PerkinElmer Spectrum 3 with a single beam KRS-

5/diamond ATR assembly. Spectra were acquired in the “SingleBeam” mode without the use of a 

continuous reference and a liquid nitrogen cooled HgCdTe (MCT) detector over 32 scans from 

4000 to 450 cm-1 with a resolution of 1 cm-1. Spectra were converted to absorbance with a water 

background using the established relationship of -log(R/Ro). Background correction was done 

using a linear fit model for the baseline to correct for inconsistent baseline between measurements. 

Triplicate measurements were used as individual spectra, rather than an average of the three, to 

provide more machine learning training and testing data (Figure 1). 

 
Figure 1. Schematic flow chart of data collection process to the ML pipeline. 

 

Proxy-Sample and Real Sea Surface Water Preparation and Sampling 

A stock proxy-solution was prepared to have 0.1 M sucrose, 0.1 M glucose, 0.5 mg/mL 

ESA, 3.323 mg/mL BSA, and 0.1 M 1-butanol. Two additional solutions were prepared via 
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dilution of the stock. The higher concentration dilution was 7.5 mL of stock and 2.5 mL of water 

and the lower was 5 mL of stock and 5 mL of water. The three solutions were analyzed using the 

data collection and preprocessing described above. Sea and river samples from Cocoa Beach, 

Florida were collected in January 2023. ATR-FTIR spectra were acquired for the samples as 

described in the data collection and preprocessing methods section. In addition, DOC was 

extracted from the samples using the method detailed by Dittmar et al and described in the SI.54 

Extracted DOC was analyzed via gas chromatography-mass spectrometry (GC-MS) to identify 

organic components (SI).  

Machine Learning Methods 

All machine learning (ML) methods were implemented using Python scripts. These are 

available online at the Allen Lab GitHub https://github.com/Ohio-State-Allen-Lab/Sea-Surface-

Microlayer-MachineLearning. Principal component analysis (PCA) was used to elucidate any 

relationships between the data as a qualitative approach. Using the PCA method in the SciKit-

Learn decomposition package, the principal components were determined based on the chemical 

system having four known components. We estimate that the glucose, ESA, and perturbed water 

contribute three components and a fourth component is included for error. The components were 

compared to each other to determine if a relationship exists for concentration or relative ratio.  

To approach quantitative analysis of the sample concentrations, we implement linear 

regression (LR) of the FTIR training data set. The linear model method from SciKit-Learn was 

used to fit absorbance and concentration for the data. A support vector regression (SVR) model 

was initialized using the support vector machine package from SciKit-Learn and trained using the 

FTIR training data set. Proxy and real SSML samples were evaluated via the SVR model to predict 

concentration. The SVR model parameters were optimized by evaluating , threshold tolerance, 
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and C, regularization parameters to reach a minimization of mean squared error (MSE) (SI). For 

the LR and SVR, a train-test split of 80:20 was used to randomly withhold data, which was 

determined by minimizing MSE and based on literature evidence (SI).  The MSE and R2 values 

were calculated using the SciKit-Learn Metrics package to compare all models. New data, 

including the proxy and real SSML samples, were evaluated with both LR and SVR models to 

predict concentration.  

We evaluate a proxy solution and a real sample spectrum using pre-trained models from 

our previous work1 to determine the functional groups present and confirm the predictive accuracy 

of the prior model on liquid-phase, mixtures samples. Previously, convolutional neural networks 

(CNN) were trained on gas-phase FTIR spectra to predict present and absent functional groups, 

and we expand on this in detail in the Supporting Information. We compare the known functional 

groups in our proxy solution and the model predictions to gain insight into the generalizability of 

the CNN models and deduce information about our unknown field sample. 

Results and Discussion 

 The chemical complexity of the SSML is explored via ATR-FTIR spectroscopy and 

quantitative machine learning approaches to develop a simpler method of analysis. The FTIR 

spectra provide chemical information about the sample components and their concentrations, 

which have a linear correlation with absorbance. The correlation diverges from a linear 

relationship at high absorbance values, which we were not concerned about in the presently studied 

concentration ranges. Figure 2 is an examplespectrum of a training sample with peaks assigned to 

the protein and glucose for reference. The two solute components of the training samples were 

well resolved from one another. The separation improved the likelihood that ML approaches were 

successful. A single figure containing all the acquired spectra is presented in the SI. 
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Figure 2. ATR-FTIR spectrum of 0.6 M glucose and 2 mg/mL egg serum albumin. The labels are 

provided to emphasize that the components do not compound on one another and are well resolved, 

despite being in a similar wavenumber region. 

 

 PCA provides a qualitative, or classification, model from an unsupervised dimensionality 

reduction. The resulting principal components (PCs) can be used to reconstruct a spectrum. We 

compare PC one and PC two to deduce information about the training spectra (Figure 3). Our 

relative ratio definition is such that ‘0’ is equivalent to no glucose, or protein only, and ‘1’ indicates 

that there is only glucose, or no protein. The resultant dimensionality reduction and comparison of 

PC1 and PC2 is expected given the input data is a gradient matrix of glucose and ESA 

concentrations. As a result of the input data, the PCA method provides us with less classification 

accuracy. We determine that PC1 largely represents the contribution of glucose to a spectrum and 

PC2 represents ESA contributions. Classification of a sample with more glucose, or greater relative 

ratio, would be concentration dependent.  

 



10 

 

Figure 3. Principal components (PCs) one and two from the data dimensionality reduction 

performed using principal component analysis (PCA). The relative ratio is respective to glucose. 

Solutions with a relative ratio of ‘1’ have no ESA. PC1 mainly captures glucose response and PC2 

mainly captures ESA response. 

 

Linear regression (LR) provides a mathematically simple fitting of the training data but 

does not accurately predict on more complex samples (Figure 4). We chose to evaluate the 

effectiveness of the fit with the data because absorbance is linear with concentration, especially in 

the low concentration regime of the SSML. As can be observed in Figure 4, the fit is exceptional 

for the training and testing data with an R2 value of 100 % and no mean squared error. However, 

when more complex samples containing both glucose and sucrose were evaluated, the model is 

unable to predict the concentration of sugar. Notably, the true concentration values have a slope 

that is greater than that of the training data. While we have selected the absorbance at 1036 cm-1, 

the LR is performed using all wavenumbers from 1800 to 900 cm-1, which eliminates feature 

selection biases. 

 
Figure 4. Linear regression (LR) fits the experimental training data well with a 100 % R2 and no 

mean squared error. Proxy sample sugar concentrations are not correctly predicted, as shown with 

the teal ‘X’ demarcating the prediction. 

 

 In comparison to the LR, the support vector regression (SVR) fits the training data and 

closely predict the concentration of sugar in more complex solutions (Figure 5). Rather than fitting 

to a linear equation, SVR employs iterative fitting to find an equation that captures data and creates 
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boundaries for which data should fall in. The higher-level mathematical complexity of the fit 

creates a more suitable model for predicting on more complex solutions, as observed in Figure 5. 

 
Figure 5. Support vector regression (SVR) results show that the test data accurately follows the 

training data. Predicted concentrations for the known complex samples are much closer to the true 

concentration. The training results in an R2 of 97.1%. 

 

The SVR and LR models were directly compared via the relative difference in the predicted 

versus true concentration of saccharides (Table 1). Our SVR model correctly predicts the 

concentration for the three complex samples within tens of mM accuracy. In contrast, the LR 

model fails to achieve any predictive power. Despite the LR having a greater R2 value (100 %), 

the SVR computational complexity results in a slightly lower R2 and significantly improved 

regressive predictions. The positive relative difference highlights that samples A and B were 

under-predicted from their true concentration, while the negative relative difference for sample C 

indicates a predicted concentration higher than the true value. 

Table 1. Predicted sugar concentration (M) in more complex samples containing glucose, sucrose, 

ESA, bovine serum albumin (BSA), and 1-butanol were predicted by the SVR and LR model. 

Values are the average predicted concentration (M). The SVR model predicts reasonable 

concentration values in the range of the true concentration, while the LR model predictions do not 

provide any reasonable estimates of concentration.  

 

Sample Label 

Concentration 

of saccharide 

(M) 

Average  

Predicted 

SVR (M) 

Average 

Predicted 

LR (M) 

A 0.200 0.182 -0.002 
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B 0.150 0.143 -0.003 

C 0.100 0.109 0 

 

 The LR and SVR model fit results are presented in Table 2 for comparison. Despite the 

exceptional training metrics of the LR model, its predictive power does not translate to more 

complex samples. The SVR training metrics were slightly lower than the LR, but the SVR model 

outperforms in predictions on new, more complex data. More interestingly, the mean squared error 

of the SVR model, 0.02 M, is greater than the error in determining the discrete sugar concentration 

of the proxy samples, where the error was 10 mM or less from the true concentration value. 

Ultimately, these results suggest that the training metrics of the LR could be misleading as to 

success on future sample concentration prediction and that the decreased, but still excellent, metric 

values for SVR indicate the model is more suitable for applications including complex solution 

spectra. Thus, SVR is the model of choice for predicting sugar concentration. 

Table 2. R2 and mean squared error of linear regression (LR) and support vector regression (SVR) 

models after training.  

Metric LR SVR 

R2 (%) 100 97.1 

Mean Squared Error (M) 0.00 0.02 

 

We analyzed the sea and river samples that were collected in January 2023 from Cocoa 

Beach, Florida to determine if the model could successfully identify saccharides in real ocean 

samples. The FTIR spectra of the samples are included in the SI. All the samples were predicted 

to have concentrations of saccharides in the mid to high mM range (70-100 mM) (Figure 6). 

Literature values range from 10-25 mM;55 the predicted values are on the same order of magnitude 

albeit a factor of 2 to 4 times higher than what one might expect. The predicted concentrations for 

the known samples (Table 1) were within 10% of the true value, so we approximate that our 

predictions for unknown, real field samples may have a similar uncertainty. Further analysis via 
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GC-MS of the unknown Florida samples was performed to investigate the samples more closely 

(SI). Specifically, we employed GC-MS to confirm the presence of DOC and identify if 

characteristic saccharide fragmentation was observed. As a general observation of the FTIR 

spectra, the absorbance at 1036 cm-1 for the Cocoa Beach, Florida samples closely aligns with the 

training data. The alignment of the unknown samples with the data indicates that the model is 

suitable for saccharide concentration prediction. 

 
Figure 6.  Support vector regression (SVR) model predictions on unknown field samples from 

Cocoa Beach, Florida. The predicted concentrations are closely aligned with the training and test 

data, although they are in the low absorbance range.  

 

 We utilized CNN functional group assignment models from our previous work to 

determine if correct assignments could be achieved and explore the unknown sample (solution of 

bovine serum albumin, ESA, glucose, sucrose, and 1-butanol in water) further. The proxy sample 

with known composition is correctly assigned (Table 3). Only four functional groups were 

misassigned out of 17 groups; and three of those were predicted absent rather than present. The 

differentiation indicates that the model is underpredicting functional groups that were present (e.g., 

predicting alcohol is not present when it is). This incorrect assignment is likely due to the 

characteristic differences in the O-H vibrational peak in gas- versus liquid-phase spectroscopy. 

Liquid-phase O-H stretching is broadened from hydrogen bonding, which could occur between the 

water, protein, and other sugar molecules in the known proxy solution. The solution complexity 
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most likely results in a broad O-H region in comparison to the neat, gas-phase spectra. Overall, 

the functional group assignment has 78 % accuracy. Importantly, the model predicts that the 

Banana River FTIR spectrum has an aromatic functional group, which is consistent with the 

observed mass of 77 m/z in the GC-MS (SI). In addition, the CNN model predicts several nitrogen-

containing functional groups (amide, nitrile, and nitro) in the Banana River sample, which is 

consistent with the several observed odd nominal masses (SI). 

Table 3. Functional group analysis of proxy sample and unknown SSML sample. Red text 

indicates that the model incorrectly predicted (e.g., nitrile is predicted present for the proxy sample, 

yet it is not present). An asterisk (for Banana River sample only) indicates that the GC-MS of the 

sample has characteristic m/z values for that functional group identification.  

Prediction Proxy Sample Banana River Surface January 

2023 

Present alkene, amide, ester, methyl, 

nitrile 

alcohol, alkyne, amide*, 

aromatic*, nitrile*, nitro* 

Absent acyl halide, alcohol, 

aldehyde, alkane, alkyl 

halide, alkyne, amine, 

aromatic, carboxylic acid, 

ether, ketone, nitro 

acyl halide, aldehyde, alkane, 

alkene, alkyl halide, amine, 

carboxylic acid, ester, ether, 

ketone, methyl 

 

Sensitivity, specificity, positive predictive value, and negative predictive value were 

calculated according to the definitions presented by Trevethan in 2017 (Table 4).56 Specificity, or 

how well the model correctly assigns negative cases, is determined to be 90 %. Sensitivity, with a 

value of 57 %, indicates that the model is not optimal for identifying positive cases; however, the 

positive predictive value is 80 %.  The TROPOS field results provide insight into the composition 

of the spectrum and respective sample. The results provide qualitative insight about the samples 

and further confirms the presence of organics in the field sample.  The correct functional group 

assignments and minimal misassignments emphasizes the utility of our prior model that was 
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trained on neat, gas-phase spectra. A larger, more diverse mixture training data set would increase 

all the analyzed metrics, as well. 

Table 4. Sensitivity, specificity, positive predictive value, and negative predictive value for model 

results on proxy sample prediction of functional groups. These metrics provide a more thorough 

analysis of how the model performs and detail the model’s performance more holistically.  

Metric Value (%) 

Sensitivity 57 

Specificity 90 

Positive predictive value 80 

Negative predictive value 75 

 Overall, the results from the CNN provide contextualization of the samples without the 

requirement of a lengthy extraction process to identify DOC (SI). The generalizable models from 

our 2021 publication provide a framework for improving upon the current analysis methods 

utilized for ocean surface samples. Furthermore, the prediction of functional groups provides 

qualitative insights into field samples with a simple sampling methodology. The approach detailed 

herein serves as a supplement to field analysis for faster qualitative observations. 

 Our quantitative results indicate that a computationally inexpensive model, SVR, provides 

predictions of sugar concentration within 10 mM of the true value. In comparison to LR, the SVR 

has a slightly lower coefficient of determination but provides much more accurate concentrations 

on elaborate test samples. Even with increased sample complexity, including additional sugar, 

protein, and lipid molecules, the SVR model accurately predicts the total sugar concentration. 

When tested on field samples, the SVR model predicts sugar concentration within the expected 

values that have been presented in the literature for carbohydrates.55 Samples were successfully 

examined via the functional group assignment model previously developed, which informs as to 

the presence of organic carbon in unknown samples, including real field samples.  

Conclusions 
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 Several ML methods were applied to ATR-FTIR spectra to determine concentration and 

chemical composition of aqueous samples to develop efficient, less-expensive analytical 

techniques for analysis of the SSML. Our multifaceted approach includes examining LR and SVR 

for quantitative analysis, PCA for quasi-quantitative grouping, and aCNN for qualitative 

assignment of functional groups. Our results indicate that SVR is viable for complex solutions, 

especially considering the training sample data is relatively simple. The repurposed, generalizable 

CNN provides valuable insight into the functional groups present in the samples and validates the 

SVR assignment by confirming the presence of organics in the field sample. The research 

presented herein provides a unique approach to studying the SSML utilizing the advanced 

computational tools available and reduces the time needed to perform analyses of field SSML 

samples. Further work should focus on finding an optimal training data set, investigating other 

concentration quantification, and intercalating other spectroscopic or spectrometric data, to name 

a few. An improved understanding of the SSML is achievable, wherein more frequent 

measurements and analysis can occur, ultimately providing more information about the 

productivity of the SSML and its effects on our atmosphere and climate. 

Supplemental Information 

Figure of all training spectra; FTIR and GC-MS spectra of Cocoa Beach, Florida field samples; 

figure of optimized  and C for SVR; figure of optimized train-test split for LR and SVR 
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Appendix A. Detailed explanation of machine learning specifications  
We utilize principal component analysis (PCA) as an unsupervised method and its prominence in 

chemistry applications. Linear regression (LR) and support vector regression (SVR) models are 

chosen for qualitative analysis. LR is a mathematically simple fit and relies on linear relationships 

of data, while SVR fits data to a chosen function and has tolerance boundaries.    

 

While gas-phase spectra would not be expected to generate a model with predictive power for 

aqueous or liquid samples, there are examples in the literature where gas-phase, neat spectra 

training data produced models capable of accurately identifying components in liquid-phase, 

mixture spectra.55 It is of interest to further evaluate if neat spectra can produce sufficient 

classification ML models because it would significantly reduce the amount of data needed for 

analyzing complex mixtures, such as those from the ocean’s surface.  
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Appendix B. ATR-FTIR spectra of training and ocean samples and GC-
MS of ocean samples 

 
Figure S1. Composite spectra of all 100 samples used for training in each machine learning 

model. 
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Figure S2. Average spectra of real ocean samples from Cocoa Beach, Florida. Standard deviation 

is shown but is approximately the thickness of the line.  

 

 
Figure S3. Average spectra of ocean and river samples from Cocoa Beach, Florida for 

comparison of sampling sites. Standard deviation is shown but is approximately the thickness of 

the line. 
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Figure S4. MS of GC retention for January 11, 2023, ocean surface sample from Cocoa Beach, 

Florida. 
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Figure S5. MS of GC retention from January 11, 2023, river surface sample from the Banana 

River in Cocoa Beach, Florida. 
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Figure S6. MS of bulk surface water sample from Banana River in Cocoa Beach, Florida on 

January 10, 2023. 
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Appendix C. Optimization of support vector regression model 

 
Figure S3. Optimization of regularization parameter C for the support vector regression (SVR). 

Variability shown is that of changing , the tolerance limit, which varies little compared to the 

optimization of C. 
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Figure S4. Optimization of train-test size split for the SVR. Minimization of MSE is prioritized 

for model performance. An 80/20 split minimizes MSE and has literature precedence.  
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