
Skeletal Transformation of Unactivated Arenes Enabled by a Low-
Temperature Dearomative (3+2) Cycloaddition 
Sajan	Pradhan,	Fahimeh	Mohammadi,	and	Jean	Bouffard*	

Department	of	Chemistry	and	Nanoscience,	Ewha	Womans	University,	Seoul	03760,	Korea	
*bouffard@ewha.ac.kr	
dearomatization,	dipolar	cycloaddition,	Diels-Alder,	cycloreversion,	arenes	

ABSTRACT:	 Simple	aromatic	compounds	 like	benzene	are	abundant	 feedstocks,	 for	which	 the	preparation	of	derivatives	
chiefly	begins	with	electrophilic	substitution	reactions,	or	less	frequently	reductions.	Their	high	stability	makes	them	partic-
ularly	reluctant	to	participate	in	cycloadditions	under	ordinary	reaction	conditions.	Here	we	demonstrate	the	exceptional	
ability	of	1,3-diaza-2-azoniaallene	cations	to	undergo	formal	(3+2)	cycloadditions	with	unactivated	benzene	derivatives,	be-
low	room	temperature,	to	provide	thermally	stable	dearomatized	adducts	on	a	multi-gram	scale.	The	cycloaddition,	which	
tolerates	polar	functional	groups,	activates	the	ring	toward	further	elaboration.	On	treatment	with	dienophiles	the	cycload-
ducts	undergo	a	(4+2)	cycloaddition-cycloreversion	cascade	to	yield	substituted	or	fused	arenes,	including	naphthalene	de-
rivatives.	The	overall	sequence	results	in	the	transmutation	of	arenes	through	an	exchange	of	the	ring’s	carbons:	a	two-carbon	
fragment	from	the	original	aromatic	ring	is	replaced	with	another	from	the	incoming	dienophile,	introducing	an	unconven-
tional	disconnection	for	the	synthesis	of	ubiquitous	aromatic	building	blocks.	Applications	of	this	two-step	sequence	to	the	
preparation	of	substituted	acenes,	isotopically	labeled	molecules,	and	medicinally	relevant	compounds	are	demonstrated.	

INTRODUCTION 
Substitution	 reactions	 prevail	 in	 the	 chemistry	 of	 arenes,	
owing	to	the	stability	gains	that	drive	rearomatization	fol-
lowing	 the	addition	of	electrophiles,	nucleophiles	or	 radi-
cals.	Substitutions	also	predominate	celebrated	advances	in	
synthetic	 transformations	of	 arenes,	 from	cross-couplings	
to	late-stage	C–H	functionalization.1	A	number	of	aromatic	
dienes,	such	as	furan,	and	fused	(hetero)arenes	with	modest	
resonance	energies	 readily	participate	 in	dearomative	cy-
cloadditions.2	 However,	 intermolecular	 cycloadditions3	 of	
benzene	rings	that	are	neither	strained4	nor	electronically5	
activated	seldom	occur	under	pressures	and	temperatures	
that	are	conducive	to	their	application	in	organic	synthesis.6	
Notable	exceptions	include	cycloadditions	carried	out	pho-
tochemically,7	through	prior	coordination	of	the	arene	to	a	
transition	metal	complex,8	or	else	with	exceptionally	reac-
tive	 reaction	partners	 such	 as	 activated	 arynes,9	 and	 car-
benes	or	metal	carbenoids.10,11	
Among	 recent	 advances	 in	 intermolecular	 dearomative	

cycloadditions	of	unactivated	arenes,	two	series	of	reports	
are	notable	in	the	context	of	the	work	presented	herein.	Be-
ginning	in	2016,	the	Sarlah	group	reported	that	the	(4+2)	
photoadducts	of	simple	arenes	and	1,2,4-triazoline-3,5-dio-
nes	(TADs),12	though	thermally	instable	above	-10˚C	in	the	
case	of	monocyclic	arenes,	could	be	successfully	intercepted	
at	 low	 temperatures	with	 suitable	 reagents	 (Scheme	 1a).	
Through	 dihydroxylations,13	 reductions,14	 catalytic	 allylic	
substitutions,15	 hydroborations,16	 epoxidations,17	 and	 cy-
clopropanations,18	among	others,19	the	initial	cycloadducts	
were	elaborated	 to	provide	polysubstituted	carbocycles.20	
In	2021,	the	Brown	and	Glorius	groups	jointly	reported	that	
triplet	photosensitization	enabled	the	para-cycloaddition	of	

alkenes	with	quinolines,	isoquinolines	or	quinazolines	un-
der	acidic	conditions	(Scheme	1b).21	Triplet	photosensitiza-
tion	was	also	 successfully	 extended	 to	 the	 intermolecular	
(4+2)	 photocycloaddition	 of	 alkenes	 with	 electron-poor	
naphthalenes.22	 Related	 photosensitized	 (4+2)	 cycloaddi-
tions	between	alkenes	and	pyridine	or	benzene	derivatives	
have	also	been	reported,	albeit	only	intramolecularly.3a,23,24 	
During	 studies	 on	mesoionic	 carbenes	 prepared	 by	 the	

(3+2)	 cycloaddition	 between	 alkynes	 and	 1,3-diazazoni-
aallene	cations	(DAAA+,	II),25,26	we	observed	the	unexpected	
interception	of	 aromatic	 cosolvents	by	 II,	 resulting	 in	 the	
formation	 of	 dearomatized	 cycloadducts	whose	 structure	
was	 confirmed	 by	 an	 X-ray	 diffraction	 experiment	 (3a,	
Scheme	1c).	Whereas	the	reactive	1,3-dipoles	II	have	earlier	
been	shown	to	participate	 in	cycloaddition	reactions	with	
alkenes,	 alkynes,	 carbodiimides,	 cyanamides	 and	 C60,27,28	
their	cycloadditions	with	arenes	are	not	precedented.	Here	
we	report	the	optimization	of	this	unexpected	dearomative	
cycloaddition	and	its	scope.	Moreover,	we	illustrate	its	syn-
thetic	 utility,	 using	 a	 cycloaddition-cycloreversion	 se-
quence,	to	transform	simple	aromatic	rings	into	substituted	
or	fused	arene	derivatives	through	the	excision	of	a	two-car-
bon	 fragment	 from	 their	 core	 and	 the	 subsequent	 trans-
plantation	of	a	subrogate	fragment	therein	(Scheme	1c).	To	
accomplish	this	goal,	arenes	(1)	first	undergo	a	dearomative	
cycloaddition	with	DAAA+	II	to	furnish	the	formal	(3+2)	ad-
ducts	3.	Then,	the	cyclohexadiene-containing	adducts	3,	un-
dergo	a	(4+2)	cycloaddition	with	dienophiles	4	to	generate	
the	transient	intermediate	5,	which	cycloreverts	to	provide	
the	modified	arenes	(6,	8	and	9)	as	the	desired	products	and	
the	triazolium	cation	10	as	byproduct.	
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Scheme	1.	(a-b)	Recently	reported	dearomative	(4+2)	cycloadditions	of	arenes	and	azaarenes;	(c)	Dearomative	cy-
cloaddition	of	arenes	with	DAAA+	and	its	application	for	the	synthesis	of	substituted	and	fused	arenes	through	a	
cycloaddition-cycloreversion	cascade;	Inset:	X-ray	structure	of	adduct	3a	(50%	thermal	ellipsoids)	in	the	solid	state;	
hydrogens	and	PF6-	counter-ion	were	removed	for	clarity.	

 
	

RESULTS AND DISCUSSION 
Development	of	a	dearomative	cycloaddition	reaction	
of	arenes.	Investigations	of	the	dearomative	cycloaddition	
were	first	carried	out	using	o-xylene	1a,	1,3-bis(2,6-diiso-
propylphenyl)triazene	 (2a),	 t-BuOCl	 and	 KPF6	 in	 CH2Cl2	
from	 -78	 ˚C	 to	 room	 temperature	 (Table	 1).	 Under	 these	
conditions	previously	reported	for	the	preparation	of	1,3-
diaryltriazolium	salts,25b	the	fused	triazolinium	cycloadduct	
3a	was	obtained	in	57%	yield	(entry	1).	After	filtration	of	
insoluble	 inorganic	 salts	 and	 evaporation	 of	 the	 volatiles,	
the	product	3a	was	purified	by	simple	trituration	in	diethyl	
ether;	 chromatographic	 separation	was	 unnecessary.	 The	
structure	of	3a	was	unambiguously	confirmed	by	NMR	and	
a	 single-crystal	X-ray	diffraction	experiment	 (Scheme	1c).	
The	influence	of	the	different	reaction	parameters	was	next	
assessed	(Table	1;	for	full	optimization	details,	see	also	Ta-
ble	S1).	The	reaction	was	compatible	with	several	moder-
ately	 polar	 organic	 solvents,	 among	 which	 THF	 gave	 the	
best	results	(76%,	entry	3).	No	precautions	to	exclude	mois-
ture	or	oxygen	were	necessary,	and	solvents	taken	directly	
from	a	previously	opened	bottle	exposed	 to	moist	 air	did	
not	 depress	 the	 reaction	 yields.	 Oxidation	 of	 the	 1,3-dia-
ryltriazene	2a	to	the	halogenated	precursor	I	was	best	ac-
complished	with	t-BuOCl;	other	oxidants	did	not	perform	as	
well	as	the	hypochlorite.	Among	Lewis	acids	added	to	pro-
mote	the	ionization	of	the	putative	N-halotriazene	interme-
diate	 I	 to	 the	 reactive	DAAA+	 II,	 the	mild	 KPF6	 improved	
yield	and	purity,	and	gave	crystalline	adducts	(e.g.,	3a·PF6)	
as	well	(entries	3-5).		

Table	 1.	 Optimization	 of	 the	 dearomative	 (3+2)	 cy-
cloaddition	between	arenes	and	DAAA+	cations.	

 
Entry	 Lewis	

acid	
Solvent	 Additive,	

Temperature	
Yield	d	
3a	

1	 KPF6	 CH2Cl2	 -78	˚C–RT	 57%	
2	 KPF6	 EtOAc	 -78	˚C–RT	 66%	
3	 KPF6	 THF		 -78	˚C–RT	 76%	
4	 NaOTf	 THF		 -78	˚C–RT	 47%	
5	 SbCl5	 THF		 -78	˚C–RT	 61%	
6	 KPF6	 THF	 HFIP,	-78	˚C–RT	 81%	
7	 KPF6	 THF	 HFIP,	-40	˚C–RT	 73%	
8	 KPF6	 THF	 HFIP,	-20	˚C–RT	 58%	
9	b	 KPF6	 THF	 HFIP,	0	˚C–RT	 nr	
10	c	 KPF6	 THF	 HFIP,	-78	˚C–RT	 66%	
aReaction	conditions:	1a	(1	mL),	2a	(1	mmol),	t-BuOCl	(1	

mmol),	Lewis	acid	(1.1	mmol),	additive	(1	mmol),	and	sol-
vent	(4.5	mL).	b	nr	denotes	no	reaction.	c	Larger-scale	synthe-
sis	of	3a	performed	using	2a	on	a	5-mmol	scale.	dIsolated	
yields.	
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Fluorinated	alcohols	are	known	to	promote	dearomative	
(4+3)	 and	 (3+2)	 cycloadditions	 with	 azaoxallyl29	 and	 di-
azaoxallyl	 cations.30	 Among	 these,	 hexafluoro-2-propanol	
(HFIP)	as	an	additive	successfully	raised	the	yield	of	3a	to	
81%	 (entry	6).	 These	were	 selected	 as	 the	optimal	 set	 of	
conditions	for	the	preparation	of	3a.	Preparation	of	the	ad-
duct	3a	was	readily	amenable	to	a	multi-gram	reaction	scale	
under	these	optimized	conditions	affording	3a	in	66%	yield	
(entry	10).	In	a	laboratory	setup,	the	reaction	was	most	eas-
ily	 carried	out	 by	 allowing	 a	 stirred	 reaction	mixture	 im-
merged	in	a	dry	ice-acetone	bath	(-78˚C)	to	slowly	warm	to	
room	temperature.	Cryogenic	conditions	are	not	necessary,	
however,	 and	 comparable	 yields	 were	 obtained	 at	 initial	
temperatures	up	to	ca.	-30˚C.	Nevertheless,	further	raising	
the	initial	temperature	significantly	lowered	the	yields	(en-
tries	7-9).	
Preliminary	calculations	performed	at	the	wB97X-D/def2-

TZVP/CPCM(THF)	 level	of	 theory	on	 the	 truncated	model	
cycloaddition	between	benzene	(1b)	and	1,3-bis(2,6-dime-
thylphenyl)-DAAA+	 allowed	 for	 the	 identification	of	 a	 low	
energy	(∆G‡	=	20.2	kcal/mol)	concerted	but	asynchronous	
transition	 state	 connecting,	 as	 confirmed	 by	 IRC	 calcula-
tions,	the	reactants	to	the	dearomatized	adduct	(∆G	=	-20.1	
kcal/mol;	 Figure	 S4).	 Comparable	 results	 were	 also	 ob-
tained	using	 the	M06-2X-D3	 functional	 (see	 the	SI	 for	de-
tails).	These	results	are	consistent	with	the	isolation	of	ther-
mally	stable	adducts	obtained	from	the	cycloaddition	at	low	
temperatures	 (-78˚C	 to	 RT)	 between	DAAA+	 generated	 in	
situ	and	arenes.	
Some	features	of	the	formal	(3+2)	cycloaddition	between	

DAAA+	II	and	arenes	distinguish	it	from	previously	reported	
aminative	 cycloadditions	 of	 arenes	 or	 heteroarenes.31	
Though	azaoxallyl	and	diazaoxallyl	cations	undergo	(3+2)	
or	 (4+3)	 cycloadditions	 with	 less	 aromatic	 heteroarenes	
such	as	furans	or	indoles,29,30	no	such	reactions	with	mono-
cyclic	 aromatic	 hydrocarbons	 have	 been	 reported.	 The	

cycloaddition	of	DAAA+	II	is	also	distinct	from	the	photocy-
cloadditions	of	TADs,	which	favor	a	(4+2)	mode	as	excited-
state	arenophiles,	whereas	formal	(3+2)	adducts	were	ex-
clusively	observed	with	 II.	Moreover,	 though	 the	TAD	cy-
cloadducts	of	monocyclic	aromatic	hydrocarbons	are	ther-
mally	 unstable	 (t1/2	 ~	 1	 hr	 at	 0˚C	 for	 the	MTAD-PhH	 ad-
duct),12b	 the	 fused	 triazolinium	 adducts	 3	 remained	 un-
changed	at	room	temperature	for	tens	of	hours	in	solution,	
days	in	the	solid-state,	and	could	be	stored	for	months	in	a	
refrigerator	without	degradation.	The	reactivity	of	DAAA+	II	
also	contrasts	with	the	closely	related	1-aza-2-azoniaallene	
cations,	which	were	reported	by	the	Brewer	group	to	par-
ticipate	instead	in	Friedel-Crafts-type	alkylations.32,33	
The	 scope	 of	 the	 developed	 cycloaddition	 was	 subse-

quently	studied	under	the	reaction	conditions	optimized	for	
o-xylene,	 as	 shown	 in	 Scheme	 2.	 Numerous	 commodity	
arenes,	such	as	benzene,	toluene,	and	m-xylene	were	found	
to	 participate	 in	 the	 cycloaddition	 leading	 to	 the	 adducts	
3b-d.	The	yields	and	regioselectivity	indicated	a	preference	
for	more	 sterically	 accessible	 and	 electron-rich	 positions.	
Cycloaddition	 was	 also	 possible	 at	 substituted	 positions,	
such	as	for	mesitylene,	giving	3e,	but	did	not	take	place	with	
hexamethylbenzene.	Sterically	demanding	substituents	did	
not	negatively	affect	the	outcome	of	the	reaction	(3g),	but	
lower	yields	were	observed	for	some	arene	substrates	bear-
ing	branched	side	chains,	possibly	due	to	side	reactions	oc-
curring	at	benzylic	and/or	methine	positions.	Fused	arenes	
gave	high	cycloadduct	yields,	though	a	switch	in	the	regiose-
lectivity	from	the	indane	adduct	3h	to	the	tetralin	adduct	3i	
was	 observed.34	 Interestingly,	 the	 regioselectivity	was	 re-
verted	to	the	2,3-positions	in	the	case	of	the	9,10-dihydro-
anthracene	adduct	3j.	Even	in	the	presence	of	an	excess	of	
triazene	and	oxidant,	2:1	adducts	were	not	observed	under	
these	conditions;	double	adducts	were	not	formed	with	the	
bisarene	substrates	1f	and	1j	either.		

Scheme	2.	Synthesis	of	triazolinium	adducts	via	a	dearomative	(3+2)	cycloaddition.a	

 
a	Isolated	yields.	Conditions:	1	(500	μL),	2a	(1	mmol),	t-BuOCl	(1.1	mmol),	KPF6	(1.1mmol.),	HFIP	(1.0	mmol)	and	THF	(4.5	mL).	

b	Using	1	(1.5	mmol),	2a	(1.5	mmol),	t-BuOCl	(1.5	mmol),	KPF6	(1.65	mmol),	HFIP	(1.5	mmol)	and	THF	(1.5	mL).	
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The	cycloaddition	notably	was	tolerant	of	ethers	(3k),	hal-
ides	(3l)	and	esters	(3m-p)	and	carboxylic	acids	(3q).	Cy-
cloaddition	with	o-xylene-d10	similarly	furnished	the	corre-
sponding	 deuterated	 cycloadduct	 3r.	 The	 bis(2,6-diiso-
propylphenyl)triazene	 2a	 was	 the	 sole	 triazene	 among	
those	 surveyed	 that	 accomplished	 the	 cycloaddition	with	
monocyclic	arenes	under	these	conditions	(Scheme	S1).	
Synthetic	 applications	 for	 the	 preparation	 of	 fused	

and	substituted	arenes	through	a	(4+2)	Cycloaddition-
cycloreversion	sequence.	The	dearomative	cycloaddition	
of	arenes	with	DAAA+	II	activates	them	toward	further	syn-
thetic	transformations.	We	hypothesized	that	the	cyclohex-
adiene	 subunit	within	3	would	 react	with	 suitable	dieno-
philes	4	to	give	transient	(4+2)	cycloadducts	5	(Scheme	1c).	
The	latter	were	expected	to	undergo	cycloreversions	lead-
ing	to	the	formation	of	new	arenes	(6,	8	and	9)	and	triazoli-
ums	10	products.	The	cycloaddition-cycloreversion	cascade	
using	 the	 dearomatized	 triazolinium	 adducts	 would	 thus	
enable	the	preparation	of	substituted	and	fused	arenes.	The	
validity	of	 the	proposed	sequence	was	 first	assessed	with	
dimethyl	 acetylenedicarboxylate	 (DMAD)	 4a.	 Consistent	
with	this	proposition,	upon	stirring	 in	acetonitrile	at	40˚C	
for	35	h,	a	mixture	of	3a	and	4a	was	 found	to	deliver	 the	
expected	 4,5-dimethylphthalate	6a	 in	 61%	yield	 together	
with	the	triazolium	salt	10a	as	byproduct	(Table	2,	entry	1).	
Optimization	of	reaction	parameters	for	the	cycloaddition–
cycloreversion	 cascade	 between	 the	 o-xylene-derived	 ad-
duct	3a	and	DMAD	4a	revealed	that	the	addition	of	the	mild	
Lewis	acid	indium(III)	chloride	hydrate	 improved	the	iso-
lated	yield	and	reaction	kinetics,	and	acetonitrile	proved	to	
be	the	preferred	solvent.	
Table	 2.	 Optimization	 study	 for	 cycloaddition–cy-
cloreversion	cascade	of	3a	with	4a	

	
Entry	 Solvent	 Lewis	Acid	 Tempera-

ture	
	Yieldc	
(%),	6a	

1	 CH3CN	 –	 40	°C	 61%	
2	 DCM	 ZnCl2		 RT–40	°C	 42%	
3	 DCM	 TiCl4		 RT–40	°C	 15%	
4	 DCM	 EtAlCl2		 RT–40	°C	 trace	
5	 DCM	 LiClO4		 40	°C	 9%	
6	 CH3CN	 LiClO4		 40	°C	 80%	
7	 CH3CN	 InCl3.4H2O		 40	°C	 83%	
8b	 CH3CN	 InCl3.4H2O		 40	°C	 77%	
9	 CHCl3	 InCl3.4H2O	 40	°C	 17%	
10	 DCE	 InCl3.4H2O	 40	°C	 50%	
11	 Acetone	 InCl3.4H2O	 40	°C	 44%	
aReaction	 conditions:	 3a	 (0.16	 mmol),	 4a	 (0.8	 mmol),	

Lewis	acid	(20	mol%)	and	1-2	mL	of	solvent.	bThe	reaction	
was	performed	with	10	mol%	of	InCl3.4H2O.	cIsolated	yields.	

The	reactivity	of	the	dearomatized	triazolinium	adducts	3	
is	reminiscent,	with	some	distinguishing	features,	of	that	of	
cyclopentadienones,	 ortho-benzoquinones,35	 thiophene	 1-
oxides	 and	 1,1-dioxides,36	 2-pyrones,37	 or	 electron-poor	

nitrogen	heterocycles38	 that	undergo	(4+2)	cycloadditions	
to	yield	transient	intermediates	that	rearomatize	upon	the	
extrusion	of	a	stable	small	molecule.39	In	comparison	to	2-
pyrones,	substituted	derivatives	of	3	are	obtained	in	a	single	
step	through	this	dearomative	cycloaddition,	obviating	the	
need	for	lengthy	synthetic	sequences.	Furthermore,	the	tri-
azolinium	adducts	3	also	engage	alkynes	such	as	DMAD	4a	
at	 temperatures	 lower	 than	 that	 required	 for	 2-pyrones	
(typically	>	100˚C),	which	may	be	ascribed	to	the	aromatic	
character	of	the	pyrone	but	its	absence	in	the	triazolinium	
adducts	3.		
Under	 the	 above	 conditions,	 various	 dearomatized	 tria-

zolinium	adducts	3	readily	reacted	with	electron-deficient	
alkynes	including	DMAD	4a,	diphenylbutynedione	4b,	me-
thyl	4-oxo-4-phenylbutynoate	4c	and	 the	sulfonyl	propio-
lates	4d-e	to	provide	the	corresponding	substituted	arenes	
in	 47-90%	 yields,	 as	 shown	 with	 the	 17	 examples	 of	 in	
Scheme	 3a.	 Oxidation	 of	 the	 substituted	 dihydroanthra-
cenes	with	DDQ	was	 facile,	 providing	 rapid	 access	 to	 the	
corresponding	acene	7a	in	85%	yield	(Scheme	3b).	
Cyclic	alkynes	also	engaged	the	dearomatized	adducts	3,	

providing	access	to	benzo-fused	cycloalkanes.	Cyclooctyne	
4f	 and	 exo-BCN	4g,	 which	 exhibit	 enhanced	 reactivity	 as	
dienophiles	 owing	 to	 their	 ring	 strain,40	 furnished	 the	
benzo-fused	cycloalkanes	8a-e	in	55-83%	yields	upon	reac-
tion	with	the	adducts	3a,	3b,	3g,	and	3h	in	CH3CN	at	40	°C	
(Scheme	3c).		
To	broaden	the	scope	of	fused	arenes	accessible	through	

the	cycloaddition-cycloreversion	sequence,	arynes	were	ex-
plored	as	dienophiles.41	These	were	found	to	effect,	in	com-
bination	with	the	dearomative	cycloaddition,	the	overall	ex-
cision	of	a	two-carbon	fragment	and	its	replacement	with	a	
grafted	aryne,	thereby	providing	an	original	disconnection	
for	the	synthesis	of	substituted	naphthalenes.	Three	differ-
ent	types	of	aryne	precursors	were	found	to	be	suitable	for	
the	 cycloaddition-cycloreversion	 cascade	 with	 the	
dearomatized	triazolinium	adducts	3.	First,	phthaloyl	per-
oxide	 4h	 was	 employed	 as	 a	 benzyne	 photoprecursor	
through	the	loss	of	CO2	under	UV-C	light	irradiation.42	When	
a	mixture	of	3a	and	4h	in	CH3CN	was	irradiated	with	a	mer-
cury	lamp	(254	nm),	3a	underwent	the	targeted	(4+2)	cy-
cloaddition-cycloreversion	cascade	with	the	benzyne	inter-
mediate	generated	 in-situ	 to	deliver	2,3-dimethylnaphtha-
lene	9a	(Scheme	3d).	
A	 second	 photochemical	 benzyne	 precursor,	 the	 diazo-

nium	carboxylate	derivative	4i,43	was	also	successfully	em-
ployed,	 furnishing	9a	 in	 80%	 yield	 through	 the	 same	 se-
quence	(Scheme	3e).	This	photoprecursor,	which	releases	
benzyne	 with	 the	 concomitant	 loss	 of	 CO2,	 N2	 and	 N-
methylacetamide,	has	the	additional	advantage	of	only	re-
quiring	milder	UV-A	(365	nm)	light	irradiation.	A	bromin-
ated	naphthalene	derivative	9b	was	similarly	obtained	from	
deeper	UV-sensitive	brominated	precursor	4j.	
The	third	compatible	way	of	generating	arynes	in	the	cy-

cloaddition-cycloreversion	sequence	with	3	was	the	classi-
cal	 oxidation	 of	 1-aminobenzotriazoles	 (4k-p).44	 Carrying	
this	reaction	step	at	0˚C	enabled	the	isolation	and	character-
ization	of	the	intermediate	(4	+	2)	cycloadduct	5a	 in	76%	
yield	from	the	reaction	between	3g	and	4k,	as	delineated	in	
Scheme	4.	The	isolation	of	this	intermediate	5a	further	sup-
ports	the	mechanistic	proposal	presented	in	Scheme	1c.		
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Scheme	3.	(a-g)	Synthesis	of	diverse	arenes	from	the	dearomatized	cycloadducts	3	with	dienophiles	4	through	a	cy-
cloaddition–cycloreversion	sequence. 

 
	

Scheme	4.	Isolation	of	the	transient	(4	+	2)	adduct	5a.	

 

For	most	 transformations,	 the	crude	5	was	 immediately	
subjected	to	the	(4	+	2)	cycloreversion	at	110	°C	in	CH3CN	
(Scheme	3f).	The	above	reaction	conditions	were	employed	
to	 explore	 the	 scope	 of	 this	 transformation	 with	 various	
arene-DAAA+	adducts	 (3)	and	1-aminobenzotriazoles	 (4k-
p),	as	outlined	in	Scheme	3f.	The	protocol	was	successful	for	
the	 preparation	 of	 substituted	 naphthalenes	 (9a,	 9c-l)	 in	
50-87%	 yields.	 Electron-donating	 and	 withdrawing	

Me

Me

9a, 85% 9c, 59%

Me

Me

Me

F

9f, 50%

9h, 72%

Me

Me

Cl

9i, 65%9g, 77%

Me

Me

Me

f. Using 1-aminobenzotriazoles as an aryne precursor:

g. Synthesis of analogues of NSAIDs and deuterated arenes:

D3C

D3C

CO2Me

CO2Me

D

D

D3C

D3C

D

D

Me

9j 9j'
9j : 9j' = 3.3:1 (56%)

EWG

EWG

+
CH3CN,
  40 °C

EWG

EWG

InCl3.4H2O,
(20 mol%)

4a-e (5.0 equiv.)

N
N

N
Dipp

DippH

H
PF6

–

6a-q 3 (1.0 equiv.);
      n = 0, 1

a. Using activated alkynes as a dienophile:

6a; R = Me, 83%
6b; R = H, 82%

R

R

CO2Me

CO2Me
6c, 60%

CO2Me

CO2Me
6d, 66%

CO2Me

CO2Me

6g, 62%

CO2Me

CO2Me

CO2Me

CO2Me

6h,75%

CO2Me

CO2Me

Me

Me

COPh

COPh

6m, 50%

Me

Me

COPh

CO2Me

+

   4f-g

CH3CN, 
 40 °C

8a-e

8a, 72% 8c, 71%

N
N

N
Dipp

DippH

H
PF6

–

 3 (1.0 equiv.)

c. Using cyclooctynes as a strained dienophile:

8d, 70%

H

H H

H

8e, 83%

+

9k; R = H, 70%
9l; R = Me, 50%

CO2Me

CO2Me

Me

CO2Me

+
Me

Me

9a, 78%

O
O

O

O

N
N

N
Dipp

DippH

H
Me

Me

 4h (5.0 equiv.)3a (1.0 equiv.)

d.  Using phthaloyl peroxide as a benzyne photoprecursor:

N
N

N
Dipp

DippH

H
PF6

–Me

Me
+

Me

Me

9a; X = H; 80%

HO2C

N
thenN

N
Ac

Me

 4i-j (5.0 equiv.) 3a (1.0 equiv.)

e. Using triazenylbenzoic acids as an aryne photoprecursor:

+

i) Pb(OAc)4 
    (5.5 equiv.),
     DCM, 0 °C

N
N

N
H2N

9a-l

R2

R3

R2

R3N
N

N
Dipp

DippH

H
PF6

–

ii) CH3CN, 
    110 °C

4k-p (5.0 equiv.)3 (1.0 equiv.)

Me

CO2Me

Me

CO2Me

6r, 48% 9m, 50%8f, 66%

6s, 75% 9n, 77%

 hν (UV-C), 
   CH3CN, 
   RT, 3 h;

110 °C, 5 h
then

8b, 55%

Me

Me

H

H

OH

t-BuMe

Me

6i, 42%

CO2Me

CO2Me

Ph

6j, 51%

CO2Me

CO2Me

b. Oxidation of substituted dihydroanthracene (6q):

SO2Ph

CO2Et

SO2Ph

CO2Et

     DDQ
 (1.3 equiv.),

7a, 85%

XX

9b; X = Br; 42%

(  )(  ) nn

6q (1.0 equiv.)

6e; R = OAc, 50%
6f; R = CO2Et, 47%

MeO2C

6k, 65%

 hν (UV-A),
   CH3CN, 
   RT, 3 h;

110 °C, 5 h

Me

Me

SO2Ph

CO2Et

SO2Ph

CO2Et

6q, 70%6p, 90%

Me

Me

Ts

CO2Me

6o, 89%

COPh

CO2Me

6n, 56%

COPh

COPh

6l, 64%

R

Me

Me

Me

9f, 87%9e, 69%

Me

Me

OMe Me

Me

t-Bu

9d, 80%
Me

Me

OMe Cl

R

   toluene, 
120 °C, 1.5 h

OHOH

PF6
–

in situ  5a, 76%

+
N

N
N

H2N
N

N
N
Dipp

DippH

H
PF6

–t-Bu

Pb(OAc)4 
(5.5 equiv.),
CH2Cl2, 0 °C

3g (1.0 equiv.) 4k (5.0 equiv.)
t-Bu

N

NN

Dipp

Dipp
PF6

–



 

 

6 

substituents	on	both	the	dearomatized	adducts	and	the	1-
aminobenzotriazoles	 were	 tolerated,	 and	 even	 the	 bulky	
tert-butyl	 substituent	 of	3g	 did	 not	 diminish	 the	 isolated	
yield	of	80%	 for	9d.	Unexpectedly,	 subjecting	 the	 tetralin	
adduct	(3i)	to	1-aminobenzotriazole	(4k)	in	this	cycloaddi-
tion-cycloreversion	sequence	led	to	formation	of	a	3.3:1	iso-
meric	mixture	of	1,2,3,4-tetrahydrophenanthrene	(9j)	and	
1,2,3,4-tetrahydroanthracene	 (9j’).	 This	 observation	 sug-
gests	 that	 an	 isomerization	 of	 the	 unsymmetrical	 tetralin	
adduct	 (3i)	 to	 its	 symmetrical	 isomer	 (3i’)	 reversibly	 oc-
curred	in	solution	prior	to	the	cycloaddition	step	(Scheme	
S2).	However,	the	indane	adduct	(3h)	exclusively	gave	the	
expected	cyclopentanaphthalenes	9k	and	9l	upon	reaction	
with	1-aminobenzotriazoles	4k	and	4m,	respectively.	
The	 cycloaddition-cycloreversion	 sequence	 follows	 a	 2-

carbon	editing	logic45	with	potential	applications	in	the	bio-
medical	sciences.	For	example,	carrying	out	the	cycloaddi-
tion-cycloreversion	 sequence	 with	 the	 DAAA+	 adduct	3p,	
derived	from	the	parent	2-phenylpropanoate	1p,	and	differ-
ent	dienophiles	offered	an	unexploited	route	to	diversified	
analogues	 of	 the	 profen	 family	 of	 non-stereoidal	 anti-in-
flammatory	 drugs	 (NSAIDs,	 Scheme	 3g,	 6r,	 8f	 and	 9m).	
Moreover,	owing	to	the	widespread	availability	of	deuter-
ated	arenes,	notably	as	NMR	solvents,	the	dearomatization-
initiated	 cycloaddition-cycloreversion	 sequence	 enabled	
new	paths	toward	the	preparation	of	selectively	isotopically	
labeled	 substituted	 benzenes	 and	 naphthalenes	 (Scheme	
3g,	6s	and	9n).46	
Current	 limitations.	 At	 this	 stage	 of	 development,	 the	

dearomative	cycloaddition	of	arenes	and	subsequent	(4+2)	
cycloaddition-cycloreversion	cascade	features	some	limita-
tions	that	need	be	noted.	Though	the	dearomative	cycload-
dition	was	compatible	with	several	polar	functional	groups,	
and	tolerant	of	steric	hindrance,	it	was,	however,	highly	sen-
sitive	to	the	electronic	character	of	the	arene	(Scheme	S1).	
As	earlier	observed	for	the	(4+2)	cycloaddition	with	TADs,13	
neither	highly	electron-poor	arenes,	which	did	not	engage	
with	 the	DAAA+	 II,	 nor	highly	electron-rich	arenes,	which	
gave	intractable	mixtures	of	products,	were	suitable	reac-
tion	partners	under	the	conditions	originally	optimized	for	
o-xylene.	 Reactions	 with	 commodity	 arenes	 gave	 higher	
yields	when	used	in	excess	as	co-solvents,	as	previously	re-
ported	for	TAD	photocycloadditions.13	Preparatively	useful	
reactions	 were	 nevertheless	 achieved	 with	 equimolar	
amounts	 of	 triazene	2a	 and	 arene	 substrate	3,	 at	 the	 ex-
pense	 of	 additional	 substrate-specific	 re-optimizations	 of	
the	reaction	conditions	(cf.	3h,	Scheme	2).	
The	 reactivity	 of	 3	 in	 its	 (4+2)	 cycloadditions	 was	 re-

stricted	to	potent	dienophiles,	though	further	opportunities	
for	catalysis	abound.	It	was	moreover	limited	by	the	stabil-
ity	 of	 the	 triazolinium	 adducts	3.	 These	 formal	 (3+2)	 ad-
ducts	were	 stable	 at	 room	 temperature,	 but	 nevertheless	
underwent	rearomatization	 through	a	ring-opening	elimi-
nation	 in	 solution	 at	 temperatures	 greater	 than	 ca.	 50˚C.	
Therefore,	only	dienophiles	that	outcompeted	this	side	re-
action	were	successful	in	the	cycloaddition-cycloreversion	
sequence.	 The	 ring-opening	 elimination	 and	 rearomatiza-
tion	of	3	was	also	promoted	by	Brønsted	bases	as	mild	as	
carboxylate	anions.	For	this	reason,	some	versatile	methods	
for	the	preparation	of	arynes,	such	as	the	activation	of	Ko-
bayashi’s	o-silyl	triflates	with	fluoride,41b,47	or	the	thermol-
ysis	 of	 diazonium	 carboxylates48	 were	 incompatible	 with	

the	current	conditions	for	the	cycloaddition-cycloreversion	
sequence.	 Finally,	 alkyl	 substituents	 at	 the	 bridgehead	 of	
the	triazolinium	adduct	(e.g.,	3e)	impeded	the	approach	of	
the	dienophile	on	one	face	of	the	cyclohexadiene	ring,	while	
the	 bulky	 diaryltriazolinium	 ring	 thoroughly	 shielded	 the	
opposite	face.	Consequently,	these	substrates	were	inert	to-
ward	the	dienophiles	discussed	herein	in	the	cycloaddition-
cycloreversion	cascade.		
Notwithstanding	these	limitations,	the	combined	applica-

tion	of	 the	dearomative	cycloaddition	and	subsequent	cy-
cloaddition-cycloreversion	 cascade	 has	 provided	 an	 un-
precedented	disconnection	enabling	the	synthesis,	 in	only	
two	 steps,	 of	 the	 substituted	 and	 fused	 arenes	 shown	 in	
Scheme	3;	among	these,	half	had	never	been	reported,	de-
spite	their	apparent	structural	simplicity.	

CONCLUSION 
The	shared	understanding	that	benzene	rings	will	not	un-
dergo	 cycloaddition	 under	 ordinary	 reaction	 conditions	
may	have	beguiled	chemists	into	overlooking	synthetically	
appealing	 transformations.	We	 here	 reported	 that	 1,3-di-
azaazoniaallene	cations,	which	have	been	known	for	a	quar-
ter-century	 as	 remarkably	 potent	 in	 their	 cycloadditions	
with	various	dipolarophiles,	 can	also	readily	undergo,	be-
low	0˚C	under	suitable	conditions,	formal	(3+2)	cycloaddi-
tions	with	benzene	and	 its	derivatives	 to	yield	 crystalline	
thermally	 stable	 adducts.	 This	 dearomative	 cycloaddition	
activates	 the	 ring	 for	 further	 synthetic	 elaboration.	 As	
demonstrated	 herein,	 it	 enabled	 a	 cycloaddition-cy-
cloreversion	cascade	with	alkynes	or	arynes	that	together	
effect	the	overall	excision	of	a	2-carbon	fragment	from	the	
aromatic	 ring	 and	 its	 replacement	with	 a	 subrogate	 frag-
ment	from	the	incoming	dienophile,	following	a	skeletal	ed-
iting	 logic.	We	anticipate	 that	 the	dearomatized	 triazolin-
ium	adducts	may	be	enrolled	as	linchpins	in	a	series	of	ad-
ditional	transformations,	 from	their	cycloadditions	to	het-
erodienophiles39b	 to	 their	 reductive	 ring-cleavage,28a	 that	
will	find	applications	in	polymer	chemistry,	the	synthesis	of	
functional	conjugated	organic	materials,	as	well	as	the	prep-
aration	of	biologically	active	molecules.	
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