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ABSTRACT 

The recent explosion in gut microbiome research has demonstrated the importance of 

metabolite-target interactions in the development of different pathologies. This suggest 

that gut-targeted drugs modulating these interactions would provide a new drug 

modality besides that of systemically bioavailable small molecules, that could tap from 

this growing knowledge, and would have little distribution and safety issues. In the 

present work we analyze a large set of gut metabolites in comparison with serum 

metabolites and drugs. We find structural and physicochemical similarity between the 

serum metabolites and the drug sets, and dissimilarity with the gut metabolite set. In 

addition, we find that the inclusion of chemical class is necessary in order to 

appropriately understand gut permanence, in contrast to classical oral permeation 

models (e.g. rule-of-five). To help in gut-targeted drug design, we provide a simple 

scoring scheme for use in medicinal chemistry, plus a machine learning model to use in 

cheminformatic applications.  
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INTRODUCTION 

The search for new modalities for drug discovery is an area currently receiving a large 

research focus.1–3 The existence of “undruggable” targets, unmet therapeutic needs in 

many areas, and the high attrition rates due to safety and distribution issues, calls for 

alternative approaches to the traditional paradigm of orally, systemically bioavailable 

small molecules. Among the new modalities, we find oligonucleotide therapeutics,4,5 

“beyond rule of 5” (bRo5) molecules,6,7 protein degraders (e.g. PROTACS8), peptides,9,10 

and biologics.11,12 In addition, new knowledge coming from omics technologies is 

expanding our understanding of the molecular mechanisms and pathways involved in 

biological processes, that result in new paradigms for drug discovery requiring new 

modalities. One of the most important of these paradigms stems from the growing 

knowledge in the last decade about the crucial role of microbiota on human health. The 

human body hosts trillions of microbial cells, mainly localized in the gut, that carry a 

genome (the microbiome) about 100 times the size of the human genome.13–15 The 

evidence for the involvement of the gut microbiome in multiple pathologies keeps 

steadily increasing, in areas like obesity, type 2 diabetes, cardiometabolic diseases, non-

alcoholic liver disease, diverticulitis, inflammatory bowel disease, colon cancer, etc.16–23 

From this research, a recurrent picture that emerges is that of host-microbiome 

interactions mechanistically mediated through metabolites in the gut that bind bacterial 

or human targets.21,22,24–29 In turn, the metabolites would be bacterial, endogenous, or 

xenobiotics (food, drugs, environmental), or modified versions of any of these produced 

by putative bacterial and/or host enzymes.  
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Thus, given all this knowledge, the modulation of all these gut metabolite-target 

interactions, appears as an interesting new drug modality that would tap from the new 

targets, pathways, and chemotypes appearing from the human microbiome research, 

as has been suggested.30–32 This would create new opportunities for treating diseases 

like the ones mentioned above, plus others like intestinal infectious diseases. Moreover, 

the ability to modulate the bacterial populations in the gut through new chemicals 

would pave the way for preventive interventions (instead of curative ones) through 

novel nutraceutics.  

In addition, this new modality would benefit from much reduced distribution and safety 

issues, as long as the compound is designed to remain in the gut: the administration 

route would be oral, but with a much more efficient access to the target (it would only 

require a minimal metabolic stability), and a minimal probability of off-target effects as 

the compound would not be distributed through the whole body.  

Given all this background, in the present work we aim at characterizing the specific 

features of gut metabolites in order to provide tools for the rational design of gut-

targeted drugs and nutraceutics. It is well known that systemic drugs have a higher 

resemblance to systemic metabolites than random compounds, which can be 

rationalized in terms of structural similarity allowing them to compete with endogenous 

metabolites for their interaction with their targets, or with their transporters.33–37 This 

is translated into a restrained physicochemical profile that has resulted in different sets 

of rules and computational methods to predict oral permeability and bioavailability (e.g. 

the well-known Lipinski rule-of-five (Ro5))38–43. In the same way, for the design of gut-

targeted drugs the physicochemical characterization of gut metabolites done here 
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would provide insights about patterns and features that these drugs would require. We 

analyzed a wide range of physicochemical properties, solubility, and ionic class of gut 

metabolites in comparison with systemic metabolites and drugs, and found significant 

differences that strongly depended on the chemical class. In addition, in order to predict 

gut permanence from molecular structures, we tested the use of reversed versions of 

oral permeability rules like Ro538 or Veber’s,40 finding a low predictive power due to not 

considering the chemical class in the rules. By including this factor in the prediction, we 

were able to derive a) a simple scoring system of easy interpretation to guide medicinal 

chemistry efforts, and b) a machine learning model for reliable in silico prediction of gut 

permanence in chemical databases for cheminformatics efforts.  
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RESULTS 

In what follows, we will start by describing the few gut-targeted drugs that currently 

exist, and after that we will perform an extensive analysis of gut metabolites. For that  

we will use the set of detected (quantified or not) gut compounds from the Human 

Metabolome Database (HMDB),44 corresponding to the feces biospecimen, further 

processed as described before45–47 (see also Materials and Methods), which comprises 

a total of 5021 molecules. For comparison purposes, two additional compound sets are 

included in the analysis: the set of detected (quantified or not) serum metabolites from 

the HMDB as systemic metabolites (16621 molecules), and a set of drug molecules 

corresponding to the subset of small molecules in approved, not withdrawn, and non-

illicit status of the DrugBank (1623 molecules); both additional sets were processed as 

before.45–47 The idea is to identify physicochemical patterns that are specific for gut 

metabolites, so that they can be used in the design of drugs targeted to the gut, instead 

of the normal paradigm of systemic drugs. In addition, we develop two predictive tools 

for gut permanence, useful in medicinal chemistry settings and in cheminformatic 

settings, respectively.  

Existing gut-targeted drugs 

There are a few cases of drugs that act in the gut. A collection of them is shown in Table 

1.  

NAME CHEMICAL CLASS INDICATION MODE OF 
ACTION 

Structure 

Acarbose Organic oxygen 
compounds 

Type 2 
diabetes 

α-glucosidase 
and α-amilase 
inhibitor 

 

Nystatin Organic oxygen 
compounds 

Antifugal Channel-
forming 
ionophore 
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NAME CHEMICAL CLASS INDICATION MODE OF 
ACTION 

Structure 

Ezetimibe Organoheterocyclic 
compounds 

Hypercholest
erolemia 

NPC1L1 
cholesterol 
transporter 
inhibitor  

Orlistat Organic acids and 
derivatives 

Obesity Lipase inhibitor 

 
  

Paromomycin Organic oxygen 
compounds 

Antibiotic, 
antiamoebic 

Ribosome 
inhibitor 

 

Kanamycin 
 

Organic oxygen 
compound 

Antibiotic Ribosome 
inhibitor 

 

Neomycin Organic oxygen 
compounds 

Antibiotic Ribosome 
inhibition 

 

Vancomycin Organic acids and 
derivatives 

Antibiotic Peptidoglycan 
synthesis 
inhibitor 
(transpeptidase) 

 

Mebendazole Benzenoids Antihelmintic Inhibition of 
tubulin 
polymerization 

 

Albendazole Organoheterocyclic 
compounds 

Antihelmintic Inhibition of 
tubulin 
polymerization  

Pyrantel Organoheterocyclic 
compounds 

Antihelmintic Cholinesterase 
inhibition 

 

Niclosamide Benzenoids Antihelmintic Uncoupling of 
oxydative 
phosphorilation 

  
Table 1. Set of gut-acting drugs. Data derived from DrugBank. Drugs were selected if 

they had a low or null bioavailability, together with a well-defined human or bacterial 

target (protein or ribonucleoprotein) located in the intestine. Drugs acting through 
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non-specific physicochemical mechanisms (osmotic laxatives, surfactants, ion 

exchange resins, etc.), or with high bioavailability, were discarded.  

These molecules have different chemotypes and targets, but all of them have low or null 

systemic bioavailability. On one hand, we have several aminoglycoside antibiotics, that 

act through inhibition of the bacterial ribosome (paromomycin, kanamycin, and 

neomycin). Other antibiotic targeting a bacterial target is vancomycin, a glycopeptide, 

but in this case the bacterial transpeptidase used for the synthesis of peptidoglycan is 

inhibited. Several molecules, all of them with heterocyclic structures, have 

anthelminthic activity, like mebendazole and albendazole, which target tubulin 

polymerization in the worm; pyrantel, which target its cholinesterase; and niclosamide, 

which uncouple the parasite oxidative phosphorylation. One aminoglycoside 

compound, nystatin, is an antifungal that acts as pore-forming ionophore. Finally, there 

are three drugs acting upon human targets: acarbose, an oligosaccharide that inhibits 

pancreatic amylases and gut α-glucosidases; ezetimibe, an heterocyclic molecule, that 

inhibits gut NPC1L1 cholesterol transporter; and orlistat, a triglyceride analog that inhibits 

gastric and pancreatic lipases. These are used in the treatment of type-2 diabetes, 

hypercholesterolemia, and obesity, respectively.   

From these examples we see that the concept of gut-directed drugs has already some 

exemplars that pave the way for more systematic and extensive drug design efforts, 

especially after novel metabolite-target interactions relevant for diseases are identified 

through the gut microbiome research.  

Chemical classification of metabolites 
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Figure 1 displays the distribution gut metabolites in 18 chemical classes, based on the 

ClassyFire chemical taxonomy.48 For comparison purposes, the distributions for serum 

metabolites and DrugBank molecules are also provided.  

 

Figure 1. Distribution of chemical classes (based on the ClassyFire taxonomy) for gut 

metabolites, serum metabolites, and DrugBank molecules.  

These classes are quite diverse from the structural point of view, and include some that 

are not present in the DrugBank set, like “glycerolipids”, “glycerophospholipids”, 

“sphingolipids”, “hydrocarbons”, “saccharolipids”, and “endocannabinoids”. The other 

chemical classes are shared with both the DrugBank set and the serum metabolites sets. 

They are, in decreasing order of abundance in the gut metabolites set (in parenthesis 

some example chemotypes in the gut are shown): “organic acids and derivatives” 

(oligopeptides, short carboxylic acids and derivatives, amino acids and derivatives, etc.); 

“fatty acyls” (fatty acids and derivatives); “organic oxygen compounds” (sugars, 
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oligosaccharides, alcohols, ketones, etc.); “organoheterocyclic compounds” (e.g. 

indoles, pyrroles, lactones, etc. and their derivatives); “benzenoids” (e.g. derivatives 

from benzene, benzoic acid, and phenol mainly); “prenol lipids” (terpenoids, quinones, 

hydroquinones, etc.); “steroids and steroid derivatives” (bile acid derivatives, 

cholesterol derivatives, etc.); “organosulfur compounds”; “other”; “phenylpropanoids 

and polyketides” (mainly flavonoids); “nucleosides, nucleotides, and analogues”; and 

“organic nitrogen compounds” (amines and nitriles).  

The distribution of chemical classes in the gut set is quite different from the other sets. 

For instance, we see that gut metabolites are highly enriched in “glycerolipids”, followed 

(in decreasing order) by “organic acids and derivatives”, “glycerophospholipids”, “fatty 

acyls”, and “organic oxygen compounds”. Chemical classes like “organoheterocyclic 

compounds” and “benzenoids” are the 6th and 7th most abundant ones. These gut top 

chemical classes are in contrast with those of the DrugBank and the serum sets, that 

have more similar distributions. For example, both of them have “organoheterocyclic 

compounds” and “benzenoids” as the first and second most frequent chemical classes, 

respectively. In the case of the serum set, these are followed (in decreasing order) by 

“organic acids and derivatives” (3rd), “organic oxygen compounds” (4th), “other” (5th), 

and “steroid and steroid derivatives” (6th), while in the case of the DrugBank set these 

are followed by “other” (3rd), “organic acids and derivatives” (4th), “steroids and steroid 

derivatives” (5th), and “phenylpropanoids and polyketides” (6th). In turn, the gut set has 

the latter chemical class as the 14th one.  

Thus, it seems that the serum metabolites set have chemotypes (as represented by their 

chemical classes) resembling more closely that of systemic drugs, that are the 
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overwhelming majority of the DrugBank set. This supports previous observations 

regarding the higher structural similarity observed in systemic drugs to systemic 

metabolites over those of random compounds,33–35 and would point towards the 

optional use of additional alternative chemotypes in the case of putative gut-targeted 

drugs.  

For example, the large count of “glycerolipids” (mainly triglycerides) in the gut 

metabolites set is due to the high variety of these molecules in food, and the fact that 

they are unable to cross the gut wall. Their triglyceride forms have to be hydrolyzed by 

lipases in the gut in order to be absorbed by the intestine epithelium, where they are 

again resynthesized and released to the circulation in the form of chylomicrons.49 This 

fact is used by some lipase inhibitors like orlistat (see above), an anti-obesity drug with 

minimal absorption in the intestine, that act locally through the inhibition of triglyceride 

hydrolysis and therefore their intestinal absorption. This drug and other lipase inhibitors 

act through irreversible competitive inhibition of the lipase catalytic center,50 as they 

are substrate analogs. In a similar vein is acarbose, a substrate analog of the highly 

abundant oligosaccharides in the gut, that is used to inhibit α-glucosidases and α-

amylases in the intestinal lumen. These are examples of alternative chemotypes not 

typical in systemic drugs that have been used to design successful gut-targeted drugs.  

Ionic class analysis  

Another interesting aspect to analyze is the comparative ionization behavior of these 

molecules. Figure 2 shows the distribution of ionization classes (acid, basic, neutral, and 

zwitterion) among the three compound sets.  
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Figure 2. Distribution of ionization states across the three compound sets: DrugBank, 

gut metabolites, and serum metabolites.  

From Figure 2 we see that, treated as a whole group, gut metabolites have a much higher 

proportion of neutral molecules. The large excess in neutral molecules is mainly the 

result of the large number of “glycerolipids” in this set, as all of them are neutral (see 

below). This exceeding large number of neutral molecules is in contrast to what is 

observed in drug molecules and serum metabolites. In the latter two sets, neutral 

molecules are the most abundant ionization class too, but the other ionization classes 

show relatively higher proportions, with the following decreasing order of abundance: 

basic > acid > zwitterion for the drugs, and  acid > basic > zwitterions in the case of serum 

metabolites. In the distribution of ionization classes in gut metabolites it is also quite 
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remarkable the different the distribution of ionized forms, where zwitterions is the most 

abundant one, followed by acid molecules; basic molecules are quite infrequent.  

If we focus in the comparison of serum vs gut metabolites, we get a more convoluted 

picture than this simple approximation when we take into account the chemical classes. 

Figure 3a shows the distribution of ionization classes for the whole set of gut metabolites 

(“all” column), as well as across compound classes, while Figure 3b the results of the 

statistical analysis of the adjusted residuals of ionization classes for the comparison of 

gut vs serum molecules, for both the complete two sets (“all” column), or for the 

different compound classes.   

 

Figure 3. (a) Ionization class distribution across compound classes for gut compounds. 

(b) Ionization state enrichment for gut vs serum across compound classes. For all the 

compounds or particular compound classes, adjusted residuals were calculated for 

the contingency table of ionic class vs set, followed by a Fisher exact post hoc analysis. 
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Red cells correspond to significant (p-value < 0.05) enrichment of the ionic class in the 

serum set, while blue cells correspond to significant enrichment in  the gut set. Grey 

cells correspond to cells for with no test was feasible due to missing compounds in 

one or both of gut and serum metabolites.  

We can see that the enrichment of gut compounds in neutral molecules is, as expected, 

statistically significant (blue cell in the “all” column), as it is the underrepresentation of 

acid, basic, and zwitterionic molecules (red cells). By focusing on particular chemical 

classes this pattern seems to hold in several cases: in “organoheterocyclic compounds”, 

“glycerolipids”, “benzenoids”, “organic oxygen compounds”, “other”, “fatty acyls”, 

“prenol lipids”, “oganosulfur compounds” and “sphingolipids” the neutral class is 

significantly overrepresented over that in serum metabolites, while the basic class, acid 

class, or both are significantly underrepresented. However, we can also see several 

reversals for the rule of enriched neutral class: for example, the zwitterion ionic class is 

enriched in the gut set for “organic acids and derivatives” and “glycerophospholipids” 

(they would be the main responsible for the proportionally higher number of zwitterions 

in gut metabolites), while the acid ionic class is enriched in the “steroids and steroid 

derivatives” and “nucleosides, nucleotides, and analogues”. This mixed pattern of 

preferred ionic class for the gut depending on the compound class offers useful patterns 

for the design of gut-targeted drugs and nutraceutics for the different compound 

classes, as far as the ionic class to choose is concerned.  

Analysis of solubility 

An important property in drug design is water solubility. We used the logS predicted 

property available in HMDB as proxy for the water solubility values of the molecules. 
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Figure 4 compares through a nonparametric test the logs values of gut vs serum 

metabolites, for both the whole compound sets (“all” column) and across the different 

chemical classes.  

 

Figure 4. Water solubility (logs) enrichment for gut vs serum compound classes. For 

all the compounds (“all” column) or particular chemical classes, a nonparametric 

Mann-Whitney test was conducted, and the Common-Language Effect Size statistic 

(CLES) was computed. Red cells correspond to significantly (p-value < 0.05) higher 

solubility in the serum set (negative CLES), while blue cells correspond to significantly 

higher solubility in  the gut set (positive CLES). Grey cells correspond to cells for with 

no test was feasible due to missing compounds in one or both of gut and serum 

metabolites. 

It is possible to see that, considered as complete compound sets, gut metabolites have 

lower solubility than serum ones. However, this behavior is not always maintained 

across the different chemical classes, and as a matter of fact, gut metabolites display 

significantly higher solubilities in gut for seven chemical classes (“benzenoids”, “organic 

acids and derivatives”, “organic oxygen compounds”, “phenylpropanoids and 
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polyketides”, “prenol lipids”, “organic nitrogen compounds”, and “organosulfur 

compounds”) vs four classes where they display significantly lower solubilities 

(“glycerolipids”, “fatty acyls”, “glycerophospholipids”, and “hydrocarbons”).  

Other physicochemical properties 

To get a more complete idea of additional physicochemical patterns present in gut 

metabolites, as opposed to serum ones, we analyzed a large set of much used 

physicochemical properties, namely: topological polar surface area (tpsa), logarithm of 

octanol/water partition coefficient (logp), number of rotatable bonds (rb), number of 

hydrogen bond donors (hbd), number of hydrogen bond acceptors (hba), molecular 

weight (mw), number of rings (nring), number of aromatic rings (naring), quantitative 

estimation of drug-likeness51 (qed), and fraction of sp3-hybridized carbons (fsp3). Figure 

5 displays the distributions of these properties across the different compound sets. In 

addition to the DrugBank set (DB) and the serum metabolites set (S), the gut compounds 

are shown in two subsets, glycerolipids (G-GL) and non-glycerolipids (G-NoGL), given the 

huge number of the former in this compound set, that would hide the distribution of the 

non-glycerolipids, and that their property ranges are widely different to the rest of the 

molecules.  

From this figure we can see that while serum metabolites show distributions quite 

similar to those of drug molecules, in the case of gut metabolites there are clear 

separation from those of serum metabolites and drug molecules, especially in the 

glycerolipids subset, but also in the non-glycerolipids one. This similarity in the serum 

metabolites vs drugs chemical class distributions could be rationalized by the fact that 

many of the drugs for systemic use show similarity with endogenous metabolites that 

would be present in serum,34,35 as above described in the description of distributions of 
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chemical classes. On the contrary, the physicochemical distributions of the gut 

metabolites, both glycerolipids and non-glycerolipids, point towards a different 

chemical space with alternative properties.  

 

Figure 5. Distribution of different physicochemical properties for the different 

compound sets: DrugBank (DB); serum metabolites (S); gut metabolite, not 

glycerolipids subset (G (NoGL)); and gut metabolites, glycerolipids subset (G (GL)). 

Outliers are not displayed for clarity purposes.  

In general, from visual inspection of the distributions it appears that as a general trend 

the gut compounds tend to be more lipophilic, with more rotatable bonds and higher 

fsp3, and higher molecular weight; in addition, they would have less hydrogen bond 

donors and rings, and lower QED. However, if we consider the chemical classes, again 

we observe more complicated patterns.  Figure 6 shows the results of the statistical 

nonparametric analysis to test the differences in gut vs serum metabolites distribution 

for the compound sets as a whole (“all” column), as well as for particular chemical 
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classes. In turn, Figure S1 in Supporting Information collects violin plots and boxplots for 

the distribution of the different physicochemical properties in both serum and gut 

metabolites, and for both the whole compound sets as well as for the different chemical 

classes.  

 

 

Figure 6. Physicochemical property enrichment for gut vs serum compound classes. 

For all the compounds (“all” column) or particular compound classes, a nonparametric 

Mann-Whitney test was conducted, and the Common-Language Effect Size statistic 

(CLES) calculated. Red cells correspond to significantly (p-value < 0.05) higher 

physicochemical property in the serum set (negative CLES), while blue cells correspond 

to significantly lower physicochemical property in the gut set (positive CLES). Grey 
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cells correspond to cells for with no test was feasible due to missing compounds in 

one or both of gut and serum metabolites.  

By comparing the two complete compound sets (“all” column), it is possible to see as 

significant trends the higher logp, rb, hba, mw, and fsp3 of gut molecules, as well as their 

the lower hbd, qed, nring, and naring. No significant difference was observed in tpsa. 

We must consider, however, that the large majority of molecules are in the 

“glycerolipids” class in the case of the gut set, that would dominate the comparisons for 

the whole set. Therefore, if we look at the different chemical classes, we see a more 

convoluted picture, as in the previous sections, where the global pattern is more or less 

maintained in some of classes, while others seems to show a partially opposite patter. 

Examples of the former are “glycerolipids”, as expected, although in this case tpsa is 

significantly higher in the gut, and fsp3 is significantly lower; in addition, similarity to this 

global pattern is also observed more or less with “glycerophospholipids”, “other”, “fatty 

acyls”,  and “hydrocarbons”. In these chemical classes, a statistically higher logp and rb 

are observed in gut metabolites, although the trend in hdb, hba, mw, and qed are not 

always conserved.  

A different pattern is observed in “organoheterocyclic compounds”, “benzenoids”, 

“organic acids and derivatives”, “organic oxygen compounds”, “phenyl propanoids and 

polyketides”, “prenol lipids”, and “organosulfur compounds”. Here the trend is reversed 

as logp, rb, hba, and mw are concerned (they tend to be significantly higher in serum 

metabolites), while it is kept as regarding nring, naring, and fsp3. In the case of qed, it is 

significantly higher in gut or no significant differences are observed. 
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A third pattern would correspond to compounds with little or no significant properties. 

These are “organic nitrogen compounds”, “nucleosides, nucleotides, and analogues”, 

“sphingolipids”, “endocannabinoids”, and can be explained by the small number of 

compounds in these classes. Finally, as a sort of “outlier” would remain the class of 

“steroids and steroid derivatives”, that has nring and naring significantly higher in serum 

metabolites, and fsp3 and hbd significantly higher in gut metabolites.  

By looking at the data from the properties point of view, we observe several of them 

that are highly conserved across chemical classes. These are: nring and naring, that are 

significantly higher in serum metabolites or not significant, with no exception; fsp3, that 

is significantly higher in gut or not significant, with the single exception of 

“glycerolipids”, where it is significantly lower in gut; hbd, that is significantly higher in 

serum or not significant, with the sole exception of “steroids and steroid derivatives” as 

already mentioned, where is significantly higher in gut; hba, that is significantly higher 

in serum or not significant, with the exception of “glycerolipids”, where it is significantly 

higher in gut; and tpsa, significantly higher in serum or not significant, with the exception 

of “glycerolipids”, where it is significantly higher in gut.  

A simple scoring system to predict gut permanence of small molecules 

Lipinski’s rule of five was developed to predict oral bioavailability of molecules, such that 

those molecules fitting the rules (with the possible exception of at most one) would be 

more likely to be absorbable and permeable by the intestine.52 In principle, by reversing 

the rule we would expect to achieve a good approximation for the prediction of gut 

permanence. By doing that, with the full combined set of serum vs gut compounds we 

obtain an accuracy of 0.82, a precision of 0.60, and a recall of 0.84. Calculating the F1 
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statistic we obtain a value of 0.70. However, if we analyze these statistics by chemical 

class, as shown in Table 2, we observe that while for “glycerolipids” the predictive power 

of Lipinski rule is excellent, with both precision and recall above 0.95, for the rest of 

chemical classes it is quite poor or right bad (precisions < 0.1 for 9 out of 13 chemical 

classes, and recalls < 0.1 for 8 classes). Thus, the global predictive metrics are misleading 

in that they are biased by the excellent ”glycerolipids” prediction, since this group is the 

largest by far in the set of gut metabolites.  If we instead obtain average predictive 

metrics conditional to chemical classes, we then obtain values 0.18 and 0.31 for the 

precision and recall, respectively (F1 = 0.23). Similarly poor results are obtained by 

applying the reversed Veber’s rules,40 other set of rules aiming at predicting 

bioavailability: a total of 8 precisions are < 0.1, while 3 recalls are < 0.1, with average 

conditional precisions and recalls of 0.18 and  0.4, respectively (Table 2), corresponding 

to a F1 = 0.25.  

 

precision 

(Lipinski)

recall 

(Lipinski)

precision 

(Veber)

recall 

(Veber)

precision 

(score)

recall 

(score)

precision 

(ML)

recall 

(ML)

precision 

(score tst)

recall 

(score tst)

precision 

(ML tst)

recall  

(ML tst)

Organoheterocyclic 

compounds
0.02 0.09 0.02 0.15 0.04 0.69 0.17 0.05 0.05 0.67 0.5 0.11

Glycerolipids 0.92 0.99 0.92 1 0.98 0.98 1 0.99 0.98 0.98 1 1

Benzenoids 0 0 0.01 0.03 0.1 0.62 0.61 0.26 0.05 1 0.5 1

Organic acids and 

derivatives
0 0 0.03 0.11 0.22 0.34 0.79 0.5 0.21 0.25 0.81 0.61

Organic oxygen 

compounds
0.03 0.09 0.04 0.21 0.2 0.65 0.74 0.5 0.34 0.7 0.89 0.53

Other 0.01 0.54 0.01 0.54 0.06 0.42 1 0.54 0.22 0.5 1 0.25

Steroids and steroid 

derivatives
0.01 0.07 0.02 0.26 0.05 0.4 0.24 0.12 0.1 0.5 0 0

Fatty Acyls 0.47 0.43 0.18 0.66 0.31 0.86 0.92 0.8 0.31 0.96 0.88 0.81

Prenol lipids 0 0 0.01 0.05 0.32 0.88 0.81 0.62 0.22 0.67 1 0.67

Glycerophospholipids 0.47 0.9 0.48 0.98 0.88 0.66 0.95 0.92 0.95 0.59 0.97 0.88

Organosulfur 

compounds
0 0 0 0 0.33 0.44 0.88 0.67 0

Hydrocarbons 0 0.48 0.23 0.73 0.69 0.8 0.75 0.25 0.5 0.33 0.5

Sphingolipids 0.2 0.89 0.18 1 0.29 0.09 0.7 0.26 1 1 0

Conditioned average 0.18 0.31 0.18 0.4 0.35 0.59 0.74 0.54 0.36 0.69 0.72 0.53
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Table 2. Precision and recall of different gut permanence models for the different 

chemical classes: Lipinski-reversed (Lipinski), Veber-reversed (Veber), score method 

(score), machine learning method (ML).  Here “Endocannabinoids”, “Nucleosides, 

nucleotides, and analogues”, “Organic nitrogen compounds”, and “Phenylpropanoids 

and polyketides” are not included due to their small number of compounds each. The 

metrics for Lipinski- and Veber-reverse methods are based on the whole compound 

set, while those of the score and machine learning methods are based on the average 

external prediction in 10-fold cross-validation of 80% of the full compound set. The 

columns with “tst”, for both score and machine learning models, corresponds to 

external predictions after the rederivation of the model with the whole training set 

(80% of molecules) and its application in the test set (20% of molecules); in this case, 

the test set had no gut molecules of the “Organosulfur compounds” chemical class, 

and that is the reason some metrics are missing.  

In the previous sections we have been able to see that the comparative properties of 

gut vs serum metabolites are highly dependent on the chemical class. Thus, this factor 

must be taken into account when trying to predict gut permanence of a molecule in the 

intestine. In this way, a simple scoring system that includes it has been devised that 

provides improved predictive power over the whole range of chemical classes. In order 

to develop and test it, the whole dataset (19922 compounds) was randomly split into a 

20% external test (2491 compounds) and 80% training set (17431 compounds), which in 

turn was used for model development and validation through 10-fold cross-validation.  

The scoring system is based on the set- and chemical class-specific interquartile ranges 

(IQR) of the physicochemical properties analyzed before: tpsa, logp, rb, hbd, hba, mw, 
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qed, nring, naring, and fsp3. Additional introduction of the ionization class in the scoring 

system did not improve the predictive power. In this scoring system, each molecule to 

predict is assigned the set (gut vs serum) with the largest number of properties for which 

the molecule is within its IQR; in the case of ties, the mean squared error (MSE) is 

calculated between the vector of 10 standardized properties of the molecule, and the 

vector of medians of the standardized properties of the corresponding chemical class, 

for both the gut and serum sets, and the set displaying the smaller MSE (the nearest set 

for that chemical class) is assigned to the molecule. In this way, the predictive metrics 

improve for the majority of the chemical classes, and indeed, in the 10-fold cross-

validation only 3 chemical classes have precisions < 0.1, and only one has a recall < 0.1, 

Table 2; in turn, the average conditional precision and recall rise up to 0.35 and 0.59 (F1 

value of 0.44, nearly twice of the Lipinski-reversed model). The rederivation of the IQRs 

with the whole training set and its evaluation with the external test set yielded similar 

predictive performances, as expected (Table 2, “score tst” columns): 0.36 and 0.69 for 

the precision and recall, respectively (F1 = 0.47).  

This simple scoring system has the advantage of its easiness of interpretation, so that 

the medicinal chemist can perform a guided multiobjective, IQR-based optimization of 

the different properties of the molecule to make it gut-permanent. By increasing the 

number of properties within the IQR of the corresponding chemical class in the gut 

metabolites set, and likewise decreasing the number of properties in the IQR in the 

serum set, the likelihood of gut permanence will increase. In addition, it is flexible as it 

assumes the possibility of not all properties to be within the IQR of the chemical class in 

the gut set, as long as the number of properties in the IQR of the corresponding serum 

molecules remains smaller. Table S1 in Supporting Information provides the median and 
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IQRs for the 10 physicochemical properties, plus the two most frequent ionization 

classes, for all the chemical classes and the two compound sets, after rederivation with 

the full set of compounds. These values can help in guiding the medicinal chemist to 

decide chemical modifications appropriate to improve gut permanence.  

Machine learning model to predict gut permanence 

An additional predictive model was devised for cheminformatic settings, where a 

reliable ligand-based virtual screening tool would be preferred over interpretation, in 

order to generate gut permanence predictions for large numbers of molecules. Thus, a 

random forest was developed, using as input descriptors the 10 physicochemical 

properties, plus the ionization class and chemical class, both of them one-hot-encoded. 

A total of 1000 trees were seen in the cross-validation to give a good performance at 

reasonable computational cost. In Table 2, the predictive metrics are shown for both the 

10-fold cross-validation, and the external test prediction (“ML” columns). From here, it 

is possible to see that the precision largely improves in almost all the chemical classes, 

while the recall slightly decreases in the majority of the classes, although it improves in 

the rest. Considering the average conditioned metrics, the precision and recall in cross-

validation are of 0.74 and 0.54, respectively, (F1 value of 0.62), and of 0.72 and 0.53 in 

the external test set (F1 value of 0.61). Thus, the random forest provides an additional 

global improvement in the predictive power, especially as far as precision is concerned; 

in any case, the precision vs recall balance could be adjusted by using alternative 

probability thresholds in the model (right now the set assignment is based on a default 

threshold of 0.5).  
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Both the score model and the random forest models, together with the dataset, are 

provided as Python code freely accessible in https://github.com/bbu-

imdea/gutmetabos



26 
 

DISCUSSION 

Gut-targeted drugs and nutraceutics appear as a new drug modality that could exploit 

the new knowledge coming from the human gut microbiome research. The metabolite-

target interactions identified through this research could be modulated by these new 

drugs and nutraceutics, in order to provide novel curative and preventive approaches 

for health, in multiple areas such as inflammatory bowel disease, colon cancer, type 2 

diabetes, obesity, non-alcoholic liver disease, diverticulitis, etc. In addition, directing the 

design of these compounds to remain in the gut would largely avoid the distribution, 

safety, and toxicology problems typical of systemic drugs, the main causes of the high 

attrition rate in this modality.53    

There are some few examples of drugs acting in the gut and with minimal or null 

bioavailability. Some of them act over host targets, in the metabolic diseases area; 

others over bacterial targets, being used as antibiotics; one antifungal, acting as a 

membrane-pore forming ionophore; and the rest of the molecules, acting on parasitic 

worm targets, as anthelmintic compounds. In terms of gut microbiome research, so far 

no commercial drug has been developed based on it, but the use of this research in drug 

discovery has already been pointed out,30–32 and in fact some initial successful proof-of-

concepts have allowed to find inhibitors of the pregnane X receptor based on gut 

metabolite mimics.54 This has been followed by the development of the aryl 

hydrocarbon receptor, based on metabolite mimics too.55,56 In addition, in other work a 

combined bioinformatic/cheminformatic analysis based on data from the Human 

Microbiome Project15 has allowed to suggest several target-metabolite interactions that 

could be useful in drug discovery for inflammatory bowel disease.57   
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Given all this background, the current work provides useful analyses that will help in the 

rational design of gut-targeted drugs based on (host or microbial) gut metabolites. We 

have compared a set of gut metabolites with a set of serum metabolites and a set of 

(essentially systemic) drugs in order to find differential patterns for the former that 

would guide the design of gut-targeted compounds. In this way, we have found that the 

distribution of chemical classes of gut metabolites is rather different to that of serum 

metabolites and drugs, while the two later sets have much more similar distributions. 

This similarity is in agreement with previous analyses that have stressed the structural 

similarity between systemic drugs and the corresponding metabolites,33,34 as well as the 

above mentioned proof-of-concept examples of inhibitors of gut targets based on 

intestinal microbial metabolites.54–56 This differential chemical class distribution has 

indeed been exploited in the case of two commercial drugs, orlistat and acarbose, which 

are in turn substrate analogs of two abundant sets of compounds in the gut, namely 

glycerolipids and oligosaccharides, rather unusual as source of systemic drugs.  

 The chemical class similarity between serum metabolites and drugs, and dissimilarity of 

these two with the gut metabolites, is confirmed when comparing the distributions of a 

large set of physicochemical properties (tpsa, logp, rb, hbd, hba, mw, nring, naring, qed, 

and fsp3). In addition, in terms of ionic class distribution, we observe also some serum 

metabolites vs drugs similarities, and at the same time dissimilarity with the gut 

metabolites set: besides the neutral class being the most abundant of the three, in the 

first two sets, zwitterion is the less frequent ionization class, while acid and basic classes 

are 2nd and 3rd of the serum metabolites set, and 3rd and 2nd of the DrugBank set; 

meanwhile, zwitterions is the 2nd most abundant class in the gut metabolites set, acid is 

the 3rd, and almost no basic compounds are present.  
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All in all, besides these general patterns, in all the analyses it seems necessary to 

consider the chemical class in order to account appropriately for the differential 

patterns specific for gut metabolites. Although gut metabolites seem in general to have 

higher logp, rb, and fsp3, and lower hbd, hba, qed, nring, and naring, to those of serum 

metabolites, there are some chemical classes where these trends are reversed: that is 

the case of e.g. “steroids and steroid derivatives” with hbd, “glycerolipids” with tpsa, 

hba, and fsp3, etc. Only nring and naring of the gut metabolites set is always significantly 

lower or not significant for all the chemical classes. Similar differential behavior 

depending on the chemical class is also observed when analyzing water solubility. 

That chemical class is important in the rational design of gut-targeted compounds is 

confirmed when using the reversed version of rules of widespread use for the rational 

design of orally permeable, systemic drugs, namely Ro539 or Veber’s.40 When applying 

these rules to this problem, a poor predictive power is observed for almost all chemical 

classes but “glycerolipids”. The inclusion of chemical class in our simple scoring system 

largely improved the predictive power for almost all chemical classes. By providing the 

IQRs for all chemical classes and physicochemical properties, for both the gut and serum 

metabolite sets, we hope to guide the rational design efforts of medicinal chemists, so 

that they can concentrate in optimizing the properties for which a particular compound 

is outside of the gut set IQR for the corresponding chemical class. We provide the IQR-

based scoring system as freely available Python code that can be easily implemented, as 

well as the set of IQRs and two most frequent ionic classes in Table S1 in Supporting 

Information. The machine learning model, providing a reliable but black-box type of 

model, can alternatively be used in cheminformatic settings, like screening set designs, 
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compound prioritization, chemical space analysis, etc. This model is also freely provided 

through the corresponding Python source code.  

We acknowledge some possible imperfections in our dataset, as the collection of gut 

and serum metabolites is based on multiple samples that can be obtained with different 

depths and with different backgrounds, and it is possible that for example, some 

compound of low but not null bioavailability, that in principle would be with more 

probability in the gut set, has only been observed in the serum set. Alternatively, it is 

possible that some highly bioavailable compound has only been observed in the gut set. 

We have tried to minimize situations like this by removing the compounds that were 

both in the gut and serum sets, and this itself could translate in some biases in the 

chemical class distributions. We think, however, that this would correspond, if present, 

to a small proportion of compounds that otherwise would not change the qualitative 

and quantitative conclusions of this work, given the large number of compounds in both 

the gut and serum metabolite sets, compared to the shared metabolites.   

In summary, we expect the current analyses and tools will provide new guides and 

technologies for the rational design of novel gut-targeted compounds, a new drug 

modality of high potential for the medicinal chemistry field.  

 



30 
 

MATERIALS AND METHODS 

Data analysis was performed with Python 3.9, and using RDKit 2022.03.2 as 

cheminformatic toolkit. Metabolite structures and information were retrieved from the 

Human Metabolome Database (HMDB);44 both gut and serum metabolites were 

retrieved. Only compounds with “detected and quantified” or “detected but not 

quantified” status were used. Drug structures and information were retrieved from the 

DrugBank58, in particular, the subset of small molecules in approved, not-withdrawn, 

and non-illicit status. Molecular structures were processed and normalized with the 

ChEMBL Structure Pipeline59 as described previously.45–47 A subset of 1735 metabolites 

was present in both gut and serum, and they were removed from the analysis, as the 

purpose of the analysis were to identify gut vs serum-specific features that would help 

in the design of new gut-targeted drugs. Similarly, 363 compounds were shared between 

DrugBank and serum metabolites, while 13 where shared between DrugBank and gut 

metabolites; in both cases, these compounds were assigned to the corresponding 

metabolite set. As a result of this retrieval and processing, the compound sets comprised 

5021, 16621, and 1613 molecules, respectively for gut metabolites, serum metabolites, 

and DrugBank sets.  

Ionization class assignment (acid, basic, neutral, and zwitterion) was based on HMDB’ 

strongest-acidic and strongest-basic pKa’s. Each molecule was assumed to have at least 

one acidic group if it had a strongest-acidic pKa < 7.4, and at least one basic group if it 

had a strongest-basic pKa > 7.4. Acid molecules were those with one or more acidic 

groups and no basic groups; basic molecules were those with one or more basic group 

and no acid group; neutral molecules were those with neither acidic nor basic groups, 
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and the rest of the molecules were zwitterions. In silico water solubility (logS) was 

retrieved from the HMDB.  

Post-hoc analysis of contingency tables was based on adjusted residuals, and cell-

specific p-values were calculated with an exact Fisher method recently described.60 

Differences between continuously distributed properties in two groups of molecules 

were tested through a non-parametric Mann-Whitney test, and direction of the effect 

was estimated through the Common-Language Effect Size (CLES)61 statistic, which 

estimates the probability than a random observation from the first group would be 

larger than a random observation from the second group.  

Model derivation was based on a random-split-based training set comprising 80% of gut 

+ serum metabolite sets, plus a 20% of external test set. In turn, model optimization was 

based on 10-fold cross-validation of the training set, and external predictive metrics 

were based on the average of the 10 folds. These were: accuracy, precision, recall, and 

F1. Once the model was optimized, it was rederived with the full training set, and tested 

in the external test set, not used during the cross-validation, and with the same 

prediction metrics.  

Random forest models were based on the scikit-learn 1.1.2 module of Python. Default 

parameters were used, except the number of trees that in the cross-validation was 

selected to be 1000 as a reasonable compromise between performance and 

computation time.  

Models and dataset can be obtained from https://github.com/bbu-imdea/gutmetabos 
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SUPPORTING INFORMATION 

TableS1.xlsx: 

Table S1: Distribution of physicochemical properties for each chemical class in gut and 

serum metabolites. For each combination, the median and IQR is displayed for both gut 

and serum metabolites, plus the CES, and p-value. For ionization classes, the first and 

second most abundant are displayed for both gut and serum metabolites.  

 

Figures S1-S10.pdf: 

Figures S1-S10: Distribution of physicochemical properties for the whole set and for 

each chemical class of gut and serum metabolites. Both violin plots and boxplots 

(without outliers, for clarity purposes) are displayed.  
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