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Abstract

The modeling and interpretation of vibrational spectra are crucial for studying reac-

tion dynamics using vibrational spectroscopy. Previous theoretical developments have

mainly focused on fundamental vibrational transitions. In this study, we present a

new method that uses excited state constrained minimized energy surfaces (CMES) to

describe vibrational excited state absorptions. The excited state CMESs are obtained

similarly to the previous ground state CMES development in our group but with ad-

ditional wave function orthogonality constraints. Using a series of model systems,

including the harmonic oscillator, Morse potential, double-well potential, and quartic

potential, we demonstrate that this new procedure provides good estimations of the

transition frequencies for vibrational excited state absorptions. The results are signif-

icantly better than those obtained from harmonic approximations using conventional

potential energy surfaces.
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Introduction

Vibrational spectroscopy has been a powerful tool to obtain structural information and un-

cover reaction dynamics in both gas and condensed phase1–3. Compared to conventional lin-

ear vibrational spectroscopy,4 nonlinear vibrational spectroscopy5,6 can additionally provide

more information by probing two or more photon processes. For example, two-dimensional

infrared spectroscopy (2DIR)7 can go beyond the vibrational ground state and monitor the

vibrational excited state dynamics and thus has been used to investigate reaction dynamics

in a variety of materials and biological systems8,9

There have been many theoretical methods to model vibrational spectroscopy. A most

widely used method to estimate vibrational frequencies is to diagonalize the mass-weighted

Hessian matrices obtained from either density functional theory (DFT) or wave function

theories. This method invokes the harmonic approximation and can generally provide qual-

itatively correct vibrational modes results; however, when describing systems with strong

anharmonicities, it often needs to rely on empirical scaling factors to obtain quantitatively

right results. Going beyond the harmonic approximation, vibrational second order per-

turbation theory (VPT2)10–12 is often used to obtain anharmonicity-corrected vibrational

frequencies, which utilizes information of local higher-order derivatives. VPT2 is currently

considered to have reached a good balance between accuracy and efficiency, although it may

face challenges when local higher-order derivatives are not sufficient to capture the behavior

of the whole potential energy surface (PES), especially in some shared proton systems with

double-well PESs. Vibrational self-consistent field theory (VSCF)13,14 is currently one of the

most accurate methods for obtaining vibrational spectra. It utilizes the high-dimensional

PES to compute vibrational ground and excited states. However, due to the high compu-

tational cost of constructing the high-dimensitional PES, VSCF is often limited to small

systems.

In addition to aforementioned popular methods based on static calculations, there is

another category of methods that is based on dynamic simulations and employs time au-
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tocorrelation functions to obtain vibrational spectra. Among them, a widely-used method

is classical molecular dynamics (MD)15–17, which treats nuclei as classical particles and let

them evolve classically on PESs following Newton’s laws of motion. Within the classical MD

framework, ab initio MD (AIMD)18 is generally more accurate than force-field-based MD

because the PESs used in AIMD are obtained through ab initio electronic structure calcu-

lations, such as DFT. However, classical MD can only take into account limited amount of

anharmonicty through dynamic simultations on PESs at a finite temperature and often needs

empirical scaling factors for highly anharmonic systems. An improved way to incorporate

more anharmonicity in MD simulations is through quasi- or semi- classical methods19–22.

These methods assign certain initial energies to the nuclei, and thus the resulting classical

trajectories can reach more anharmonic areas of the PES. This treatment is successful in

many model systems and practical systems, although they can suffer from zero-point energy

(ZPE) leakage problems23–25 in some systems. A more elegant way of incorporating anhar-

monicity in MD simulations is through the path-integral formulism. A few major variants

are centroid molecular dynamics (CMD)26,27, ring-polymer molecular dynamics (RPMD)28,

thermostated ring-polymer molecular dynamics (TRPMD)29, and quasi-centroid molecular

dynamics (QCMD)30. They map a quantum nuclear system onto a classical system with

chains of beads, and through a good description of the nuclear quantum effects as well as

approximations on the autocorrelation functions, they can well describe the anharmonicity

and give relatively accurate vibrational spectra. An even more accurate method to describe

vibrational spectra is through quantum nuclear dynamics, and a commonly-used method is

the multiconfigurational time-dependent Hartree (MCTDH)31 theory. This theory has been

shown to accurately describe the vibrational spectra of systems as large as water clusters

with four water molecules, although the underlying computational cost remains a major

limiting factor.

In the past few years, our group has developed a new method for calculating vibrational

spectra based on constrained minimized energy surfaces (CMESs)32. The CMES is an effec-
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tive PES for nuclei, but compared to the conventional PES, the CMES incorporates nuclear

quantum effects, especially the zero-point effects, in the effective potential energy surface. It

has been shown with a few model systems that MD based on the CMES (CMES-MD) is able

to give significantly more accurate fundamental vibrational frequencies than conventional

MD, and its performance is comparable to or even better than CMD and RPMD. In real

molecular systems, our group has developed constrained nuclear-electronic orbital density

functional theory (CNEO-DFT) to approximate the CMES. It was found that CNEO-DFT

harmonic frequencies are already comparable to or better than VPT233–35, and the vibra-

tional spectra obtained from MD simulations on CNEO-DFT energy surfaces accurately

reproduce the experimental spectra36. Despite the great success, these past developments

were mostly focused on the fundamental 0 → 1 excitations. In order to simulate non-linear

vibrational spectra, especially the 1 → 2 excitations, a method that can describe vibrational

excited state absorption is essential. One example is that in a 2D-IR spectrum, the 0 → 1

fundamental transitions show up on the diagonal line, whereas the 1 → 2 excited state ab-

sorptions can be observed next to them but slightly off the diagonal line, together forming

the butterfly-shaped feature of the spectrum.

For the excited state absorptions, conventional MD cannot distinguish them from funda-

mental transitions since the underlying theoretical foundation for spectra calculations using

MD is a harmonic approximation, in which the fundamental 0 → 1 excitation and all ex-

cited state n→ n+ 1 transitions share the same transition energy. Quasi- or semi- classical

methods can possibly describe these excited state absorptions by giving more initial energy

to the nuclei. However, their ZPE leakage problems could be more severe because of the

even higher initial energy given to the systems. Currently, the commonly used method for

describing the vibrational excited state absorptions in the 2DIR spectrum is to first obtain

the PES for the mode of interest while fixing all other modes37–41, and then either fit the PES

to a Morse potential and approximate the results with the exact quantum solutions for the

Morse potential, or utilize the discretized variable representation (DVR) method to solve the
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Shrödinger equation on this one-mode PES. Both of these two ways can yield qualitatively

correct results but the quantitative accuracy can be questionable due to the approximations

made during the calculations. Therefore, it remains highly desirable to develop a method

that can accurately and efficiently simulate vibrational excited state absorptions.

In this paper, we propose a new way of calculating vibrational excited state absorptions

by constructing excited states CMESs and using their second-order derivative information to

approximate the vibrational transition energies. This is essentially equivalent to performing

MD simulations at the zero-temperature limit. We systematically test the new method on

a series of 1-D model systems and benchmark against the exact quantum reference. We

will show that the results are significantly better than the harmonic approximation results

based on the ground state PES. This paper will serve as the theoretical foundation for our

future development of using excited states CNEO theory to calculate vibrational excited

state absorptions in real molecular systems.

The paper is organized in the following way: In section 2, we first review the theory of

constructing ground state CMESs and provide our way of constructing excited state CMESs,

then we provide a brief theoretical analysis on excited state CMES for the quantum harmonic

oscillator model and show that our method is exact within the harmonic approximation.

In section 3, we apply and numerically test the new theory on a series of model systems

including Morse potential, quartic potential, and double-well potential systems. We give our

concluding remarks in section 4.

Theory

Ground state CMES

Recently, our group developed a new framework of incorporating nuclear quantum effects in

MD simulations through CMESs32. In conventional PES-based MD simulations, nuclei are

treated as point charges that are highly localized in space. This treatment loses the quantum
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delocalization picture for nuclei. In contrast, in CMES-MD, nuclei are treated quantum

mechanically, but instead of directly evolving the quantum nuclei rigorously according to

the time-dependent Schrödinger equation, we invoke an adiabatic assumption that every

time the nuclei evolve to a quantum state with certain expectation positions and expectation

momenta (X,P), the system always relaxes to the energy-minimized quantum state with the

same (X,P). Under this assumption, it can be proved that the nuclear expectation positions

and expectation momenta evolve classically according to the Newton’s law of motion but

with a caveat that nuclei evolve on the effective potential energy surface, i.e., the CMES,

instead of the conventional PES.

A key to performing CMES-MD is to construct the CMES, which is a function of nuclear

expectation positions and can be obtained by searching for the lowest-energy nuclear wave

function that satisfies the nuclear expectation position constraint:

V CMES
0 (X) = min

A0∈{A∈H |⟨A|x̂|A⟩=X}
⟨A0|Ĥ|A0⟩ (1)

Here H is the quantum nuclear Hilbert space and the nuclear expectation constraint is

⟨A|x̂|A⟩ = X. This constrained minimization can be performed using the Lagrangian func-

tion:

L = ⟨A0|Ĥ|A0⟩+ f0 · (⟨A0|x̂|A0⟩ −X)− Ẽ0(⟨A0|A0⟩ − 1) (2)

in which f0 is the Lagrange multiplier associated with the expectation position constraint,

and Ẽ0 is the Lagrange multiplier associated with the wave function normalization constraint.

Making the Lagrangian function stationary by varying the state |A0⟩ leads to an eigenvalue

equation

[Ĥ + f0 · x̂]|A0⟩ = Ẽ0|A0⟩. (3)
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This eigenvalue equation can be solved iteratively together with the expectation constraint

as well as the normalization constraint, leading to solutions of f0, |A0⟩, and Ẽ0. When the

constraints are satisfied, the total energy, which is a function of the nuclear expectation

positions, will serve as the effective PES, or the CMES:

V CMES
0 (X) = ⟨A0|Ĥ|A0⟩ = Ẽ0(X)− f0(X) ·X (4)

The nuclear expectation positions and momenta evolve according to the Newtonian equa-

tions 
d⟨x̂⟩
dt

= ⟨p̂⟩
m

d⟨p̂⟩
dt

≈ −∇XV
CMES
0 (X)

(5)

Note again the evolution of momenta is not exact since we have invoked the adiabatic

approximation and assumed the system always relaxes to the energy-minimized quantum

state for a given nuclear expectation position X.

Based on trajectories obtained from CMES-MD, our group showed that accurate vibra-

tional spectra can be obtained in both model systems and practical molecular systems.

The theoretical justifications for these vibrational spectra simulation based on classical

MD simulations, including both conventional MD and CMES-MD, is that 1. according to

the Fermi’s Golden Rule, the Fourier spectrum of quantum autocorrelation functions can be

used to calculate transitional frequencies and intensities between energy levels42, and 2. the

classical autocorrelation functions and the quantum autocorrelation functions match exactly

in peak positions and differ only by a universal factor in intensities in the harmonic oscillator

model. Although this harmonic approximation justifies the use of classical MD simulations to

calculate vibrational spectra, it also leads to the assumption that the fundamental excitations

(0 → 1) are the same in energy as those excited states absorptions (e.g. 1 → 2, 2 → 3).

However, in anharmonic systems, there are slight differences among them, which can be

observed, for example, in 2DIR experiments. We note that although it might be considered
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that increasing the simulation temperature in MD simulations incorporates some excited

states absorptions, there is no solid theoretical foundation for this temperature effect, and

it is more of an artifact from classical treatments.

Excited states CMES

Here we propose a new way of separately obtaining excited states and ground state absorption

frequencies by constructing and using excited-state CMESs.

Previously in developing the CMES theory, our group has been targeting on the eigen-

state with the lowest energy. These states are essentially the ground states that satisfy

the expectation constraints. However, there are also “excited states” with higher energies.

To search for these excited states for a given nuclear expectation position, we can perform

constrained energy minimization again. The first excited state can be defined as

V CMES
1 (X) = min

A1∈{A∈H |⟨A|x̂|A⟩=X,⟨A|A0⟩=0}
⟨A1|Ĥ|A1⟩, (6)

in which we require the state to be orthogonal to the ground state in addition to the expec-

tation position constraint. A more general definition for the nth excited state CMES surface

can be defined as

V CMES
n (X) = min

An∈{A∈H |⟨A|x̂|A⟩=X,⟨A|Ai⟩=0,∀i=0,1,··· ,n−1}
⟨An|Ĥ|An⟩ (7)

Note that here we require the nth excited constrained minimized energy state to be orthog-

onal with all the lower states with the same ⟨x̂⟩. Under these constraints, the Lagrangian

function for excited states CMES can be written as

L = ⟨An|Ĥ|An⟩+ fn · (⟨An|x̂|An⟩ − ⟨x̂⟩) +
n−1∑
i=0

gni ·
∣∣∣∣⟨An|Ai⟩

∣∣∣∣2 − Ẽn(⟨An|An⟩ − 1), (8)

where gni is the Lagrange multiplier associated with the orthogonality constraint with the
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CMES state Ai. Here, to facilitate derivations and practical implementations next, we

employ the constraint as
∣∣∣∣⟨An|Ai⟩

∣∣∣∣2 = 0 instead of the simple form of ⟨An|Ai⟩ = 0. Making

the Lagrangian function stationary by varying An can lead to the eigenvalue equation for

solving the nth excited CMES state:

(
Ĥ + fn · x̂+

n−1∑
i=0

gni · |Ai⟩⟨Ai|

)
|An⟩ = Ẽn|An⟩. (9)

With all lower states Ai known, this eigenvalue equation can be solved iteratively together

with the expectation constraint, the normalization constraint, and the orthogonality con-

straints, which will give solutions of fn, gni, |An⟩, and Ẽn. When all constraints are satisfied,

the total energy will serve as the effective PES for the nth excited constrained minimized

energy state:

V CMES
n (X) = ⟨An|Ĥ|An⟩ = Ẽn(X)− fn(X) ·X (10)

These excited state CMESs can be used in an ad hoc manner to perform MD simula-

tions. The underlying assumption for these simulations is that the nuclear wave functions

adiabatically keep their excited state character during the dynamics and do not relax to the

lower vibrational states. In the next section we will show that we can use them to obtain

vibrational excited state absorption frequencies. For these frequency calculations, a natural

question is that since we need to construct excited state CMESs, why not we directly take

the energy difference between CMESs to obtain the frequencies? We note that because of

the requirement on the orthogonality with the lower states of the same expectation posi-

tion, the “excited states” for CMESs do not rigorously correspond to the vibrational excited

states solved from the Schrödinger equation, therefore, the energy gaps between CMESs do

not necessarily match well with the reference excited state absorption values. Additionally,

intensity information will be more directly available from dynamics simulations than pure

static energy calculation. Furthermore, the success of vibrational frequency calculations will
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demonstrate the good quality, at least near the equilibrium region, of the vibrational excited

state CMESs, which we can use in the future to perform excited state dynamics simulations.

Excited state CMES for harmonic oscillator model

The harmonic oscillator model was used to justify the use of classical MD to calculate vibra-

tional spectra since its classical autocorrelation functions match exactly with the quantum

autocorrelation functions in peak positions. Our group also showed that in the harmonic

oscillator model, the ground state CMES differs from the underlying PES only by a universal

shift of 1
2
ℏω. Therefore, the classical dynamics picture remains the same, and CMES-MD is

also exact for the harmonic oscillator. Here, to extend out CMES theory to excited states, we

will analytically solve for the excited state CMESs for a harmonic oscillator and investigate

their properties.

From a previous paper by our group,32 the ground constrained minimized energy state

|A0⟩ for the the harmonic oscillator model Ĥ = p̂2/2m+mω2(x− xe)
2/2 is the ground state

of another harmonic oscillator with the center shifted to the nuclear expectation position X.

And the corresponding ground CMES is

V CMES
0 (X) = ⟨A0|Ĥ|A0⟩ =

1

2
ℏω +

1

2
mω2(X − xe)

2, (11)

which is a function of X.

Now, we can substitute the ground CMES state |A0⟩ into Eq. 9 to solve the first ex-

cited CMES state analytically (see Supporting Information for details). The wave function

A1(x;X) is

A1(x;X) = ψHO
1 (x−X), (12)

where ψHO
n (x) is the nth eigenfunction of a harmonic oscillator, and the corresponding CMES

is

V CMES
1 (X) = ⟨A1|Ĥ|A1⟩ =

3

2
ℏω +

1

2
mω2(X − xe)

2. (13)
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It can be observed that the wave function is the same as the first excited state wave function

for quantum harmonic oscillator except it is now centered at x = X. The excited state CMES

is the same as the underlying harmonic PES except that it is here shifted up universally by

3
2
ℏω, which is the quantum energy associated with the first excited state.

In fact, for the harmonic oscillator model, these elegant results can be generalized to even

higher excited state CMESs with

V CMES
n = ⟨An|Ĥ|An⟩ = (n+

1

2
)ℏω +

1

2
mω2(X − xe)

2, (14)

which means that compared to the underlying harmonic PES, CMESs simply shift the energy

universally up by (n+ 1/2)ℏω, which is the quantum energy for the nth state.

This universal shift does not change the shape of the effective potential and also does

not change the classical dynamics picture. Therefore, the position autocorrelation functions

remain the same for every excited state CMES:42:

⟨x(0)x(t)⟩CMES
n =

kT

mω2
cosωt, (15)

where the average ⟨·⟩ is taken under the canonical ensemble. Furthermore, the Fourier

transform of this autocorrelation function gives the same vibrational frequency ω as before.

Despite the same frequency, we argue that because these dynamics simulations are performed

on excited CMESs and the underlying quantum picture corresponds to excited state har-

monic oscillator wave functions, these vibrational frequencies ω should not be viewed as the

fundamental transition frequency. Instead, they should be viewed as excited states absorp-

tion frequencies, which happen to be the same as the fundamental transition frequency in the

harmonic oscillator model. This is the key hypothesis of this paper, which we will provide

numerical support in Section 3 on a series of anharmonic model systems.

To further connect the classical autocorrelation functions with the quantum autocorre-

lation functions for excited states absorptions, here we consider a special ensemble for the
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harmonic oscillator, in which the ground state is not occupied whereas the excited state

are occupied according to the Boltzmann distribution. In this special ensemble, since the

ground state is not occupied, the quantum autocorrelation function contains information

of excited states absorptions (mainly 1 → 2) but no fundamental transition. The position

autocorrelation function can be computed analytically:

1

2
⟨
[
x̂(0), x̂(t)

]
+
⟩ = ℏ

2mω

3− e−βℏω

1− e−βℏω cosωt. (16)

Obviously the Fourier transform of this quantum autocorrelation function still gives the

frequency ω, but it should mainly be considered to correspond to the 1 → 2 transition. By

comparing this quantum autocorrelation function with the classical autocorrelation function

obtained from excited state CMES in Eq. 15, we only see a difference by a pre-factor,

suggesting that it may be viable to use excited state CMES-MD to obtain excited state

absorption spectra.

This argument can also be generalized to the 2 → 3 or even higher transitions by con-

structing other special ensembles, but the key hypothesis remains the same: since the classical

autocorrelation function matches with the quantum autocorrelation function, we may use

excited CMES-MD to obtain excited-state spectra.

Results for anharmonic systems

To go beyond the simple harmonic oscillator model, here we test our proposed method

on a series of anharmonic model systems. Note that conventional MD has only one PES

and cannot construct vibrational excited state surface. Therefore, we can only obtain the

same frequency for both 0 → 1 fundamental transition and other n → n + 1 excited states

transitions. In contrast, in the CMES-MD framework, we can use MD on the ground state

CMES to obtain 0 → 1 transition frequencies, use MD on the first excited CMES to obtain

1 → 2 transitions, and so forth. We note that although MD results depend on the simulation
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temperature, this temperature effect is relatively small in the temperature range that most

chemists care about. Therefore, in this paper, we will simply focus on the zero-temperature

limit and only use their second-order derivative information to approximate the vibrational

transition energies. We will provide results for the Morse potential, the quartic potential, and

the double-well potential, all of which are important model systems for modeling practical

chemical problems. The quantum results are used as reference, which are obtained either

analytically or numerically with a dense grid.

Morse potential

The Morse potential is a typical model for bond vibrations. It has analytic quantum solu-

tions, and the anharmonicity makes excited states transitions different from the 0 → 1 fun-

damental transition. Here we will test our method on the 1-D Morse potential with the form

V (x) = De(e
−2α(x−xe) − 2e−α(x−xe)), in which De = hcωeχ

2
e/(4ωeχe) and α =

√
2µhcωeχe/ℏ.

Three parameters, xe, χe, and ωe completely determine the Morse potential, but we will not

scan all these parameters due to the large computational expense. Instead, we select a few

parameter sets that mimic real chemical bond vibrations for testing.

The first group of bonds is H-X bonds, where X typically can be C, N, and O. This

group of bonds is of particular interest because they are known to be highly anharmonic.

In existing literatures43, there have been Morse parameters sets fitted for these H-X bonds

based on diatomic results, although we note that the bond strengths, bond lengths, and

vibrational frequencies can vary with chemical environments and so do these parameters

sets. We notice that in the existing Morse potential parameters sets, different H-X diatomic

molecules tend to have similar χe and xe values, but their ωe can vary more. Therefore,

we fix the value of χe to be 0.023 and the value of xe to be 1.0Å, and only scan the value

of ωe in the range from 2000 cm−1 to 4000 cm−1 to model the H-X vibrations in different

chemical environments. The reduced mass is approximated to be the mass of a hydrogen

atom. We limit our discussions to 0 → 1, 1 → 2, and 2 → 3 transitions since the lowest

13



few states are more important. Therefore, we construct the ground, the first excited, and

the second excited CMESs using the Eq. 3 and Eq. 9. Since we are focusing on the zero-

temperature limit, we numerically obtain the second-order derivatives around the minima

of each CMES to approximate the vibrational frequencies with harmonic approximation.

We will use the exact analytic quantum results as references, and additionally we will also

compare with harmonic approximation results from the PES, which are nothing but ωe for

Morse potentials.

Figure 1 shows the ground state, first excited state, and second excited state CMESs for

ωe = 3500cm−1. In addition to the relative energy difference, we also note that their energy

minima correspond to different nuclear positions, which essentially indicates that the bond

length will grow as the system is excited. Furthermore, these energy curves do not differ by

a universal shift any more and thus will give different vibrational frequencies.

Figure 1: PES and ground and excited state CMESs for a 1D Morse potential. The param-
eters of the Morse potential are χe = 0.023, xe = 1.0Å, and ωe = 3500cm−1

Figure 2 shows the CMES results for estimating 0 → 1, 1 → 2, and 2 → 3 transition

frequencies. For the 0 → 1 fundamental frequencies (panel a), CMES harmonic approxima-

tion results excellently agree with the quantum reference results, with a percentage error of

about 1%, whereas using the PES, the error is about 5%. These results are consistent with
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results from the previous paper by two of us, where we found CMES-MD can significantly

outperform conventional MD in predicting fundamental frequencies. For 1 → 2 transitions

(panel b), the excited state CMES gives lower vibrational frequencies than those obtained

from the ground state CMES. This trend is in great agreement with the quantum reference

results, where 1 → 2 energy gap is smaller than the 0 → 1 energy gap due to anharmonicity.

The percentage error is about 2% and slightly larger than that for the 0 → 1 fundamen-

tal transition. In contrast, the harmonic approximation based on the PES gives the same

vibrational frequencies as the fundamental transitions and deviate more severely from the

quantum reference. The story for 2 → 3 transitions (panel c) is highly similar: although

the harmonic approximation based on CMES gives an larger percentage error (around 5%)

than in the 0 → 1 and 1 → 2 cases, it captures the decreasing trend of the energy gap and

significantly outperforms the harmonic approximation results based on the original PES.

To further investigate the performance of our method in more general bond stretch cases,

we next choose the Morse potential parameters sets for the diatomic F-F, O=O and N≡N

molecules. These three diatomic molecules can be good representatives of bond stretches for

single bond, double bond, and triple bond respectively. The parameters used are taken from

reference and are listed in Table S1 of the Supporting Information. The results for these

systems are shown in Figure 3. We again see that our CMES-based method significantly

outperforms the conventional PES-based method and for all 0 → 1, 1 → 2, and 2 → 3

transitions.

Double-well and quartic potential

Next we apply our method to the more challenging double-well and quartic potential systems,

which both share the potential form of V (x) = ax2+bx4. The parameter b is always positive.

When a is negative, the potential corresponds to a double-well potential; when a is zero,

there is no second order term and the potential is quartic; and when a is positive, it is

a symmetric single well potential with anharmonicity coming from the quartic bx4 term.
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Figure 2: Transition frequencies from harmonic approximation using CMES (colored solid
line) and PES (grey solid line) for (a) the fundamental frequencies (the 0 → 1 transition);
(b) the 1 → 2 transition; and (c) the 2 → 3 transition. The red dashed lines are the
exact quantum references. Based on the harmonic approximation, our CMES-based method
greatly outperforms the conventional PES-based method.
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Figure 3: Relative percentage error between the calculated transition frequencies and the
quantum references of F–F, O––O, N–––N bonds for (a) the fundamental frequencies (the
0 → 1 transition); (b) the 1 → 2 transition; and (c) the 2 → 3 transition. Results using
CMESs are colored and results using PES are in grey. Our CMES-based method greatly
outperforms the conventional method with much smaller percentage error.
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Figure 4 shows the ground and the first excited state CMESs for these three scenarios.

For quantitative testing, we fix the value of b to be 32eV/Å4 and vary a from −8eV/Å2 to

12eV/Å2. The results for 0 → 1 and 1 → 2 transitions are shown in Figure 5, panel (a) and

(b), respectively.

Figure 4: PES, ground state CMES, and first excited state CMES for model potential
V (x) = ax2 + bx4. The parameter a varies with (a) a = −4eV/Å2; (b) a = 0eV/Å2; and (c)
a = 4eV/Å2. The parameter b are all set to be 32eV/Å4.

In the double well region where a is negative, the barrier decreases as a becomes less

negative, making the 0 → 1 tunnelling splitting increase as seen in the quantum reference.

This trend can be accurately captured by the harmonic results based on the ground state

CMES. In contrast, conventional classical treatment based on PES cannot describe tunneling,

and at the zero-temperature limit, the particle always get trapped in either side of the well,

leading to generally overestimated frequencies. Additionally, because of the wrong physical

picture, the increasing trend is completely missed. For the 1 → 2 transition, the energy gap

generally decreases as a becomes less negative but turns flat and starts to increase when it is

about −4eV/Å4. This qualitative picture can be captured by our method based on the first

excited state CMES, although we note that the quantitative agreement is not completely

satisfactory, especially when a is a very negative number, CMES-MD could overestimate the

gap by 100%. For the conventional classical treatment, although quantitatively it seems that
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it can slightly outperform CMES-MD in most of the double-well excited state region with the

grey curve being closer to the red curve than the green curve, we note that it does not mean

that conventional MD is better since its underlying trapped-particle picture is completely

unphysical.

For quartic potential with a being zero, CMES results still have an excellent agreement

with the quantum reference for the 0 → 1 transition. For the 1 → 2 transition, its quanti-

tative error is significantly reduced compared to that in the double-well case. In contrast,

since there is no harmonic term, the classical treatment with harmonic approximation gives

a zero frequency result, which is unphysical.

For cases with a greater than zero, the potential is an anharmonic single well potential. In

this case, both the 0 → 1 and 1 → 2 energy gaps increase as a increases. This relatively easy

trend can be captured by both our CMESs-based method and the conventional PES-based

method. However, our method outperforms the conventional method with a significantly

better agreement with the quantum references. In the large a limit, the quartic terms can

be ignored and the potential essentially becomes an harmonic oscillator. According to the

discussions on harmonic oscillator, both 0 → 1 and 1 → 2 gaps converge to the same value

and all methods give the same and correct asymptotic result.

Conclusion

In summary, we developed a procedure to calculate excited state CMESs and used them to

obtain approximate vibrational excited state absorption frequencies. In the harmonic oscil-

lator model, we showed that our CMES results are exact via analytical derivations. In the

Morse potential model, our CMES-based method is highly accurate and significantly out-

performs conventional PES-based harmonic approximation results. In the more challenging

double-well potential and quartic potential, our method gives the right physical picture and

outperforms the conventional method. These results suggest that excited state CMESs can

19



Figure 5: Transition frequencies from harmonic approximations using CMESs (colored solid
line) and PES (grey solid line) for model potential V (x) = ax2 + bx4 for (a) the 0 → 1

transition and (b) the 1 → 2 transition. The parameter b is fixed to 32eV/Å4 and a is
allowed to vary. Our CMES-based method outperforms the conventional PES-based method
with much better qualitative agreement with the quantum reference.

be used to describe vibrational excited states absorptions.

The studies in this paper are all proof-of-principle model system tests, in which we have

assumed the underlying PES is known and build ground and excited state CMES on top

of it. However, this procedure is not practical for real systems because obtaining PES is

already computational highly demanding and constructing CMES is even more challenging.

Fortunately, similar to the ground state CMES, which can be obtained from CNEO-DFT

calculations, we anticipate that excited states CMESs can be calculated with excited states

CNEO methods, for example, CNEO time-dependent density functional theory (CNEO-

TDDFT). The related method development on CNEO-TDDFT for real molecules is ongoing

in our group, and this current paper on model systems serves as the theoretical motivation

for its development. All these developments will make CNEO method promising approaches

for modeling and interpreting vibrational spectra for a variety of vibrational spectroscopy.
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