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Abstract 

Covalent drug design is an important component in drug discovery. Traditional drugs interact with their 

target in a reversible equilibrium while irreversible covalent drugs increase the drug-target interaction 

duration by forming a covalent bond with targeted residues, and thus may offer a more effective 

therapeutic approach. To facilitate the design of this class of ligands, computational methods can be used 

to help identify reactive nucleophilic residues, frequently cysteines, on a target protein for covalent 

binding, to test various warhead groups for their potential reactivity, and to predict non-covalent 

contributions to binding that can facilitate drug-target interactions that are important for binding 

specificity. To further aid covalent drug design, we extended a functional group mapping approach based 

on explicit solvent all-atom molecular simulations (SILCS: Site Identification by Ligand Competitive 

Saturation) that intrinsically considers protein flexibility, functional group and protein desolvation along 

with functional group-protein interactions. Through docking of a library of representative warhead 
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fragments using SILCS-Monte Carlo (SILCS-MC), reactive cysteines can be correctly identified for 

proteins being tested. Furthermore, a machine learning model was trained to quantify the effectiveness of 

various warhead groups for proteins using metrics from SILCS-MC as well as experimental model 

compound warhead reactivity data. The ability to rank covalent molecular binders with similar warheads 

using SILCS ligand grid free energy (LGFE) ranking was also tested for several proteins. Based on these 

tools, an integrated SILCS based workflow was developed, named SILCS-Covalent, that can both 

qualitatively and quantitatively inform covalent drug discovery.  

1. Introduction 

Traditionally, drug molecules are designed to bind a specific biological target in equilibrium through 

noncovalent interactions such as hydrogen bonding, ionic bonding and hydrophobic interactions (1, 2). 

Covalent drugs take the drug-target interaction to another level by introducing chemical reactivity that 

enables covalent bond formation between drug and target (3, 4). Covalent drugs have been on the market 

since the late 19th century when the anti-inflammatory agent Aspirin was developed by Bayer, even though 

the covalent binding mechanism remained unrevealed at that time (5). Given the success and widespread 

use of aspirin, as well as more recent successes presented below, covalent drug design is now a widely 

used strategy in the development of new therapeutic agents. 

By significantly shifting the binding equilibrium toward the inhibitor-protein complex product, 

covalent bond formation can help to improve drug effectiveness (3, 4). However, this approach was 

discouraged historically due to safety concerns related to potential off-target reactivities (6). The 

resurgence of covalent drugs after entering the 21th century was mainly accelerated by the concept of 

‘targeted covalent inhibitors’ (TCIs) that combine both covalent and noncovalent components (6, 7). 

Instead of directly searching for molecules based on binding affinity alone, the design of TCIs involves 

multiple steps composed of identification of reactive residues on the target, selection of electrophilic 

functional groups or so-called warheads, as well as optimization of the non-reactive scaffold for binding 

site affinity and specificity (8). Such a finely tuned combination of a weakly electrophilic warhead with 
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site specific noncovalent interactions can yield drugs that have enhanced duration of action and potency 

as well as increased selectivity over noncovalent drugs (6-8). Successful examples include the Bruton's 

tyrosine kinase (BTK) inhibitor Ibrutinib targeting B-cell cancers (9) as well as the recently approved 

Nirmatrelvir targeting SARS-Cov-2 main protease, which is contributing to therapeutically expedite the 

ending of Covid-19 pandemic (10).   

Like noncovalent drug design, computer-aided drug design (CADD) approaches (11) have become an 

indispensable component of covalent drug design. Covalent ligand design methods can predict the binding 

mode and affinity of covalent ligands mostly by integrating conventional noncovalent docking and scoring 

schemes with additional sampling and scoring treatment in order to model the newly formed covalent 

bond at the reaction site (12). Unlike noncovalent docking where the binding site is usually treated as 

rigid or with limited flexibility, covalent docking needs to handle local conformational changes of the 

target protein caused by covalent bond formation introducing additional computational cost compared to 

conventional docking. And most covalent docking schemes rely on conventional docking scores that are 

usually trained against noncovalent binding data where covalent bond formation is ignored. Examples 

include CovDock from Schrodinger (13) and DOCKovalent developed by London and colleagues, (14) 

among others (12). The apparent binding score used by CovDock combines conventional Glide scores 

(15) for the binding poses sampled before and after covalent bond formation (13), while DOCKovalent 

(14) depends on the conventional DOCK3.6 scoring function (16). In order to account for covalent bond, 

quantum mechanical (QM) calculations may be applied; one recent example is COV_DOX (17) that was 

shown to outperform all tested molecular mechanics (MM) based covalent docking methods. However, 

the method comes with the price of reduced computational efficiency, which limits its routine use. An 

alternative is direct noncovalent docking methods (12) and a recent comparative evaluation study showed 

such methods to have performance similar to covalent docking methods but with a significantly lower 

computing expense (18). 

Beyond ligand design, an important aspect of covalent drug design is to predict reactive nucleophilic 

residues that can accommodate covalent binders. This is usually done by predicting residue pKa as it 
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correlates with nucleophilicity, where a downshift in the pKa in the protein environment compared to its 

free state value generally implies a higher reactivity (19). Multiple tools for pKa prediction are in existence 

such as PROPKA, (20) among others. However, these methods typically employ implicit solvent models 

contributing to large inaccuracies (21). Constant pH molecular dynamics (MD) simulation methods using 

explicit solvent can predict pKa to a higher level of accuracy but with a high computational cost (21, 22).  

The site identification by ligand competitive saturation (SILCS) method (23) is a functional group 

mapping approach using explicit solvent all-atom oscillating excess chemical potential, µex, Grand 

Canonical Monte Carlo (GCMC)/MD simulations (24) to model the interactions of selected probe solute 

molecules as well as water with a target protein. Probability distributions of the solute functional groups 

from SILCS simulations are normalized and Boltzmann weighted yielding a 3D free energy affinity 

pattern, termed grid free energy (GFE) FragMaps (25, 26). Such GFE FragMaps include contributions 

from protein-functional group interactions, protein flexibility, and desolvation of both the functional 

groups and the protein and have been used in various CADD applications (27-33). SILCS was shown to 

have better performance in terms of pharmacophore based virtual screening than other empirical docking 

methods (27, 28) and in the context of binding affinity predictions, it was verified to yield comparable 

outcomes with computationally expensive free energy perturbation (FEP) methods (32, 33). 

In this work, we extend the SILCS method in the context of covalent drug design. The pre-computed 

SILCS GFE FragMaps hold the promise of addressing both accuracy and efficiency. Using the 

information content in the FragMaps and probability distributions of the sulfur atoms in cysteine residues 

along with the implementation of a machine learning (ML) model, we address i) the identification of 

reactive cysteine residues, ii) the selection of warheads targeting those residues, and iii) optimization of 

the non-covalent portion of the ligands to improve affinity. The study involves analysis of results on a 

training set of proteins for initial model development followed by validation on selected proteins for which 

experimental data is available. From these efforts, an integrated computational workflow for covalent 

drug design targeting cysteine residues is presented, termed SILCS-Covalent.  
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2. Methods 

Cysteine, serine, threonine, tyrosine and lysine are all nucleophilic amino acid residues in a protein that 

can be pursued for covalent binding purposes. Due to the high nucleophilic property of thiolate and its 

noncatalytic role in many proteins, cysteine (Cys) is the most targeted amino acid in covalent drug 

development and most Food and Drug Administration (FDA) approved covalent drugs target Cys. Thus, 

the present study focuses on Cys related covalent drug design. Instead of explicitly considering bond 

formation and the product state, the developed noncovalent docking protocol involves Monte Carlo 

sampling in the fields of the SILCS GFE FragMaps, termed (SILCS-MC) (25, 26), is used to predict and 

optimize the affinity and specificity of irreversible inhibitors as well as to identify targetable Cys residues. 

In addition, the physics based SILCS method is supplemented with ML models for determination of 

optimal warhead functional groups targeting tractable residues. 

2.1 Protein systems for test and structure preparation 

   Initially, six kinase protein systems from various branches of the kinase phylogenetic tree (34) were 

selected to explore the ability of SILCS for targetable Cys residue identification. A previous experimental 

work conducted a large-scale electrophilic warhead screen against all six proteins (34), which can serve 

as a useful benchmark to test the ability of SILCS for the determination of optimal warhead groups. The 

proteins include BTK, extracellular signal-regulated kinase 2 (ERK2), p90 ribosomal S6 kinase 2 (RSK2), 

mitogen-activated protein kinase kinase 6 (MAP2K6), Janus kinase 3 (JAK3) and Maternal embryonic 

leucine zipper kinase (MELK). After the initial test, we selected three non-kinase proteins for validation 

of the method against alternate protein classes, as indexed in the CovPDB database (35). They include 

cathepsin K (CATK), a hydrolase protein, interleukin-2 (IL-2), a signaling protein, and glutathione S-

transferase omega-1 (GSTO1-1), a transferases protein. 

  The initial crystal structures were taken from the Protein Data Bank (PDB) (36) as follows: BTK (5p9j), 

ERK2 (4zzm), RSK2 (4d9u), MAP2K6 (3vn9), JAK3 (5lwm), MELK (5ih9), CATK (7nxm), IL-2 (1m4b) 

and GSTO1-1 (5yvo). For holo structures, the ligands were removed. Except for missing regions in the 

N- and C-termini, missing residues in short loops in the crystal structures were modeled using SWISS-
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MODEL (37). This includes residues 553 to 555 for BTK and residues 74 to 82 and 99 to 102 for IL-2. 

All processed protein structures were submitted to the CHARMM-GUI (38) to generate coordinates for 

missing atoms based on internal coordinates. For example, coordinates of atoms CG, CD, CE and NZ in 

both residues K147 and K191 for CATK were missing in the crystal structure.  

  For the MAP2K6 crystal structure, since the missing N-terminus contains a Cys residue at the 38 

position, the AlphaFold protein structure database (39) was utilized to generate a structure for the missing 

N-terminus residues 33 to 43. MAP2K6 structure (UniProt entry P52564) predicted by AlphaFold (40) 

was downloaded from the AlphaFold protein structure database hosted by the European Bioinformatics 

Institute at the European Molecular Biology Laboratory (EMBL-EBI) (39). The AlphaFold pLDDT score 

(40) for residues 33 to 43 ranges from ~ 53 to ~71, which implies a low model confidence, thus extra MD 

simulations were conducted for MAP2K6 to equilibrate the structure. MAP2K6 protein was solvated in a 

water box, the size of which was determined to have the protein extrema separated from the box edge by 

a minimum of 10 Å on all sides and ions were added to neutralize the full system. CHARMM36m protein 

force field (41, 42) and CHARMM modified TIP3P water model (43) were used to describe protein and 

water during the simulations, respectively. MD was conducted using the GROMACS program (44). The 

system was first minimized for 50,000 minimization steps with the steepest descent (SD) algorithm (45) 

in the presence of periodic boundary conditions (PBC) and harmonic restrains on protein backbone Cα 

carbon atoms with a force constant (k in 1/2 kδx2) of 0.12 kcal/mol/Å to mainly relax the solvent. The 

second minimization was conducted with the same setup but with removal of restraints on protein residues 

33 to 43 to relax the AlphaFold structure and then followed by a third minimization with the same setup 

but with removal of restraints on all protein residues to further relax both the solute and solvent. The 

minimized system was then subject to a MD equilibration under isochoric-isothermal (NVT) canonical 

ensemble for 500 ps with harmonic restrains on protein Cα atoms and followed by isothermal-isobaric 

(NPT) ensemble MD for another 500 ps to adjust the PBC box size at 300K and 1atm. Another 500ps 

NPT MD simulation was conducted without any restrains to further equilibrate the whole system. The 
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final production MD run was conducted for 20 ns for further equilibration and the structure from the last 

frame of the trajectory was extracted for the SILCS simulation.  

2.2 SILCS simulations and map generation 

   SILCS simulations were conducted using the previously described protocol (32) for the 9 proteins. The 

simulation systems involved protein, water and eight solute molecules including benzene, propane, 

methanol, formamide, dimethylether, imidazole, methylammonium, and acetate. Ten individual 

simulation systems for each protein with explicit water and randomly positioned solutes at approximately 

0.25 M each were generated and simulated independently for better convergence. Initial equilibration of 

each SILCS system involved 5,000 steps of energy minimization using the SD method (45) followed by 

100 ps MD equilibration at 300 K using the velocity rescaling thermostat with randomized initial 

velocities and the Berendsen barostat (46) to allow for system volume relaxation. The equilibrated systems 

were then subjected to 25 cycles of GCMC comprising 200,000 MC steps to redistribute water and solute 

molecules. The GCMC simulations are based on a previously described protocol where an oscillating 

excess chemical potential, µex, is applied to increase the insertion acceptance efficiency (24). The final 

coordinates from this procedure were fed to the production run of 100 cycles of iterative GCMC/MD 

protocol where GCMC drives the sampling of the solutes and water with all solutes, water and protein 

atoms subsequently propagated in the MD simulations. Each GCMC/MD cycle consists of 200,000 

GCMC steps, followed by 1 ns of production MD run which yield a cumulative 200 million steps of 

GCMC and 1,000 ns MD production time over all ten systems. Weak harmonic restraints with a force 

constant (k in 1/2 kδx2) of 0.12 kcal/mol/Å were applied to all protein Cα atoms during MD simulations. 

A time step of 2 fs was used, and the protein conformations and distributions of water and solutes were 

saved every 10 ps for analysis. Temperature and pressure were maintained using the Nosé–Hoover 

thermostat (47, 48) and the Parrinello–Rahman barostat (49), respectively. The GCMC simulations were 

conducted using in-house developed code in the SILCS software suite, version 2022.1 (SilcsBio LLC) 

and MD simulations were performed using GROMACS, with the protein, solutes and water being 

described using the CHARMM36m protein force field (41, 42), the CHARMM General force field 
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(CGenFF) (50, 51) and the TIP3P water model modified for the CHARMM force field (43), respectively.  

  FragMaps were generated by binning selected solute atoms into voxels on a 1 Å spaced grid spanning 

the simulation system and were combined to obtain both specific and generic FragMap types as previously 

described (32). 3D normalized probability distributions were obtained by normalizing the voxel 

occupancies computed in the presence of the protein by the respective values of the solutes alone in 

aqueous solution based on their average number relative to that of water, which was assumed to have a 

55 M concentration. The normalized distributions were Boltzmann transformed to free energies for each 

functional group type to yield GFE FragMaps. Four generic FragMaps were generated including 

APOLAR (benzene and propane carbons), generic heterocycle carbon GEHC (imidazole carbons), 

HBDON (formamide and imidazole donor nitrogen) and HBACC (formamide and dimethylether oxygens 

and imidazole acceptor nitrogen) maps. In addition, four specific FragMaps were used including positive 

MAMN (methylammonium nitrogen) maps, negative ACEC (acetate carboxylate carbon) maps, alcohol 

MEOO (methanol oxygen) maps, and FORC (formamide carbon) maps. Alcohol maps are used as these 

functional groups can act as both hydrogen bond donors and acceptors complicating their inclusion in the 

generic HBDON or HBACC maps. And GEHC and FORC carbon maps are used explicitly as such 

carbons that are adjacent to polar atoms have different physiochemical properties than apolar carbons. 

Exclusion maps that represent the solute/water forbidden region during SILCS simulation were also 

generated. In addition to SILCS FragMaps, probability maps for Cys thiol sulfur atoms (ProbS) were 

generated on the same 1 Å3 grid to account for the flexibility of Cys residues during the MD simulations. 

Thiol sulfur atom occupancy values were normalized by the total number of MD frames yielding a 0 to 1 

scale probability value for each Cys residue, and the sum of probability values for all voxels is equal to 

the number of Cys residues in the target protein. 

2.3 SILCS-MC for covalent ligand reaction-competent stage docking 

  SILCS-MC sampling under exhaustive mode was used to dock 1) an electrophilic warhead library for 

development of an optimal warhead selection approach or 2) known covalent ligands for binding affinity 



 9 

prediction. The docking is guided by intramolecular energies and the ligand grid free energy (LGFE) 

score. To calculate the LGFE, a GFE score is assigned to each classified atom in a molecule based on an 

atom classification scheme (ACS) with the summation of the GFE scores over all the classified atoms 

yielding the LGFE. The generic ACS as described previously (32) was used for the current study. The six 

SILCS-MC simulations were initialized from molecule conformations randomized in six spheres centered 

at six positions located 3.5 Å from the Cys sulfur atom in the six directions along the three axes (±X, ±Y 

and ±Z) as shown in Figure 1. A simulation radius of 6 Å was adopted for the warhead library considering 

their relatively small sizes while a 10 Å radius was used for the covalent ligands. For warhead library 

docking, the SILCS-MC simulations were conducted for all Cys residues in a protein while only 

designated Cys residue were targeted for the covalent ligands. Docking used the exhaustive mode where 

each molecule was subjected to an initial intramolecular energy minimization for 10,000 steps using the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (52) with a gradient tolerance of 3×10-8 kcal/mol/Å 

based on the intramolecular energy defined by the CGenFF energy function that includes a 4r dielectric 

constant for the electrostatic term. The minimized molecular structure was sampled through 10,000 steps 

of MC in the field of the GFE FragMaps with molecular translations, molecular rotations, and dihedral 

rotations sampled within a range of 0-1Å, 0-180°, and 0-180°, respectively. This was followed by 

simulated annealing (SA) from 300 to 0 K over 40,000 MC steps, where the molecule is allowed to sample 

within a range of 0-0.2 Å, 0-9°, and 0-9° for molecular translations, molecular rotations, and dihedral 

rotations, respectively. To assure the convergence of the MC sampling, six independent simulations were 

run for each molecule of up to 250 cycles where, after 50 cycles the sampling could exit based on a 

convergence criterion of 0.2 kcal/mol difference among the top three most favorable LGFE scores. Note 

that the standard SILCS-MC approach typically uses a value of 0.5 kcal/mol (32).  
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Figure 1. Illustration of SILCS-MC sampling around a Cys residue. The initial molecule configuration is 

randomized over six directions along the three axes near the Cys thiol sulfur atom (ball and stick 

representation for Cys sidechain and cartoon representation for target protein). The Cys thiol sulfur 

probability map is shown as a yellow mesh. An example is shown for a starting configuration of a warhead 

probe molecule for SILCS-MC generated in the -Y direction.  

2.4 Metrics from SILCS-MC 

   Multiple SILCS metrics for model development were calculated. LGFEEq is defined as the most 

favorable LGFE from SILCS-MC which represents the binding affinity associated with reversible 

equilibrium step. The more favorable the binding is during the first step, the longer the residency time 

thereby facilitating subsequent reorientation and covalent-bond formation. The contact probability, 

ProbCys is defined as the overlap of a molecule’s warhead reactive atom in a given SILCS-MC docking 

pose with the sulfur atom of the target Cys residue. ProbCys values are only considered for ligand 

orientations with favorable interactions with the surrounding protein residues as determined by LGFE < 

0. This quantifies the potential for a molecule to reorient itself for the reaction considering both geometric 

(close contacts between electrophilic and nucleophilic groups) and energetic (the molecule can interact 
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favorably with the protein) criteria. ProbCys is evaluated for all unique ligand orientations from a SILCS-

MC run using the Cys sulfur probability map as defined in equation 1 and illustrated in Figure 2. 

𝑃𝑟𝑜𝑏!"# = & 𝑃𝑟𝑜𝑏$

%&	()*+,)-	*,)./%0,
)/12	%#	(%/+%3	-!"#$%%

1&	)	!"#	$	4*15)5%6%/"	017,6	

!"#	$	4*15)5%6%/"	017,6#

		,		{𝑖𝑓	𝐿𝐺𝐹𝐸 < 0}											(1) 

Where, for each Cys sulfur probability voxel with a finite value, its distance to the warhead group reactive 

atom (the atom going to be covalently bonded to the Cys sulfur) in a docking pose with favorable LGFE 

is measured. If that distance is less or equal than a user defined cutoff value, dcutoff, that voxel is recorded. 

Summation is performed over all the recorded probability voxels to get a contact probability for each 

docking pose. A ProbCys value of 1 for a docked pose means all non-zero Cys sulfur probability voxels are 

within the user defined cutoff distance to the warhead group reactive atom in the docking pose. The 

variable dcutoff is used to define the maximum distance at which an electrophilic atom to the Cys sulfur 

will have the potential to react. A previous QM/MM study showed that the distance between a thiolate 

sulfur and Cb in methyl vinyl ketone for the complex transition state is centered around 2.5 Å (53). 

However, since the Cys sulfur probability map, which represents a diffuse distribution instead of a fixed 

coordinate, is being used to define the reactive distance, a tight dcutoff of 2.0 Å is adopted here. We also 

tested values from 2.0 to 3.0 Å with a step size of 0.2 Å, with the results being insensitive to the distance 

used. LGFERx, the LGFE value associated with ligand orientations with reactive warhead atom to Cys 

sulfur probability distribution < dcutoff, describes how favorably the ligand in reaction-competent 

orientation is interacting with the protein. For example, if a molecule samples conformations with both a 

high ProbCys and a favorable LGFERx, then it has a high potential for covalent bond formation.   
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Figure 2. Calculation of the ProbCys metric. For a ligand docking pose (licorice representation), the 

distances between the ligand reactive atom (the atom that will form the covalent bond with Cys as shown 

by a purple sphere representation) and Cys sulfur probability map grid (show as yellow mesh) are 

measured. Grid points within dcutoff of the reactive atom will be counted toward the final ProbCys value as 

shown by arrows with green mark. Grid points beyond dcutoff will be discarded as illustrated by a red cross. 

Ball-and-stick representation is used for Cys sidechain and cartoon representation for target protein. 

2.5 Warhead library and ligand data sets 

  To identify optimal warhead functional groups, a warhead library of a collection of electrophilic 

chemical groups is required. In the current work, the warhead library curated by Petri et. al. (34) that has 

24 covalent probe molecules based on a noncovalent 3,5-bis(trifluoromethyl)phenyl scaffold, was adopted. 

This library covers a variety of representative electrophiles including acryl, nitrile, isothiocyanate, 

maleimide, halo-acetamide, thiol, and acetylene, among others. In addition, the library includes activity 

data against six kinases, that will be used for method development. Initial structures of the 24 probe 

molecules were generated using the Molecular Operating Environment (MOE) software (54) and 

minimized. For probe molecules 18, 19 and 21 which all have one chiral center, both isomers for each 

molecule were generated. During model development, metrics for both isomers were evaluated and the 

most favorable value was recorded to represent that molecule. Atom ID number of the reactive atom in 

each covalent warhead probe was also marked for evaluation of ProbCys. It should be noted that while 
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Petri’s library (34) was used in the current proof-of-concept work, different libraries, for example, the 

Guo et al curated library of 113 warheads (55) could be used following the same protocol. 

  To validate the ability of SILCS-MC metrics to guide the optimization of the noncovalent scaffold 

portion of covalent ligands, covalent inhibitors which share the same or similar warhead group targeting 

a specific protein with experimental activity data available were used. Three such sets were selected from 

experimental studies targeting the BTK (56), RSK2 (14) and CATK (57) proteins. The number of ligands 

in the set ranges from 9 to 17. Initial structures of all covalent ligands were created with protonation states 

corresponding to pH 7.0 and minimized using MOE (54). Details about the test sets can be found in Table 

S1 in the supporting information.   

2.6 Machine learning for classification of warhead functionalities 

  For ML model development, the warhead library includes experimental activity data for 24 warhead 

probes targeting 6 kinases, yielding 144 data points (34). As the experimental activity data is in the form 

of inhibition percentages that have high noise including, for example, negative values and activities of 

over 100%, pursing a regression model which tries to quantitatively reproduce the data was deemed to be 

inappropriate. Instead, a classification ML model was developed as it would be able to identify potential 

warhead groups for subsequent experimental testing. Accordingly, labels of high (H) and low (L) were 

assigned to all 144 data points (Table S3 in Ref (34)) using an inhibition percentage cutoff of 50%, which 

turns the ML problem into a binary classification task. ML library Scikit-Learn for Python (58) was used 

for ML modeling. Six mainstream classification ML models were tested involving logistic regression 

(LR), support vector machine (SVM), K-nearest neighbors (KNN), decision tree (DT), random forest (RF) 

and naive Bayes (NB) using Scikit-Learn default hyperparameters. Four input features were used 

including the three SILCS-MC metrics LGFEEq, LGFERx, and ProbCys as well as the experimental metric 

kGSH, the GSH reactivity rate constant. The reported kGSH values (34) were converted into ranking numbers 

to facilitate the ML training. This was due to the kGSH values covering a wide range (0.001~>13.863 1/h) 

and including ambiguous values that were beyond the assay resolution. The assay minimal running time 
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window was 3 minutes, and some reaction rates were reported as being faster than 3 minutes. Ranking 

numbers were assigned to the following ranges as: 5 for >10 1/h rate, 4 for 1~10 1/h, 3 for 0.1~1 1/h, 2 

for 0.01~0.1 1/h, and 1 for 0.001~0.01 1/h, such that higher ranking number indicates a faster reaction 

rate associated with higher intrinsic thiol reactivity. All input features were standardized in order to bring 

down all features to a common scale for efficient ML training. Outputs from the ML model will be 1 (for 

activity label “H”) and 0 (for activity label “L”). The performance of all ML prediction models was 

evaluated using 5-fold cross validation. The training dataset was randomly divided into 5 subsets, wherein 

4 subsets were used to train the model, and one remaining subset was used to validate the model. This 

process was repeated 5 times so that each fold is used once as the validation set and the average 

performance was reported as the performance of the model. Five performance metrics including accuracy, 

precision, recall, area-under-the-curve (AUC) and F1 score as described in the supporting information 

were reported to compare the different ML models. The final ML model was trained using all data points 

for future application purposes. 

  To further test the developed ML model, the protein glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was studied. The GAPDH crystal structure from PDB entry 1u8f with removal of nicotinamide-

adenine-dinucleotide (NAD) was processed and used to initialize SILCS simulations. SILCS FragMaps 

and Cys sulfur probability maps were generated, and SILCS-MC simulations were performed for the 24 

warhead fragments from the Petri’s library targeting the catalytic Cys residue C152 in GAPDH. SILCS-

MC metrics were then extracted from SILCS-MC simulations for all 24 warhead fragments and served as 

inputs for the ML model to predict warhead activity classes.    

3. Results and Discussion 

  Multiple metrics extracted from SILCS-MC were tested for their potential to predict covalent ligand 

binding profiles. The steps involved in the covalent binding process are illustrated in Figure 3. During the 

binding process (3, 4), a ligand will first noncovalently interact with the protein in an equilibrium, Keq = 

kon/koff, which in the context of binding free energies is modeled as LGFEEq. Subsequently, covalent bond 
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formation may occur, indicated by kinact, which may be modeled as two consecutive processes. First the 

ligand can adjust its orientation within the binding site to allow its electrophilic warhead group to locate 

adjacent to the nucleophilic protein residue in a reactive mode, allowing for covalent bond formation to 

occur. These orientations, referred to as reaction-competent binding conformations, are identified based 

on the overlap of the warhead reactive functional group with the Cys S probability distribution. Ligand-

protein affinities in these orientations are quantified through LGFERx. Final formation of the covalent bond 

then occurs based on the intrinsic reactivity of the different warheads determined experimentally, kGSH. 

The kGSH values have been measured experimentally through a glutathione (GSH) assay for the warheads 

included in the present study (34). 

 

 

Figure 3. Illustration of the binding process for covalent ligands and relationship with SILCS-MC derived 

metrics. Target protein is shown in blue with Cys thiol group shown explicitly. Warhead in the covalent 

ligand is shown as a red triangle and noncovalent scaffold is shown as a green square. Covalent bonds 

between groups are shown as blue sticks. A covalent ligand will first bind with the target protein 

noncovalently which can be defined by kon and koff from which a reversible equilibrium constant and free 

energy of binding may be obtained. The LGFEEq from SILCS-MC is relevant to this binding event. The 

second step towards covalent bond formation may be defined by the overall rate constant, kinact. For 

reaction to occur, the ligand needs to adjust its orientation to position the warhead near the nucleophilic 

residue which can be described by the ProbCys and LGFERx metrics from SILCS-MC. LGFERx indicates 

the binding free energy of the ligand in the potentially reactive orientation, which may be compared to 

LGFEEq in the initial binding event and ProbCys is related to the overlap of the warhead with the 
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nucleophilic Cys sulfur as required for covalent bond formation, which is represented by an experimental 

intrinsic reactivity metric kGSH.  

 

  SILCS-MC was used to sample ligand binding poses around nucleophilic residues in a target protein 

yielding the equilibrium (reversible) and reaction-competent associated ligand binding affinities, LGFEEq 

and LGFERx, respectively. Variation of these and of the ProbCys metric extracted from SILCS were tested 

for their relevance in guiding the covalent drug design. Exhaustive tests as described in the Supporting 

Information yielded optimal descriptors for covalent drug design model development. The variations of 

tested descriptors include the most favorable and mean values of the three SILCS-MC metrics described 

in section 2.4. Mean values over all docking poses under certain criterion or over the top 5 and 10 docking 

poses ranked by LGFE or ProbCys metrics were tested. In addition, we tested a consensuses metric defined 

as LGFERx´ProbCys that combines the two reaction-competent metrics. The final model uses the most 

favorable value for LGFEEq and ProbCys over all docking poses. This observation is consistent with the 

nature of covalent binding as the best LGFEEq models how well a ligand can reside in the binding pocket 

during the initial noncovalent binding step, while the best ProbCys and associated LGFERx indicates how 

close the warhead group in the ligand can approach he nucleophilic residue in an energetically favorable 

way, such that the ligand can assume a reaction-competent orientation to facilitate the reaction in the final 

covalent reaction step.  

 

3.1 SILCS-Covalent can identify reactive Cys residues 

  Using Petri’s library, 24 warhead probe molecules were docked by SILCS-MC targeting all Cys 

residues in the 6 target kinase proteins. The averaged ProbCys value (<ProbCys>) over all tested warheads 

is used for identification of tractable Cys residues since a larger <ProbCys> value for a Cys residue indicates 

that the residue samples conformations accessible to a broad range of warhead types, thereby potentially 

serving as a reliable nucleophilic target residue. From SILCS-MC, the best ProbCys per warhead probe was 
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selected and the average value over all warhead probes, <ProbCys>, was evaluated for each Cys residue. 

First two rows in figure 4 show the calculated <ProbCys> for all Cys residues in the 6 tested kinases.  

  For BTK, only C481 has a substantial <ProbCys> value, consistent with this Cys being the front pocket 

N-terminal cap (FP Ncap) reactive Cys that FDA approved BTK drugs are targeting (9). The best two Cys 

residues with decent <ProbCys> for ERK2 are C161 and C166. Both residues have been previously 

confirmed to serve as covalent binder targets (59-62). Dalby et. al. previously found that a JNK inhibitor 

BI-78D3 binds to the D-recruitment site (DRS) of ERK and forms a covalent adduct with a conserved 

Cys residue, C159 in Rattus norvegicus ERK2, which correspond to C161 in Homo sapien ERK2 (59, 

60). In another study, Gray et. al. used the multi-targeting ligand SM1-71 to scan the proteome for 

covalently modified kinases and found SM1-71 can covalently modify the DFG-1 C166 in ERK2 (61). In 

a crystallization effort, Reményi et. al. designed a ERK2 mutant, ERK2_AAG, to prevent crystal packing. 

During the study, they observed that b-mercaptoethanol, which was added to avoid oxidation during 

macroseeding, can form a (2-hydroxyethyl)thiocysteine adduct with C161 (62). Both these findings 

suggest that C161 and C166 in ERK2 can be covalently targeted. 
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Figure 4. Average largest contact probabilities (<ProbCys>) over all 24 probes in the warhead library for 

each Cys residue in the tested protein systems. Cys residues that form disulfide bridge are excluded from 

all analysis. 

 

  Cys residue C436 on the regulatory C-terminal kinase domain (CTD) of RSK2 is a known targetable 

Cys with covalent inhibitors such as 1-[4-Amino-7-(3-hydroxypropyl)-5-(4-methylphenyl)-7H-

pyrrolo[2,3-d]pyrimidin-6-yl]-2-fluoroethanone (FMK) bonding to this residue (63, 64). This is consistent 

with our prediction that C436 has the largest <ProbCys> value. In addition to C436, finite <ProbCys> values 

are also seen for C579, C599 and C560. A recent study used dimethyl fumarate (DMF) to target RSK2 

CTD and revealed that all four Cys residue in RSK2 had DMF modifications using a peptide mapping 
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technique with C436 and C599 being totally modified (65). Crystallography confirmed covalent binding 

of DMF to C436 and C599. These experimental observations verify our predictions using the <ProbCys> 

metric for RSK2. 

  For MAP2K6, <ProbCys> predicts C128 followed by C38 and C196 to be accessible to warheads. To 

our knowledge, there are only few studies about covalent binding to this target and no crystal structure is 

available for a MAP2K6-covalent binder complex. However, previous cheminformatic and proteome-

wide works implicated the Gatekeeper region C128 or DFG motif adjacent C196 as more accessible or 

reactive towards small-molecule electrophiles (66). And Chan et. al. discovered that ethacrynic acid (EA) 

inhibits MAP2K6 with nonconserved C38 being the site of covalent modification as confirmed by tandem 

mass spectrometry (66). These observations confirm our predictions about MAP2K6.  

  In JAK3, the FP Ncap C909 is known to be reactive to covalent molecules (67, 68). Recently, Liu et. 

al. studied several human kinases using the constant pH MD simulations (CpHMD) and discovered that 

C1028 on the aG helix of JAK3 is also reactive along with C909 (22). Consistent with these studies, 

C1028 and C909 are ranked as the top two Cys residues using the <ProbCys> metric. A limited number of 

studies on covalent binding to MELK are available to our knowledge. A previous study suggested that 

C70 and C89 may be exploited to develop selective and potent irreversible MELK inhibitors (69). These 

two Cys residues are ranked among the top two based on their <ProbCys> values which is consistent with 

the previous discussion (69). 

  We next extended our analysis beyond human kinases to cover other protein classes, including 

hydrolase, signaling and transferases proteins. The results are shown on the bottom row of Figure 4. For 

CATK, <ProbCys> successfully identified the catalytic C25 that has been targeted by covalent inhibitors 

(57, 70). Large <ProbCys> was obtained for C32 in GSTO1-1 consistent with its nucleophilic role as 

confirmed by many covalent inhibitor studies (71-73). For the IL-2 K43C mutant, the mutated residue 

C43 was calculated to have larger <ProbCys> value than the native C125 which is consistent with the 

previous study where K43 residue was engineered to Cys residue to enable covalent binding of guanidine 
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fragments (74). Thus, <ProbCys> was able to identify reactive Cys residues in the three tested protein 

systems beyond kinases. 

 

3.2 ML model to determine optimal warhead 

  After a nucleophilic Cys residue is predicted, warhead groups with the highest potential to react with 

the residue need to be identified. To facilitate this step, metrics from SILCS-MC as well as kGSH, the GSH 

reactivity rate constant, were used as inputs to train ML models based on the activity data from Petri’s 

work for the 24 warhead fragments targeting the six kinase proteins (34). As discussed above, 

classification ML models were pursued due to the ambiguity in the inhibition percentage data.  

  For each kinase, the Cys residue which was either experimentally confirmed by crystallography or mass 

spectrometry to form a covalent bond with inhibitors or the most commonly targeted one when multiple 

Cys residues were confirmed, is assumed to bind the current set of warhead fragments. The selected Cys 

residues for model development are summarized in Table S2 in the supporting information. For MAP2K6, 

even though both C38, C128 and C196 were previously indicated to be reactive Cys residues, only C38 

was experimentally confirmed by mass spectrometry to form covalent bond with small molecules (66). 

Both C436 and C599 in RSK2 were experimentally confirmed by crystallography to form covalent bond 

with molecules (63-65); however, C436 is the most targeted Cys residue (63, 64), so it was assumed to 

be the reactive residue. For MELK, there is no crystal structure confirmed Cys residue, although according 

to the docking and NMR analysis in Petri’s work (34), C70 was suggested as the site of labeling. 

SILCS-MC docking was undertaken targeting the residues listed in Table S2. From the docking, 

LGFEEq, ProbCys and LGFERx for each warhead fragment targeting each kinase were calculated. Six typical 

classification ML algorithms, including LR, SVM, KNN, DT, RF and NB, were tried and their 

performances from 5-fold cross validation are shown in Table 2. Performances evaluated using the 

holdout method as shown by confusion matrixes can be found in Figure S1 in the supporting information. 

  As can be seen in Table 2, most classification ML algorithms performed satisfactorily on differentiating 

warhead fragments with high activities from low activity compounds. The metrics to define the 
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performance are described in the SI. Among the tested ML methods, the RF model has the overall best 

performance. Further analysis on the RF model reveals the input feature importance as shown in Figure 

5. All the three SILCS-MC metrics as well as the kGSH data have similar feature importance indicating that 

all properties associated with those metrics are important for warhead reactivity. This observation is 

expected since LGFEEq captures the binding strength of warhead fragments in the first noncovalent 

binding step, ProbCys represents the potential for close contact between the warhead and nucleophilic 

residue in the second binding step, kGSH describes the warhead intrinsic reactivity with thiol group at ideal 

condition while LGFERx complements kGSH with information about the ability of the ligand to interact with 

the local environment around the nucleophile. The final RF ML model was trained using all 144 data 

points for use as an ML tool to facilitate warhead selection, as applied below. 

  To test the utility of the final ML model, it was used to predict optimal warheads for glyceraldehyde-

3- phosphate dehydrogenase (GAPDH) (75). For most protein systems, established covalent ligands were 

usually developed focusing on one or a few warhead groups that were pioneered by a single research 

group with further efforts focusing on optimization of the noncovalent scaffold instead of profiling 

different warheads. Accordingly, such systems are insufficient to validate our ML model. However, 

GAPDH has been widely studied leading to identification of multiple endogenous metabolites and 

xenobiotics as well as exogenous covalent inhibitors that contain multiple warhead types (75) making it 

a good testing ground for the ML model. Using the SILCS-MC metrics on the 24 warhead fragments for 

GAPDH as input features for the ML model, activity classification for each warhead was predicted. and 

the results can be found in Table S3 in the supporting information. Out of this ML classification effort, 

warheads 1 (acrylamide), 2 (acrylate), 5 (maleimide), 6 (maleimide), 11 (isothiocyanate), 12 

(isothiocyanate), 20 (haloacetophenone), 21 (epoxide) and 22 (fluoride) out of the 24 warhead fragments 

were labeled to the high activity class by the ML model. Identification of warheads 1, 5, 6, 20 and 21 as 

high activity is consistent with the known GAPDH covalent warheads acrylamide (ACR), N-ethyl 

maleimide (NEM), a-halomethylcarbonyl and epoxide (75). This result is quite promising since the RF 
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ML model developed from kinase data was successful against a dehydrogenase protein implying its 

potential generic utility though additional tests on a wider range of systems are required. 

 

Table 1. Performances of the six tested classification ML models from 5-fold cross validations on the 144 

data points from the reference (34). 

Model Accuracya Precisiona Recalla AUCa F1a 

LR 0.70 (0.09) 0.69 (0.08) 0.66 (0.07) 0.74 (0.04) 0.77 (0.08) 

SVM 0.69 (0.07) 0.70 (0.06) 0.64 (0.06) 0.72 (0.08) 0.78 (0.06) 

KNN 0.69 (0.05) 0.67 (0.04) 0.66 (0.03) 0.72 (0.04) 0.75 (0.06) 

DT 0.62 (0.09) 0.60 (0.09) 0.61 (0.09) 0.61 (0.09) 0.68 (0.08) 

RF 0.73 (0.05) 0.72 (0.05) 0.70 (0.04) 0.75 (0.05) 0.78 (0.06) 

NB 0.69 (0.09) 0.69 (0.09) 0.66 (0.07) 0.74 (0.06) 0.76 (0.09) 
a Average value across the 5 runs from the cross validation with standard deviation in parenthesis. 

 

 

 

Figure 5. Input feature importance analysis for the RF ML model.  

 

3.3 SILCS-Covalent can help with optimization of noncovalent scaffold  
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  Once an optimal warhead targeting a reactive Cys residue is identified, development of the noncovalent 

scaffold that contributes to the compound specificity is required. This can be done in an iterative fashion 

through several rounds of design and evaluation combining computational and experimental methods. 

The noncovalent scaffold needs to have favorable, specific interactions with the binding pocket for the 

first binding step. For the second step, the ligands need to favorably interact with the protein in the vicinity 

of the target Cys to sample reaction-competent conformations. In the ideal scenario, the equilibrium 

binding site is the same as the reaction-competent site although in most cases the sites are not identical 

with the equilibrium site contributing to or adjacent to the reaction-competent site. In any of these 

situations, it is necessary to quantify the energetics of these ligand-protein interactions. This can be 

performed using the LGFE scores from SILCS-MC, which have been shown to quantify binding strengths 

of a wide selection of inhibitors targeting various protein systems for non-covalent inhibitors (32, 33). 

Accordingly, we explore the potential for use of LGFE scores to optimize the noncovalent scaffold in 

covalent inhibitors in the context of the same or similar warheads. This allows for the LGFE scores for 

the full ligand to be used as both equilibrium and reaction-competent binding involves the full ligand prior 

to covalent bond formation. Three covalent ligand data sets with three different warhead types targeting 

three proteins, respectively, were selected for analysis. These include 17 ligands with the acrylamide 

warheads targeting BTK, 9 ligands with a cyanoacrylamide warhead targeting RSK2 and 17 ligands with 

cyanamide warheads targeting CATK. Table S1 and Figure S2 summarize the data and structures of all 

the compounds. 

  LGFEEq and LGFERx were compared with experimental binding free energies based on the experimental 

IC50 values for the three systems. We note that since covalent binding is a multistep process including the 

formation of an irreversible bond, full interpretation of the physical meaning of the experimental IC50 

value is not possible. However, when the same or similar warhead is on all the ligands, the reaction 

chemistry may be assumed to be similar such that the overall binding differences are dominated by the 

interactions between the noncovalent scaffold and binding site residues at either the equilibrium or 

reaction-competent sites. Initial analysis involved comparing the average experimental binding free 
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energies along with the LGFEEq and LGFERx averages and the difference between those values to 

understand overall trends in these terms. Initial analysis results are shown in Table 2 for the three systems. 

For all systems, the average DGexp values are more favorable than the LGFE averages. While LGFE does 

not represent a formal free energy of binding, the values are representative of the binding affinities as 

shown in previous studies (32, 33). The DGexp values being more favorable than the LGFE scores is 

expected as the IC50 values from which they are obtained include contributions from covalent bond 

formation. Comparing LGFEEq and LGFERx shows the former to be systematically more favorable than 

the latter, consistent with full relaxation of the of the ligands yielding the LGFEEq while with LGFERx the 

binding orientation is restricted to being in close contact with the target Cys sulfur atom. However, the 

difference between the two LGFE values differ for the three systems. This is indicative of the relationship 

of the equilibrium versus reaction-competent orientations, where smaller differences would indicate less 

reorganization of the ligand-protein interactions required to assume the reaction-competent conformation 

as required for covalent bond formation. 

 

Table 2. Average experimental binding free energies, LGFEEq and LGFERx scores and their differences 

(in kcal/mol). 

System <DGexp> <LGFEEq> <LGFERx> <LGFERx>-<LGFEEq> 
BTK -11.76 -9.80 -5.89 3.91 
RSK2 -7.32 -6.32 -4.46 1.86 
CATK -9.05 -7.38 -4.12 3.26 

 

  Subsequent analysis involved the correlation between the experimental and LGFE free energies (Table 

3 and Figure S3). As Table 3 shows, moderate correlations are observed between experimental binding 

data and both energy scores from SILCS-MC. Such correlations are promising since the data sets span 

large binding affinity ranges, for example, 5 nM to 100 µM for the CATK compounds. In addition, the 

compounds are from non-congeneric series for CATK and RSK2 with varied noncovalent scaffolds 

(Figure S2). For example, molecular weight varies from 96 to 291 g/mol for the CATK compounds. 
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Moreover, we reiterate that the three test sets have different warheads thus such moderate correlations for 

all three test cases implies the potential of using SILCS-MC energy scores to guide the non-covalent 

scaffold design.  

 

Table 3. Pearson correlation coefficients (PR) for correlations between LGFEEq or LGFERx with 

experimental binding free energies before and after BML reweighting for the three test systems. 

 Original  BML 
System LGFEEq LGFERx  LGFEEq LGFERx 
BTK 0.57 0.40  0.75 0.44 
RSK2 0.46 0.69  0.76 0.71 
CATK 0.38 0.69  0.44 0.69 

 

  One notable observation is that the PR values for LGFEEq and LGFERx for the individual targets are 

different. Table S10 lists the correlations between the two SILCS-MC binding metrics showing the two 

to not be fully correlated which is consistent with the results in Table 3 and Figure S3. This is reasonable 

since they describe the two different binding events. While the datasets are small, the differences may 

offer insights into the importance of two binding events with respect to ligand design. With BTK, LGFEEq 

has the better correlation with experimental binding data and the difference between the average LGFEEq 

and LGFERx is the largest of the three systems. This indicates that the equilibrium binding step dominates 

overall inhibition. For RSK2 and CATK, LGFERx has the better correlation with experimental data and 

the differences between the average LGFEEq and LGFERx values are smaller, which may indicate that 

reaction-competent binding dominates overall binding. While the applied data sets are limited, such 

observations might be helpful to facilitate scaffold design offering guidance on which step to consider 

during ligand design.  

  While the correlations between the SILCS-MC metrics and experimental binding data suggest the 

potential quantitative use of the two metrics on noncovalent scaffold optimization, the level of correlation 

is moderate. To improve the predictability of the LGFE metrics, we applied the Bayesian machine learning 

(BML) technique previously developed for SILCS ligand binding predictions (32, 33). BML optimization 
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alters the contributions of the different types of SILCS GFE FragMaps to the calculated LGFE values 

targeting known experimental data. Given that the SILCS FragMaps represent high-quality priors, the 

optimization may be performed with a limited amount of experimental data. BML training was performed 

on the three systems for both LGFEEq and LGFERx targeting the Pearson correlation with the experimental 

data. A force constant of 500 kcal/mol was used with a flat bottom potential to prevent overfitting of the 

weighting of the FragMaps with lower and upper limit of weights set to be 0.1 and 2.0, respectively, as 

previously described (32, 33). After training, SILCS-MC docking was rerun for all the ligands using the 

reweighted FragMaps from which new LGFE values were obtained. Figure S4 shows the correlation plots 

and Table 3 includes the PR for correlations between the BML-model LGFEEq or LGFERx binding scores 

with experimental binding free energies. For all cases, the BML trained LGFEEq or LGFERx values have 

better or equal level of correlations with experimental data with substantial improvements occurring for 

BTK and RSK2. For BTK, higher correlation still occurs with LGFEEq, while the correlation is now 

similar for the two LGFE metrics with RSK2 and LGFERx is still the most predictive with CATK. These 

observations indicated that the BML optimization, which was previously used for reversible drug design, 

can also be used for covalent ligand optimization purpose.  

  Further analysis involved the docking poses from SILCS-MC with an example from RSK2 shown in 

Figure 6. Figure 6A shows the reaction-competent pose of the cyanoacrylamide warhead fragment while 

the equilibrium binding pose associated with LGFEEq for RSK2 ligand compound 24 (14) is shown in 

Figure 6B. The reaction-competent pose of compound 24 is shown in Figure 6C, along with the 

experimental crystal pose of that compound (14). Comparison of all three panels show the compounds to 

bind in the same region despite A and C being reaction-competent poses and B being an equilibrium pose. 

This is consistent with the similar correlations of the BML optimized LGFEEq and LGFERx with 

experimental data. Going from the equilibrium to reaction-competent orientation for compound 24 

primarily involves a rotation of the compound in the same binding region. The reaction-competent binding 

pose has the reactive atom in proximity to C436 and in a very similar location as the crystal binding 

orientation after covalent bond formation. Figure 6B includes the FragMaps used for the docking. The 
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overlap of the FragMaps with the compound indicates those moieties that are contributing to binding and 

the FragMaps in the vicinity of compound suggest new types of functionalities that may improve the 

binding affinity. This may also be performed for the ligand in the reaction-competent pose, which may be 

a preferable option with RSK2 given the similar correlations (Table 3). For example, the apolar FragMaps 

around the binding orientation of compound 24 suggest additional apolar groups could increase binding, 

consistent with the higher experimental binding affinity observed for compound 27 which has a larger 

pyrrolopyrimidine group at the terminus when compared with the smaller pyrazole group of 24 (Figure 

S2). Beyond the visual information in the FragMaps, the GFE contributions of the atoms and functional 

groups to the LGFE score, which were previously studied for reversible drug design (32, 33), can be 

quantified, as shown for the reaction-competent pose of compound 24 in Figure 6D. The alkene carbon 

in compound 24 which serves as the reactive atom in covalent bond formation has a small unfavorable 

atom GFE contribution (red label) as expected since the reaction-competent orientation has this atom in 

close contact with target Cys, while other atoms all have favorable GFE contributions to the total LGFERx. 

This information indicates the role of different regions of the molecule that drive binding. Based on that 

information and the FragMaps around the ligand, synthetically accessible modifications of the compound 

may be designed, which may then be evaluated through SILCS-MC of the modified ligands.  
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Figure 6. A) Docking pose of the cyanoacrylamide warhead compound from the Petri’s library with the 

best ProbCys to RSK2, B) docking pose of RSK2 inhibitor 24 with the best LGFEEq, C) docking pose of 

RSK2 inhibitor 24 with the best ProbCys and D) atom GFE contributions (favorable energy in green and 

unfavorable energy in red) to LGFERx for docking pose in panel C. Protein is shown in cartoon 

representation with residue C436 in licorice representation with carbon in white color and the compounds 

are shown in licorice representation with carbon in cyan color and the reactive atom in the warhead group 

is marked by a magenta sphere. Crystal binding orientation of compound 24 from PDB entry 4m8t is 

shown with carbon in pink color in panel C. Apolar, hydrogen bond donor, acceptor FragMaps as well as 

thiol sulfur probability map are shown in green, blue, red and yellow color, respectively. FragMaps are at 

an isocontour level of -1.2 kcal/mol. 

 

3.4 SILCS-Covalent workflow for covalent drug discovery 

  Based on the above analyses and observations, a full SILCS-Covalent workflow was implemented and 

is illustrated in Figure 7. The workflow encompasses the three modelled stages of covalent drug design 

from identification of potentially reactive Cys residues, selection of the optimal warhead for a specific 

Cys residue, and optimization of the noncovalent scaffold to improve binding and specificity. The 

workflow is initiated by performing SILCS simulations on a known protein structure followed by 
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FragMap and Cys thiol sulfur probability map generation (yellow meshes) as well as generation of the 

SILCS exclusion map. SILCS-MC docking is then conducted using the warhead library for all Cys 

residues and the best ProbCys per warhead probe is recorded and the average value over all warhead probes, 

<ProbCys>, is used to identify reactive Cys residues. Larger <ProbCys> values indicate Cys residues that 

may react with a broader range of warheads. Once a tractable Cys residue is selected, the LGFEEq, LGFERx 

and ProbCys values, calculated for the previous step, targeting the selected Cys residue are used as input 

features along with kGSH for the developed ML model. This outputs the classification metric of the 

potential for the warhead to target the Cys residue. Once the warhead group is selected, noncovalent 

scaffold design can be initiated. This could involve various lead compound identification approaches 

including virtual screening (1, 2). SILCS-Pharm (27, 28) and SILCS-MC docking near the chosen Cys 

residue may be used to evaluate the druggability of the region employing the previously calculated SILCS 

FragMaps and exclusion map. LGFEEq and LGFERx values as well as predicted binding poses may then 

subsequently be used to guide further optimization of the noncovalent scaffold.  

  When applying the workflow, the most time-consuming part is running the SILCS simulations. This 

typically requires 1-3 days for most proteins using 10 GPUs (76). Once the FragMaps, Cys probability 

map and exclusion map are available, they can be used repeatedly, allowing for rapid calculation of all 

the SILCS metrics described above for the warhead fragments as well as putative covalent ligands. When 

lead compounds are available, optimization of noncovalent scaffold maybe undertaken using the same 

FragMaps. New ideas can be quickly tested using SILCS-MC on thousands of designs through the rapid 

calculation of LGFEEq, LGFERx and ProbCys in minutes. Thus, the full SILCS-Covalent workflow is very 

efficient while providing reliable predictions as discussed in the previous sections. 
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Figure 7. Workflow of the SILCS-Covalent drug design process. The workflow starts by running SILCS 

simulations from which the FragMaps as well as Cys sulfur probability distributions are generated (Apolar 

FragMaps in green, hydrogen bond donor and acceptor FragMap in blue and red, respectively, and 

positively charged and negatively charged FragMaps in cyan and orange, respectively). SILCS-MC is 
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then conducted for a warhead library or designed ligands around the specific Cys residue (Cys sulfur 

probability map used to calculate the ProbCys metric in yellow). Potential reactive Cys residues are first 

identified as indicated by the green solid line marked route. Next, optimal warhead groups are identified 

for the reactive Cys, as indicated by the orange dashed lines. The last step is to design noncovalent 

scaffolds and establish a structure-activity relationship (SAR) as indicated by red dotted lines. Different 

metrics are employed at different steps as shown for each route.    

 

4. Summary 

  In this study, we explored the use of SILCS in covalent drug discovery, motivated by the broad utility 

and computational efficiency of the technology. Our protocol uses unbiased and reaction-competent 

docking, offering the computational simplicity of a method that may be used for both covalent and 

noncovalent drug design. Through SILCS-MC docking of a previously curated warhead library, reaction-

competent binding poses were collected, and the warhead contact probabilities with nucleophilic Cys 

residue sulfurs were evaluated. The average contact probability over all warhead fragments targeting each 

Cys residue in the tested proteins was verified to be able to identify tractable Cys residues for covalent 

binding. Using three metrics from SILCS-MC as well as an experimental intrinsic reactivity descriptor, 

six ML classification models were trained to predict warhead fragment reactivity targeting the six kinases, 

from which a RF based ML model was identified to perform the best and is suggested for practical use. 

Application of the ML model on a non-kinase protein GAPDH verified that the ML model was able to 

identify effective warheads from the warhead library. Further study using three proteins shows both 

noncovalent, equilibrium binding affinity, LGFEEq, and reaction-competent binding affinity, LGFERx, are 

in moderate correlations with experimental binding free energies. This suggests the utility of these affinity 

metrics for noncovalent scaffold design. The combination of the ability to identify potentially reactive 

Cys residues, warheads with the potential to target those residues and calculated binding affinities for 

ligand optimization, represents an integrated workflow SILCS-Covalent for covalent drug discovery. 

   The ability of the current protocol for covalent drug design and optimization of the noncovalent 

scaffold of the ligands needs to be fully explored using larger data sets. However, the current results are 
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promising as the three analyzed sets of compounds cover a wider range of activity with noncovalent 

scaffold regions of the molecules encompass a range of chemical structures. In addition, the SILCS BML 

optimization approach was shown to increase the predictability of the SILCS metrics, which may be 

performed once experimental data on a system is generated. The moderate correlations between SILCS-

MC metrics with experimental data together with the ability of BML to further improve predictions, 

suggests the potential utility of SILCS for covalent drug design. 

 

Supporting Information. Confusion matrixes for the holdout tests of the six tested ML methods, 

predicted energy metrics and experimental binding data for the three test sets, selected Cys residues for 

ML model development, RF ML model predictions for GAPDH, details about the selection of SILCS 

metrics, ML model training hyperparameters and description of performance metrics, 2D structures of all 

ligands from the three test sets, correlation plots between SILCS-MC energy metrics with experimental 

data before and after BML reweighting, correlation analysis for the two LGFE metrics. This material is 

available free of charge via the Internet at http://pubs.acs.org. 
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