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ABSTRACT: A Pd-catalyzed homologation of arylboronic acids is reported. Halomethylboronic acid pinacol esters (BPin) under-
go a remarkably facile, yet rare, oxidative addition enabled by an α-boryl effect. Simultaneous chemoselective transmetalation al-
lows use of these reagents for formal C1 insertion to deliver benzyl BPin products without the requirement for stoichiometric or-
ganometallic reagents. The utility of the process is demonstrated by stepwise C(sp3)–C(sp2) cross-coupling of the boronic ester 
products into diarylmethane pharmacophores and electrophile/nucleophile chemoselective cross-coupling. Control experiments that 
demonstrate the reactivity enhancement provided by the α-boryl effect are provided, along with a description of the limitations of 
the formal homologation process. 

Organoboron compounds are valuable reagents that provide 
immediate access to a variety of synthetic transformations for 
C–C and C–X bond formation.1-3 While their widespread use 
is historically framed within transition metal-catalyzed cross-
coupling reactions (e.g., Suzuki–Miyaura,4-6 Chan–Lam7-11), 
modern organoboron chemistry provides broad and bespoke 
reactivity as reagents, catalysts, additives, materials and drug 
candidates.1 As such, the installation of boron functional 
groups continues to be a very active field of methodological 
development.  
Classical approaches to boron installation, such as the use of 
organometallics1,612-14 and hydroboration,1,6,15-18 have been 
supplemented by contemporary methodologies including pho-
toredox catalysis19-22 and C–H activation.23-29 A particularly 
powerful approach to the formation of complex organoboron 
compounds has been enabled through single carbon homolo-
gations.30-32 Pioneered by Matteson,33 this approach uses a 
carbenoid as the key reagent to induce a stereospecific 1,2-
metallate rearrangement (Scheme 1a).  

 
Scheme 1. (a) General representation of the Matteson homologa-
tion. (b) This work: Arylboronic acid homologation using halome-
thyl BPin enabled by chemoselective transmetalation. 

This general strategy has seen significant development in ele-
gant work by Aggarwal, leading to powerful platforms for 
iterative synthesis.34-38 The first catalytic asymmetric approach 
to the 1,2-metallate rearrangement of lithium boronates was 
recently reported by Jacobsen.39  
All existing metalate rearrangements require the use of stoi-
chiometric organolithium, -magnesium, or -zinc reagents.30-

32,36 Here we show an alternative conceptual approach to or-
ganoboron homologation using chemoselective Pd-catalyzed 
cross-coupling. This method does not require stoichiometric 
organometallics and instead relies upon a relatively rare oxida-
tive addition to halomethylorganoboron reagents combined 
with chemoselective transmetalation (Scheme 1b). 
Halomethylorganoboron reagents have been shown to display 
several different reactivity profiles, including metalation, 
boronate formation, and the formation of a-boryl radicals; 
however, examples of oxidative addition to this reagent class 
remain rare and are principally achieved using Ni catalysis. 
For example, Fu demonstrated stereoconvergent cross-
coupling of racemic a-chloroboronic acid esters with or-
ganozinc reagents,40,41 while Martin first showed cross-
electrophile coupling42-44 and alkene difunctionalization using 
a-bromoboronic acid esters.45 
Within Pd catalysis, Gevorgyan has developed Heck reactions 
based on a single-electron transfer (SET) manifold.46,47 To our 
knowledge, the only example of a direct oxidative addition of 
Pd(0) to a halomethylboronic acid ester was shown by Falck in 
the context of Stille reactions.48 
We hypothesized that a formal C1 homologation of a boronic 
acids could be achieved using a halomethylorganoboron rea-
gent as the surrogate carbenoid. Selective engagement of this 
reagent as the electrophilic component in a chemoselective 
Suzuki–Miyaura cross-coupling with a boronic acid would 
deliver a benzylic BPin product without the use of organome-
tallic reagents. This approach would be contingent upon sev-
eral key control elements: (i) chemoselective transmetalation 
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of the arylboronic acid over the halomethyl BPin, (ii) inhibi-
tion of organoboron group transesterification (speciation),49-55 
(iii) inhibition of product transmetalation, which would lead to 
oligo- or polymerization, and (iv) inhibition of BPin hydroly-
sis (of starting material and product).  
Control of BPin hydrolysis was particularly important as the 
corresponding boronic acids are unstable and prone to rapid 
protodeboronation. Indeed, very few benzylic boronic acids 
and esters are commercially available, especially in compari-
son to the equivalent aryl reagents.56 Enabling the formal ho-
mologation of arylboronic acids to benzyl BPin would provide 
straightforward access to this underrepresented molecular 
space. 
As a first demonstration of this concept, we established a 
benchmark system based on the Pd-catalyzed homologation of 
arylboronic acid 1 with the methylene donor 2-Br to deliver 
benzylic BPin product 3 (Table 1). Optimization established 
standard conditions that delivered 3 in good yield with low 
loadings of a simple Pd catalyst and the mass balance compris-
ing the transesterification adduct 4 (entry 1). 2-Br was com-
pletely consumed, which suggested competing hydrolysis to 
the boronic acid and protodeboronation. This was supported 
by control experiments (not shown, see ESI). Selected key 
parameters are indicated in Table 1. The surprising reactivity 
of 2-Br was evident from the outset – the reaction required 
low loadings of Pd(PPh3)4 and attempts to use any more elec-
tron-rich phosphine system led to lower yields and increased 
speciation (e.g., entries 3-4; see ESI for a full ligand screen). 
Changing 2-Br for the iodo- and chloro- analogues (2-I and 2-
Cl) delivered moderate yields with greater pinacol speciation 
to byproduct 4, suggesting that 2-Br had an optimal balance of 
reactivity and stability to allow effective cross-coupling (en-
tries 5 and 6). As part of efforts to avoid speciation issues, we 
attempted to use the pinacol ester of 1 (p-tol–BPin, 4); howev-
er, interestingly, this was ineffective (entry 7), indicating that 
4 does not undergo effective transmetalation under these con-
ditions.57 Similarly, control experiments (see ESI) indicated 
benzylic BPin product 3 was unreactive towards transmeta-
lation, eliminating possible oligo/polymerization. These data 
indicated a chemoselective transmetalation process was opera-
tive, where boronic acid 1 was reactive to transmetalation 
where BPins 2-Br, 3, and 4 were not. While this represents 
one of the key selectivity elements in the overall process, a 
consequence of this selectivity is that uncontrolled speciation 
(conversion of 1 to 4) during the reaction effectively leads to 
reaction shutdown. It is therefore necessary to control specia-
tion, which can be realized by tuning the nature and stoichi-
ometry of the base and stoichiometry of H2O.49-55 This was 
effectively achieved using 3 equiv K3PO4 with 10 equiv H2O 
(entry 1). Subtle changes, for example, to K2CO3 led to poorer 
conversion to desired product 3, with an increase in the trans-
esterification product (entry 8). Other bases, water concentra-
tion, and reaction temperature had similar negative effects (see 
ESI).  
The generality of the formal homologation was assessed using 
a broad range of aryl and hetroarylboronic acids (Scheme 2a). 
The reaction accommodated variation of electronic and steric 
substitution including combinations thereof. Of note was the 
positive impact of ortho-substitution (e.g., 6, 12, 14, 20, 25), 
which may be due to limiting any competing esterification.58 

Electrophile chemoselectivity was observed (33-36), which 
gave good yields of chloride products 33-35, but a low yield 

for bromide adduct 36. These yields agreed with the relative 
reactivity of 2-Br vs. Ar–X established in parallel (vide infra). 
Several heterocycles were well tolerated including thiophenes 
(39-41), pyridine (42), furans (43, 44), and isoxazole (45). 
Some limitations of the boronic acid scope included specific 
functional groups (46, 47), heterocycles (48, 49), styrene bo-
ronic acid (50), and alkylboronic acids (51). In general, unpro-
tected heteroatoms/coordinating groups were recalcitrant 
across the scope assessment based on robustness screen evalu-
ation (see ESI). Standard reaction scale was 0.2 mmol; how-
ever, reactions were effective at 2.5, 5 and 10 mmol scale (ex-
amples 42, 15, and 6, respectively).  
Table 1. Reaction development. 

 
Entry Deviation from standard conditions 3/4(%)a 
1 None 90 (88)b/10 
2 Pd2(dba)3 (1.5 mol%) + PPh3 (6 mol%) 45/55 
3 Pd(dppf)Cl2 (1.5 mol%) 8/88 
4 Pd(OAc)2 (1.5 mol%) + SPhos (3 mol%) 8/58 
5 Iodomethyl BPin (2-I) 66/34 
6 Chloromethyl BPin (2-Cl) 49/51 
7 p-tolBPin (4) instead of 1 14/84 
8 K2CO3 66/29 
aDetermined by 1H NMR analysis using an internal standard (see 
ESI for details). bIsolated yield. 
Benzylic BPin are broadly useful in synthetic chemistry, espe-
cially within cross-coupling processes. To highlight the utility 
of the homologation process, we demonstrated application in 
two cross-coupling scenarios (Scheme 2b). Diaryl methanes 
are important pharmacophores that can be readily accessed 
through cross-coupling of benzylic BPin.  The homologation 
process gives access to diarylmethanes via sequential cross-
coupling, delivering intermediates 5 and 11, then, following 
Suzuki–Miyaura coupling, intermediate diarylmethanes 52 and 
53. These underwent bromination and alkylation with N-
nucleophiles to deliver the bioactive agents bifonazole (54) 
and cyclizine (55).  
The increased reactivity of bromomethyl BPin in comparison 
to aryl chlorides (vide infra) gave access to chlorobenzyl BPin  
33. This allows chemoselective Suzuki–Miyaura coupling at 
either the chloro or BPin termini to deliver biaryl 56 or dia-
rylmethane 57.  
A series of investigations were undertaken to explore the reac-
tivity of the halomethyl BPin reagent and to understand key 
limitations (Scheme 3). Regarding the enhanced electrophilici-
ty of the C–Br bond imparted by the proximity of the boryl 
unit, Matteson approximated a ~300-700-fold increase in reac-
tivity in nucleophilic substitution reactions.33 Under the cata-
lytic conditions above, the effect of the boron unit is immedi-
ately apparent from control and competition experiments. In 
comparison to several different bromide-derived electrophiles, 
2-Br has similar reactivity to bromobenzene and benzyl bro-
mide in comparative Suzuki–Miyaura couplings with 1 
(Scheme 3a). This was supported by competition experiments 
between 2-Br and (pseudo)halobenzenes where 2-Br was sig-
nificantly more reactive than chlorobenzene and benzene tri-
fluoromethylsulfonate, less reactive than iodobenzene, and 
exhibited similar reactivity to bromobenzene (Scheme 3b). 
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Scheme 2. (a) Example scope of the formal homologation process. Variation of arylboronic acid including limitations. (b) Examples of 
synthetic applications including sequential and chemoselective cross-coupling. aSolvent = PhOMe. bSolvent = PhMe. cTemperature = 45 
ºC. Yields determined by 1H NMR using an internal standard, isolated yields in brackets. 
Control reactions indicated lack of reactivity under Ge-
vorgyan’s conditions and performing the reaction in light or 
dark had no influence.46,47 In attempts to determine if the boryl 

unit can influence reactivity at greater distances from the C–B 
bond, we endeavored to examine the ethyl and propyl homo-
logues (Scheme 3c). Unfortunately, 1,2-bromoethyl BPin 
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could not be prepared via any approach attempted by us and 
external suppliers (see ESI); however, 1,3-bromopropyl BPin 
could be obtained (see ESI) but was unreactive to the coupling 
with 1. The reaction was found to be highly sensitive to the 
ester diol (Scheme 3d). Any change from the BPin was detri-
mental – poor to moderate yields were observed only with 
propan-1,3-diol derivatives, with no product observed in any 
other case and this did not seem to track with established gen-
eral stability of the boronic esters to protodeboronation;59-61 
however, the lack of reactivity of 61 and 67 was perhaps ex-
pected based on previous understanding of stabilities of the a-
boryl radicals.62 Otherwise, these effects are unclear. 

 
Scheme 3. (a) Comparison of electrophile reactivity in isolated 
experiments. (b) Comparison of electrophile reactivity in competi-
tion experiments. (c) Effect of homologation on reactivity impart-
ed by the boron unit. (d) Effect of the boronic ester diol on the 
homologation reaction. (e) Effect of substitution on the meth-
ylene. 
Finally, substitution on the methylene was not tolerated, re-
stricting the reaction to a single unsubstituted methylene ho-
mologation: no reactivity was observed with 68-71 (Scheme 
3e). This lack of reactivity was found to be due to sluggish 
oxidative addition. NMR investigations established that 2-Br 
undergoes smooth oxidative addition while no oxidative addi-

tion is observed when substitution was introduced to the 
methylene (see ESI). Attempts to improve oxidative addition 
with 68-71 by variation of reaction conditions and lig-
and/precatalysts were unsuccessful (see ESI). 
In summary, a formal homologation of arylboronic acids has 
been developed based on the use of bromomethyl BPin as 
carbenoid equivalent. The process allows for the direct synthe-
sis of relatively rare benzylic boronic acid esters from aryl 
boronic acids without the use of organometallic reagents. Con-
trol experiments have provided information on the reactivity 
identified in this system, which support enhanced oxidative 
addition enabled by proximity to the C–B bond and a highly 
specific reactivity and stability profile of the halomethyl-
boronic acid pinacol ester. 
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