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Abstract 

Non-ionic deep eutectic solvents (DESs) have emerged as designer solvents for applications such 

as catalysis, extraction, and carbon capture and conversion. A major challenge is the lack of an 

efficient tool to discover DES candidates. Currently, the search relies heavily on the researchers’ 

intuition or a trial-and-error process, which leads to a low success rate or bypassing of promising 

candidates. Recognizing the central role that hydrogen bonds play in the DES formation, this work 

aims to decipher the hydrogen bond features for DESs and develop machine learning models to 

predict the potential of a system to be DES based on the hydrogen bond-based descriptors. We 

first analyze the hydrogen bond properties of 38 known DES and 111 known non-DES systems 

using their molecular dynamics simulation trajectories. The analysis reveals two features for DES 

compared to non-DES: (a) the imbalance between the numbers of the two intra-component 

hydrogen bonds, and (b) more and stronger inter-component hydrogen bonds. Based on the 

analysis results, we developed 30 machine learning models using ten algorithms and three types 

of hydrogen bond-based descriptors. The model performance is first benchmarked using their 

average and minimal ROC-AUC values. We also analyze the importance of individual features in 

the models and the results are consistent with the simulation-based statistical analysis. Finally, we 

validate the prediction ability of the models using the experimental results of 34 systems. The 

Extra Trees outperforms the others in the validation with an ROC-AUC of 0.88. Our work iterates 

the importance of hydrogen bond in DES formation and shows the potential of machine learning 

in discovering new DESs.    
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1. Introduction 

Deep eutectic solvents (DESs) are liquid mixtures of hydrogen bond acceptors (HBAs) and 

donors (HBDs) with tunable properties[1-13]. DESs have gained attention from researchers as 

sustainable solvents in a number of applications including carbon capture[2, 14-16], 

pharmaceuticals[9, 14, 15, 17-23], material synthesis[8, 19, 24], electrochemistry[9, 14, 25-37], 

decontamination[17, 18] and extractions[6, 8, 24, 38-41] where the solvent can be recovered[42] 

and potentially reused[43]. Non-ionic DESs show several desirable properties including 

biodegradability, high conductivity, low volatility, and low toxicity as compared to conventional 

solvents [2, 8, 38, 43, 44]. Non-ionic DESs, popularly classified as type V DESs[4, 14-16, 38], 

can be made with natural compounds and have characteristics such as low viscosity that make 

them particularly suitable for industrial applications such as liquid-liquid extractions and carbon 

nanomaterial production[12, 38, 45]. 

A challenge for DES-related research is to discover more DESs so the community can 

possess a large pool to search for the ones with the desired properties. Numerous experimental and 

computational studies have shown the importance of hydrogen bonds (HBs) for DESs[1, 2, 4, 9, 

14, 15, 39, 42, 46]. Farias et al.[43] carried out an experimental study to understand the role of 

HBDs of DESs in aqueous biphasic systems. They concluded that HBDs with high relative 

hydrophilicity are mainly adjuvants in biphasic systems, HBDs with moderate hydrophilicity 

control the formation of the biphasic systems, and HBDs with low hydrophilicity (high 

hydrophobicity) form aqueous biphasic systems, with the HBA acting as adjuvants in such 

systems. Abranches et al.[1] investigated the suitability of betaine, due to its polarity imbalance, 

as a universal HBA in the formation of DESs. Their study used a combination of experiments and 

density functional theory calculations and concluded that betaine is a suitable choice for making 

natural DESs due to its non-selective nature, low cost, and low toxicity. All these fundamental 

studies highlight the importance of HBs in DES formation and properties. This important role 

indicates that the HB-based descriptors could serve as suitable inputs to discover new DESs.   

Machine learning (ML) models have been used to predict DES physicochemical and 

thermophysical properties[17, 19, 46-51]. The review of Benworth et al.[15] covered the studies 

that developed quantitative structure- property relationship models for predicting DES 

properties[6, 15]. Halder et al.[51] used a cheminformatics approach to find out which structural 



attributes of DESs are required to get accurate predictions of densities for industrial applications. 

They combined the top performing models to make consensus predictions of densities. They 

concluded that a consensus modelling approach could be used to obtain high accuracy estimates 

of novel DES densities using features like number of HBDs, lipophilicity, polarizability, and the 

van der Waals surface area. Dietz et al.[6] used Perturbed-Chain Statistical Association Fluid 

Theory (PC-SAFT) modeling to predict the liquid-liquid equilibrium and solid-liquid equilibrium 

of mixtures of hydrophobic DES with water or hydroxymethyl furfural. Their results showed such 

an approach to be adequate for predicting phase behavior of hydrophobic DES mixtures. 

Abdollahzadeh et al.[19] compared 7 machine learning algorithms to estimate the densities of 149 

DESs. Their results showed that the least squares support vector regression had the highest 

accuracy and performed 74.5% better than the best results obtained via empirical correlations. 

Zamora et al.[16] compared the suitability of 5 different ML algorithms, trained on experimental 

data, to accurately predict the densities and viscosities of type V DESs. The study concluded that 

support vector machines performed best at predicting densities, and gaussian process regression 

models did best at predicting viscosities. Xu et al.[50] used gradient boosting models to obtain 

good prediction accuracies on DES viscosities. The model showed nice prediction when trained 

and tested on experimental and simulation data. These studies highlight the potential of combining 

ML and molecular simulations to predict the properties of DESs. 

MD simulation has become a useful tool for determining descriptors as inputs for machine 

learning models[14, 24, 46]. We hypothesize that HB properties could be used to predict the 

formation of DESs. However, it is not trivial to determine which HB properties could be used. Our 

previous work[52] found that the non-ionic DESs can be broadly classified into three groups based 

on the ratio of intra- and inter-component HB numbers. Such observations inspire us to explore 

the possibility of developing machine learning models using HB-based descriptors.  

The database plays a central role in any machine learning model development. We curated 

a library of 38 known DESs and 111 non-DESs from the literature. We will use this database to 

conduct statical analysis on molecular simulation data, to further construct training and testing 

datasets for model development. Finally, we will utilize the experimental results for 34 systems to 

validate our model performance. Due to the size of the database, this paper will focus on traditional 

machine learning algorithms. This work will utilize 10 machine learning algorithms. However, it 



is noted that the deep learning algorithms have emerged as a promising technique for designing 

materials. The rest of this paper is structured as follows: Section 2 will display the computational 

details. Section 3 will present results and discussion and section 4 will present our conclusions. 

2. Methodology 

2.1 The list of DES and non-DES systems. 

Tables S1-S8 show the details of the 183 systems simulated in this study. They included 

38 known DES and 111 known non-DES systems from literature and 34 systems for the 

experimental validation set. The 38 known DES and 111 known non-DES systems are determined 

based on the experimental results of van Osch et al.[53, 54]. Only the non-ionic DESs from their 

list are considered in our study. We also excluded the DESs that did not have all the three types of 

HBs (A-A, B-B and A-B). Compounds are represented using three letters e.g., DEA represents 

Decanoic acid. The systems are labeled using the three letters of their compounds and the molar 

ratio e.g., DEA-MEN11 represents a 1:1 mixture of decanoic acid and menthol. Table S17-19 list 

the abbreviations used for chemical compounds. 

2.2 Molecular simulations 

2.2.A Molecular models 

The OPLSAA/M force field[55] was used to describe the molecules in this study. The 

nonbonded and bonded parameters in the systems were assigned using the OPLSAA/M force field 

because this force field can adequately model the behavior of organic molecules. The force field 

parameters were generated using the Ligpargen[56] web server.  

2.2.B Simulation detail 

The simulation systems were created by inserting specific numbers (depending on the 

molar ratio) of the chosen organic molecules randomly in a cubic box. Figure 1 shows a snapshot, 

generated using VMD[57], of the Thy-Men11 system. 

 



 

Figure 1. A snapshot of the equilibrated Thy-Men11 system. The molecules are display in CPK 
model. The color of atoms: C: cyan, O: red, and H: white.  

For each system, the simulation process comprises three steps: (a) an energy minimization 

to remove any atomic overlaps, (b) a 50-ns isobaric-isothermal (NPT, P=1 atm, T=295 K) 

ensemble MD simulation to enable the system reach thermodynamic equilibrium and (c) a 10-ns 

canonical (NVT, T=295 K) ensemble MD simulation to collect the data at a frequency of 10 ps. In 

step (b), the MD simulation uses the Berendsen[58] method to control the system pressure while 

the velocity rescaling method is used to control the system temperature.  

The short and long range nonbonded interactions in the OPLS-AA/M force field are 

calculated using the Lennard-Jones 12-6 and Coulomb potential, respectively using equation 1. 
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(1) 

where 𝑟𝑟𝑖𝑖𝑗𝑗 is the distance between atoms i and j; 𝑞𝑞𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞𝑗𝑗 are the partial charges of atoms i and j 

respectively, 𝜀𝜀0 is the free space permittivity, 𝜀𝜀𝑖𝑖𝑗𝑗 and 𝜎𝜎𝑖𝑖𝑗𝑗 are energetic and geometric parameters 

respectively. The particle mesh Ewald[59] (PME) sum is used to calculate long-range potentials, 

and the LINCS algorithm[60] is used to constrain bonds involving hydrogen atoms. All energy 

minimization and MD simulations were conducted using GROMACS 2021.2.[61]   



2.2. Hydrogen bond analysis 

We characterize the HBs using the criteria developed by the Chandler group [62]: (1) the 

distance between the O(donor) and O(acceptor) ≤ 0.35nm; (2) the O(acceptor)-H(donor)-O(donor) 

angle ≤ 30º.   

We calculated the HB lifetime in two steps: (a) Calculate the correlation function C(t) as 

shown in equation 3:  

𝐶𝐶(𝑡𝑡) =  
〈𝑁𝑁𝐻𝐻𝐻𝐻(𝑡𝑡)〉
〈𝑁𝑁𝐻𝐻𝐻𝐻(0)〉

 
(2) 

where 〈𝑁𝑁𝐻𝐻𝐻𝐻(0)〉 is the ensemble average of the number of HBs at the initial status, and 〈𝑁𝑁𝐻𝐻𝐻𝐻(𝑡𝑡)〉 

is the ensemble average of the number of HBs still existing at time=t. The HBs are counted even 

if they break intermittently, based on Rappaport’s definition[63].  

(b) Calculate the lifetime τ by numerically integrating the C(t) curves.  

2.3 Machine learning models 

The literature-based database contains more non-DES systems than DES ones. This 

imbalance in data distribution may cause bias in model performance. To attenuate this artificial 

effect, we curate a database containing 38 DES and 38 non-DES for the machine learning model 

development. The 38 non-DES is randomly selected from the 111 ones. We further split this 

database into the training set (30 DES and 30 non-DES) and testing set (8 DES and 8 non-DES) 

We use fixed seeds when sampling from the DES and non-DES set to ensure all models are 

evaluated on the same dataset slices. All models are further validated with experimentally verified 

DESs and non-DESs, as described in section 3.   

We trained machine learning models using 10 algorithms. The algorithm implementations 

from scikit-learn[64, 65] are: (1) Decision tree, (2) logistic regression, (3) AdaBoost, (4) Gradient 

Boost, (5) Extra trees forest, (6) random forest, (7) K-nearest neighbors, and (8) support vector 

machine. The (9) XGBoost and (10) XGBoost random forest are from the XGBoost package[66].  

Hyperparameter optimization was done using scikit-learn’s grid search. Each model’s 

performance was measured via repeated k-fold (6 folds, 10 repeats) cross-validation with the ROC-

AUC metric. The architecture with the highest ROC-AUC during optimization is judged to be the 

best. For each model, further training and testing will only be conducted on the architecture with 

the best architecture. 



 This work considers three types of input features: (a) HB numbers alone, (b) HB lifetimes 

alone, and (c) HB numbers combined with lifetimes. All HB input features, generated from MD 

simulations, are shown in Figures S5-S8. The total number of the trained models is 30. The model 

hyperparameters are shown in Figures S20-22.  

 Here is a list of python packages used to conduct this work: Python (version 3.10.8), scikit-

learn[65] (version 1.2.0), pandas[67] (version 1.5.2), Numpy[68] (version 1.22.3), matplotlib[69] 

(version 3.6.2), scipy[70] (version 1.7.3) and XGBoost[66] (version 1.7.3). All machine learning 

work is done on an 8th Gen Intel core i7-8750H processor. 

2.4 Experiment 

To validate the trained models, a list of solvent formulas was tested to determine whether 

they can form DESs or not. The systems are prepared by mixing the two components at a specific 

molar ratio (e.g., 1:1, 1:2, and 2:1) and followed with constant stirring and heating to ensure fully 

mixing. The two compounds were first weighted based on their molar ratio and transferred into a 

glass bottom sequentially. The compounds were then premixed using a glass rod, after which a 

magnetic stirrer was added, and the glass bottle was sealed. Subsequently, the bottle was placed in 

an oil bath and heated to 80-120 ℃ on a heating plate at a stirring speed of 500 RPM for 1 h. After 

the heating process, the mixture was air-cooled to room temperature and kept in a desiccator for 

24 h. The sample that remained in a liquid form with no crystals within the 24 h was considered a 

DES candidate. We observe that some systems turn out to be DES-like at beginning but form solid 

phase after several days. These systems are not used in this work. 

  



3. Results and discussion 

3.1 Statistical analysis of hydrogen bond features 

3.1.1 Hydrogen bond number features 

  

(a) DES (b) non-DESs 
Figure 2.2 Distribution of average inter- (A-B) and intra- (A-A and B-B) component HB 
numbers. (a) DES and (b) non-DES.  

We first analyze the distribution of actual inter-component and intra-component HB 

numbers for DES and non-DES systems. Figure 2 shows the distribution of the 38 DES and 111 

non-DES systems based on their average inter- and intra-component HB numbers. There are no 

distinct differences regarding the two pattern distributions in Figure 2. As shown in Figure 2a, the 

intra-component HB numbers (A-A and B-B) for DESs skew to the left, indicating that most of 

the DESs in our dataset have average HB numbers less than 20. The B-B HB numbers are 

concentrated on the lower end of the spectrum compared to the A-A HBs. The inter-component 

HB numbers skew to the right, suggesting that most of the DESs have higher inter-component HB 

numbers compared to intra-component HB numbers. As shown in Figure 2b, the intra-component 

HB numbers for non-DESs also skew to the left. In addition, most of the inter-component HB 

numbers are skewed to the right. Thus, the actual number of intra- and inter-component HBs may 

not be a suitable HB feature to differentiate DES and non-DES systems.  

However, some distinct pattern appears when we plot the average inter- and intra-

component HB numbers as boxplots for DES and non-DES systems. As shown in Figure 3a-b, the 

DES systems present a large difference between the median values for the two intra-component 

HB numbers (A-A vs. B-B) compared to the non-DES systems. In addition, the inter-component 

HBs in the DES systems display a median value of 56.07, 61 – 83% higher than the median values 



of the two intra-component HBs. For the non-DES systems, the A-B HBs only present a median 

value of 48.36, 55 – 59% higher than A-A and B-B respectively. Even when the intra-component 

HB numbers, A-A and B-B, are summed up, the inter-component HB number, A-B, is greater. 

Such differences in the median implies that the ratio of the two intra-component and the inter-

/intra- may serve as features for system classification.  

The plot of the A-A/B-B and A-B/(A-A+B-B) in Figure 3c further confirms our hypothesis. 

The ratio of inter-component to intra-component HB numbers is well above 1.5 for some DESs. 

On average, the inter-component HB numbers are 35% more than the total intra-component HB 

numbers. Finally, we looked at the ratio of the intra-component bonds to get more insight into the 

magnitudes of their differences. On average, the number of A-A HBs is about 700% greater than 

the B-B HBs. This difference does not exist in non-DESs. The average intra-component HB 

numbers, A-A and B-B, for non-DES components are roughly the same (24.31 and 24.08 

respectively). The median HB numbers for A-A and B-B are also similar in non-DESs with 20.01 

and 21.41 respectively. This suggests that there is no dominant intra-component HB in non-DESs. 

This is also seen in Figure 3c as most of the intra-component HB number ratios cluster around 1.0, 

with few outliers. The average inter-component (A-B) HB numbers are close to twice (1.89 – 1.96) 

that of the average intra-component (A-A and B-B) HBs respectively. The ratios of intra-

component HBs in non-DESs are also closer across all percentiles, with a median of 1.01 compared 

to 2.00 for DESs.  

  

(a) DESs (b) non-DESs  



 

(c)  
Figure 3.3 HB number features for DESs and non-DESs. (a) and (b) show the distributions of 

average HB numbers. (c) shows the ratio of inter-component to intra-component HB numbers vs 

ratio of intra-component HB numbers. 

3.1.2 Hydrogen bond lifetimes 

  

(a) DESs (b) non-DESs 
Figure 4. 4 Distribution of average inter- (A-B) and intra-component (A-A and B-B) HB lifetimes. 

(a) DES and (b) non-DES. 

We also analyzed the distribution of the inter- and intra- component HB lifetimes of the 38 

DESs and 111 non-DESs. There are no distinct patterns emerging from Figure 4. In Figure 4a, one 

of the intra-component HB lifetime bonds (A-A) is concentrated at 2.0 – 4.0 ns while the B-B 

lifetime is concentrated at 0.25 – 2.5 ns for DESs.  The inter-component HB lifetimes, A-B, appear 

to skew to the right, and last longer than the intra-component lifetimes. 



From Figure 4b, we can observe that one of the intra-component HB lifetimes for non-DESs 

dominates in different bins but there is no clear trend e.g., B-B dominates at lifetimes less than 

1.25 ns but A-A dominates at lifetimes greater than 3.0 ns.  In each bin, the inter-component 

lifetimes (A-B) appear to be more dominant than one of the intra-component bonds in lifetimes 

but are similar to the other intra-component bond. The lack of a clear pattern means actual intra- 

and inter- HB lifetime features alone might not be enough to differentiate DES and non-DES 

systems. 

Some differences emerge when we plot the intra- and inter- HB lifetime distributions as 

boxplots. From Figure 5a, the DESs present a small difference between the median values for the 

inter-component (A-B) and one of the intra-component (A-A) lifetimes; the difference is wider 

between the median values of A-B and the other intra-component (B-B) lifetimes. The A-B 

lifetimes present a median of 2.67, which is 14% and 39% greater than the A-A and B-B lifetimes 

respectively. From Figure 5b, the non-DESs present a smaller difference between the median 

values for the inter-component and intra-component lifetime values. The A-B lifetimes present a 

median of 2.72, which is only 3.6% and 14% greater than the A-A and B-B lifetimes respectively. 

These differences indicate that the ratios of inter- to intra- component lifetimes could be more 

useful as features than the actual lifetimes. 

The plot of A-A/B-B vs A-B/(A-A + B-B) in Figure 5c confirms this hypothesis. The A-A 

median lifetimes last about 7% longer than B-B lifetimes compared to 13% for non-DESs. Even 

though there are more inter-component HBs than intra-component HBs, the intra-component HBs 

last longer. The median value of A-B/(A-A + B-B) lifetimes is 0.63 for DESs and 0.53 for non-

DESs. The ratio of inter-component to intra-component HBs in DESs varies from 0.5 to 2.0 while 

most of the non-DESs have ratios of inter-component to intra-component lifetimes clustered 

around 0.5. Similar to the HB numbers, ratios of HB lifetimes might be more useful as features 

than the actual lifetime values. 



   

(a) DESs (b) non-DESs 

 

(c)  
Figure 5.5 HB lifetime features for DESs and non-DESs. (a) and (b) show the distributions of 

average HB lifetimes. (c) shows the ratio of inter-component to intra-component HB lifetimes vs 

ratio of intra-component HB lifetimes. 

  



3.2 Model development 

 We trained 30 models with 10 algorithms (logistic regression, random forest, decision tree, 

extra tree forest, KNN, SVC, Ada boost, gradient boost, and XGBoost random forest, XGBoost) 

and three types of input features (HB number, HB lifetime and a combination of HB number and 

lifetime features) to predict if a system could be DES. We trained each model for 100 rounds and 

calculated the average Receiver operating characteristic-Area under the curve (ROC-AUC) values 

from 100 iterations. For each round, we randomly sampled 38 (30 for training, 8 for testing) entries 

each from the DES and non-DES dataset. To ensure a fair comparison, each model is trained and 

tested with the same samples from the DES and non-DES dataset.  

ROC is a probability curve and AUC represents the degree or measure of separability. It 

shows how much the model is capable of distinguishing between classes. The higher the AUC, the 

better the model is at predicting DES classes as DES and non-DES classes as non-DES.  We ranked 

the models using two criteria: (1) average ROC-AUC score, and (2) minimum ROC-AUC score. 

Table 1. Average ROC-AUC values of the 30 models. Best value is in bold. 

S/N Algorithm lifetime number  number + 
lifetime 

1 Logistic regression 0.68 0.78 0.77 
2 Decision Tree 0.63 0.74 0.68 
3 Gradient Boost 0.66 0.78 0.76 
4 AdaBoost 0.70 0.78 0.75 
5 Random Forest 0.69 0.81 0.79 
6 Extra Trees Forest 0.70 0.80 0.78 

7 Support Vector 
Classifier 0.64 0.77 0.77 

8 K-Nearest Neighbors 0.63 0.77 0.77 
9 XGBoost 0.67 0.81 0.77 

10 XGBoost Random 
Forest  0.62 0.82 0.79 

 

With an average ROC-AUC score of 0.70, the AdaBoost and Extra Trees classifiers are 

tied for the best performing models when trained with HB lifetime features. When trained with 

HB number features, XGBoost-Random Forest and XGBoost are the two top performing models, 

with an average ROC-AUC of 0.82 and 0.81 respectively. When HB numbers and lifetimes 



features are combined, the top performing models are the Random Forest and the XGBoost-

Random Forest classifiers with both having an average ROC-AUC of 0.79. Overall, the top 

performing models are the XGBoost-Random Forest and Extra Trees based on the average and 

minimum ROC-AUC values respectively. 

 

Table 2. Minimum ROC-AUC scores for the 30 models 

S/N Algorithm lifetime number number + lifetime 

1 Logistic regression 0.25 0.55 0.50 
2 Decision Tree 0.30 0.50 0.45 
3 Gradient Boost 0.25 0.50 0.40 
4 AdaBoost 0.30 0.40 0.38 
5 Random Forest 0.30 0.45 0.45 
6 Extra Trees Forest 0.30 0.70 0.55 

7 Support Vector 
Classifier 0.15 0.10 0.10 

8 K-Nearest Neighbors 0.30 0.45 0.45 
9 XGBoost 0.20 0.50 0.45 

10 XGBoost Random 
Forest  0.20 0.55 0.45 

 
The minimum ROC-AUC score in 100 training iterations could also be used to evaluate 

the performance of a model. Table 2 lists the minimum ROC-AUC score for the 30 models. Nine 

algorithms display the lowest minimum ROC-AUC scores when trained with HB lifetime features 

alone. Such observations indicates that the HB lifetime alone might not be sufficient to develop a 

machine learning model for classifying DES systems. Interestingly, all the algorithms present the 

highest minimum ROC-AUC scores when trained with HB numbers alone. Across all categories, 

the Extra Trees classifier has the highest minimum ROC-AUC score of 0.70 when trained with 

HB numbers. All the algorithms also recorded their highest overall ROC-AUC scores when trained 

with HB numbers alone.   

Some algorithms are among the top performers regardless of the criteria used for model 

selection. For models trained with HB numbers, the top performing model is the Extra Trees based 

on minimum ROC-AUC and it is only slightly behind the XGBoost-RF when judged by average 

ROC-AUC score. For models trained with HB lifetime features, the Extra Trees and the AdaBoost 

are the top performers using either average ROC-AUC scores or highest minimum ROC-AUC 



scores. For models trained with combined HB number and lifetimes features, the Extra Trees 

classifier is the top performer using highest minimum ROC-AUC score or average ROC-AUC 

score. However, it should be noted that stellar performance observed during training does not 

necessarily translate into excellence in the validation stage, as will be seen in the next section. 

3.3 Model validation with experimental results  

We validate the 30 trained models were using experimental results of 34 experimental 

results (17 non-DESs and 17 DESs) The results are presented in Table 3. 

Table 3. ROC-AUC values of the trained models when tested with validation data. Top performing 
model under each feature type has its ROC-AUC value in bold. 

S/N Algorithm lifetime number number + 
lifetime 

1 Logistic regression 0.65 0.66 0.84 

2 Decision Tree 0.52 0.69 0.65 

3 Gradient Boost 0.57 0.77 0.81 

4 AdaBoost 0.61 0.74 0.66 

5 Random Forest 0.54 0.76 0.79 

6 Extra Trees Forest 0.65 0.79 0.88 

7 Support Vector 
Classifier 0.56 0.80 0.80 

8 K-Nearest Neighbors 0.47 0.53 0.57 

9 XGBoost 0.61 0.65 0.74 

10 XGBoost Random 
Forest 0.68 0.69 0.79 

For models trained with HB lifetime features, the XGBoost Random Forest, Logistic 

regression and Extra Trees were the top performers with ROC-AUC values of 0.68, 0.65 and 0.65 

respectively during validation. Support Vector, Extra Trees, and Gradient Boost were the top 

performers with ROC-AUC values of 0.80, 0.79 and 0.77 respectively when models were trained 

with HB number features. The Extra Trees, Logistic regression, and Gradient Boost were the top 

performing models with ROC-AUC of 0.88, 0.84 and 0.81 respectively for models trained with 

both HB numbers and lifetimes.  



 
 

(a) XGBoost-RF  (b) Logistic Regression 

  
(c) Support Vector  (d) Extra Trees 

  
(e) Extra Trees  (f) Logistic regression 

Figure 7. Confusion matrices for the top performing models during validation. (a) and (b) are for 

HB lifetime features (c) and (d) are for HB number features. (e) and (f) are for combined HB 

numbers and lifetimes features.  



Figure 7 presents confusion matrices for the top performing models under each of the 3 

input feature categories during validation. Confusion matrices present true positives, true 

negatives, false positives, and false negatives for each model’s predictions. In this case, DESs are 

positives while non-DESs are negatives. Sensitivity measures how many DESs were correctly 

predicted to be DESs while specificity measures how many non-DESs were correctly predicted to 

be non-DESs by a model. Some models are better at predicting DESs (high sensitivity) while some 

are better at predicting non-DESs (high specificity).  

XGBoost-RF is the top performing algorithm for models trained with HB lifetime features. 

It performs best at predicting which systems are DESs, as shown with its high sensitivity of 0.82 

but it is not good at predicting which systems are non-DESs (low specificity of 0.47). For models 

trained with HB number features, the support vector is the top performing algorithm. It has a 

specificity of 0.88, which means it performs best at predicting which systems are non-DESs. Its 

low sensitivity of 0.35 means it is not good at predicting DESs. 

When models are trained with combined HB lifetime and number features as inputs, the 

Extra Trees model performs best. It has a sensitivity of 0.76, indicating it is among the top 

performers at predicting which systems are DESs. It has a specificity of 0.94, indicating it is the 

top performer at predicting which systems are non-DESs. Relative to the top performing models 

in other input feature categories, the Extra Trees algorithm is the best overall at predicting both 

DESs and non-DESs. The confusion matrices for all models are shown in S18-20. 

Prediction probabilities 

  

(a) XGBoost-RF (b) Support vector 



 

 

(c) Extra Trees  

Figure 8. Distribution of prediction probabilities for the top performing models during validation. 

(a) is for HB lifetime features, (b) is for HB number features. (c) is for combined HB numbers and 

lifetimes features. The number of systems within each bin is indicated on the bars. The vertical 

dashed line indicates the classification threshold. Perfect model will have all non-DESs on the left 

and DESs on the right of the vertical dashed line. 

Prediction probabilities are useful indicators of how well each model separates DESs and 

non-DESs. An ideal model would have all its non-DES predictions with probability of being DES 

< 0.5, and its DES predictions with probability of being DES > 0.5. Figure 8 presents the 

distribution of prediction probabilities for the best models during validation. It can be seen from 

the probabilities in figure 8a that the predictions of the XGBoost-RF are closely distributed around 

0.49 to 0.51 suggesting there is not much separation for models trained with lifetime features. 

Notably, all of the XGBoost-RF’s 14 DES predictions made with confidence > 0.5 were correct. 

The separation improves in Figure 8b with probabilities distributed around 0.46 to 0.54, suggesting 

that HB number features help models detect non-DESs relatively better than lifetimes alone. This 

is backed up by the observation that all 15 non-DES predictions made by the support vector model 

with probability of being DES < 0.5 were correct. The probabilities are distributed between 0.30 

and 0.70 in Figure 8c, indicating better confidence in the Extra Tree model’s predictions when HB 

number and lifetime features are combined. The Extra Tree model shows better separation in its 

classifications and is relatively more confident in its non-DES predictions, and this is backed up 

by its specificity of 0.94 (Figure 7e). The prediction probabilities for all the other models are shown 

in Figures S21-23. 



It is useful to have some insight into which input features carry the most weight when the 

ML models are making predictions. Figure 9 shows how the models ranked the importance of 

input features. Models that were trained with HB lifetime features alone overwhelmingly ranked 

the ratio of inter- to intra- species HB lifetime as the most important feature for predictions, 

followed by the inter-component HB lifetime. When trained with HB numbers features alone, the 

models ranked the inter-component HB numbers as the most important feature, but it should be 

noted that the ratio of inter- to intra- species HB numbers is not far behind in second place. When 

numbers and lifetimes were combined, the trained models ranked the inter-component HB 

numbers as the most important feature, closely followed by the ratio of inter- to intra- species HB 

lifetimes. 

  

(a) Models trained with HB lifetimes. (b) Models trained with HB numbers. 

 

(c) Models trained with both HB numbers and lifetimes. 
Figure 9. Important features during training iterations for all models. In (c), “_n” and “_l” denote 

HB number and lifetime features respectively. 



Conclusion 

We analyzed the HB features of 38 known DES and 111 known non-DES systems using 

MD simulation trajectories. The statistical analysis of inter- and intra-component HB numbers and 

HB lifetimes revealed two types of HB features for DESs: An imbalance between the two intra-

component HB numbers in DES, and more and stronger inter-component HBs. We then developed 

30 machine learning models by training 10 algorithms on 3 types of input features. We validated 

the models using 17 DESs and 17 non-DESs that have been experimentally verified. Using two 

criteria of highest average and highest minimum ROC-AUC scores, we found the logistic 

regression, gradient boost, support vector and Extra Trees to be among the top performers when 

using the HB lifetime, number, as well as combined lifetime and number features respectively. 

Extra Trees classifier was the top performing model overall with an average ROC-AUC of 0.88 

when the HB numbers and lifetimes were combined. Intuitively, it makes sense that models would 

perform better when fed information about the population of HB numbers as well as how long 

those HBs last. All models ranked the inter-component as well as the ratio of inter- to intra- 

component HB numbers and lifetimes as the most important features for predicting a system to be 

DES or not. DESs are promising solvents that hold huge potential. Due to the sheer size of the 

candidate pool, it is important to have models that can accurately predict which compounds will 

or will not form DESs when mixed. Our work sheds light on which compounds are likely to form 

DESs but does not say what their physicochemical properties are likely to be. In the future, more 

work needs to be done to be able to predict which compounds will form DESs with application-

specific properties. 
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