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Abstract

The lead optimization process in drug discovery cam-
paigns is an arduous endeavour where the input of
many medicinal chemists is weighed in order to reach
a desired molecular property profile. Building the ex-
pertise to successfully drive such projects collabora-
tively is a very time-consuming process that typically
spans many years within a chemist’s career. In this
work we aim to replicate this process by applying
artificial intelligence learning-to-rank techniques on
feedback that was obtained from 35 chemists at No-
vartis over the course of several months. We exem-
plify the usefulness of the learned proxies in routine
tasks such as compound prioritization, motif rational-
ization, and biased de novo drug design. Annotated
response data is provided, and developed models and
code made available through a permissive open-source
license.

1 Introduction

Drug discovery is a complex, multi-step process that
operates at the interface between many chemical
and biological sub-disciplines. In many stages of the
pipeline, and specifically during lead optimization,
medicinal chemists — wet-lab or computational —
play a central role, as they are routinely tasked
with identifying which compounds to synthesize and
evaluate over subsequent rounds of optimization.1

In order to do this, medicinal chemists often review
data that includes compound properties such as
activity, ADMET,2 or target structural information,
among many others. Therefore, for a campaign to
be successful it needs not only rely on the quality
of the generated experimental data, but ultimately
also on the robustness and soundness of the decisions
made by the medicinal chemistry team working on it.3

During their professional careers, medicinal
chemists build an expertise that enables them to

make their decisions (e.g., compound prioritization)
more efficiently.4 That is, they develop an “intuition”
on the factors relevant for a compound to be success-
ful on following iterations of the early drug discovery
process. While attempts have been previously
made to formalize such knowledge with rule-based
approaches (e.g., structural alerts), or simple chem-
informatics desirability scores (e.g., drug-likeness),
capturing the subtleties and intricacies involved in
the ranking ability of chemists remains a fundamental
challenge. With that motivation in mind, in this work
we investigate whether part of this knowledge can be
distilled into machine learning models. Such models
can potentially then be deployed as an aid in during
the decision-making process in lead optimization or
other parts of the drug discovery pipeline, similar to
other recommendation systems already reported in
the industry.5–7

Since medicinal chemistry is currently mostly
a human endeavour, it is also inevitably prone to
subjective biases.8 Several studies9,10 have evaluated
to what degree medicinal chemists tend to agree on
their own and the decisions made by their colleagues.
Most tasks explored in these works included pre-
senting chemists with a list of compounds to filter
over several rounds, in order to evaluate whether
their choices overlapped with those of their peers,
and if they were self-consistent with their own prior
selections. These studies reported overall a weak
agreement between and within each chemist - the
disparity in these results being associated to several
psychological factors, such as loss aversion.11 Another
study,12 closer in nature to what we present in this
work, evaluated whether a small group of chemists
could rate compounds according to properties such as
drug-likeness and synthetic accessibility via the use of
a Likert-type scale,13 to then train a classical machine
learning model on these responses. Fair to moderate
correlations were found between the scores assigned
by the chemists, but the reported study design could
have been prone to the anchoring psychological
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effect, in which decisions are affected by subject- and
situation-specific reference values.11 A recent work
with a similar experimental setup was also described
in the context of the design of porous organic cages.14

In this study we set to overcome those limitations
by adopting a strategy that is well-known in the con-
text of multiplayer games. We cast the goal of rank-
ing a set of molecules as a preference learning problem
and show that individual preferences can be captured
via pairwise comparisons with a simple neural net-
work architecture. 35 (wet-lab, computational, and
analytical) chemists at Novartis participated in the
study, with over 5000 annotations collected over sev-
eral rounds driven by an active learning approach.
We show that the learned implicit scoring functions
capture aspects of chemistry currently not covered by
other in silico chemoinformatics metrics and rule sets,
some of them derived from highly-optimized internal
annotations over years of cumulative know-how. We
furthermore exemplify their applicability in the con-
text of hit-to-lead compound prioritization and bi-
ased de novo machine-learning drug design. We also
show that the proposed learned scoring function can
better capture the concept of drug-likeness more ac-
curately than another widely used metric (QED). We
furthermore rationalize the learned chemical prefer-
ences by means of fragment analyses on a large public
compound database. Finally, so as to facilitate repro-
ducibility and foster additional research on this topic,
a software package (MolSkill), containing production-
ready models and anonymized response data, is made
available through a permissive license in an accompa-
nying code repository.

2 Materials

We organize this section by first describing the uni-
verse of participants in the study, as well as provid-
ing motivation on question design. We then provide
details on the overall evolution and stages of the pre-
sented study, as several preliminary rounds were car-
ried out to justify the main body of this work. Finally
we then describe the different datasets used and their
associated cleaning procedure.

2.1 User composition and question design

A total of 35 medicinal chemists from different sites
at Novartis participated in the presented study. These
included chemists from different geographical sites,
at different levels of seniority/expertise, and from
either a medicinal, organic, analytical, or computa-
tional chemistry background.

In regards to the question posed, and in the belief
that chemists develop an inherent sense of what con-

stitutes a desirable compound over their careers, we
set out to present a fairly simple, and intentionally-
ambiguous prompt: “Which of these two compounds
do you prefer?”. We asked chemists to imagine an
early virtual screening campaign setting (account-
ing for simple aspects such as oral availability and
small molecular profile, but no other modalities such
as covalency or bifunctional compounds) where they
needed to decide which compound to follow up be-
tween two. The question was designed so that par-
ticipants did not spend a significant amount of time
evaluating each presented pair of compounds, while
being generic enough so that one of the compounds
could be discarded according to a non-defined “gut
feeling” chemical preference. This could include drug-
likeness, synthetic accessibility or other criteria inher-
ent to the pair of the compounds presented in each
choice. We note that the question choice can be seen
as an oversimplification of the problem, and that in
other drug discovery scenarios, additional details on
the presented prompt would be needed for clarifica-
tion. Especially in real-life setups, these details would
typically include aspects like existing ADMET or ac-
tivity data, or bespoke predictive models for those
endpoints.

2.2 Evolution of the study

Over the course of the presented study, several rounds
were conducted. Two preliminary analysis rounds
consisting of 220 molecule pairs, with feedback re-
quested from 9 and 14 chemists at Novartis, respec-
tively, were carried out. Specifically, we mainly fo-
cused on measuring:

• To what degree the choices made by one chemist
agree with those made by their peers (i.e., inter-
rater agreement). This was evaluated with 200
different compound pairs. Intuitively this a direct
measure of whether there is a signal to be learned
by a machine-learning model.

• Whether chemists choices are self-consistent
(i.e., intra-rater agreement). In order to do so, we
included an additional redundant 20 compound
pairs, albeit in a random order and position on
the screen.

Additionally, we also studied whether there was
a bias towards choosing a compound depending on
its position (left/right) during annotation. After the
first initial preliminary round was completed, we had
received qualitative feedback from the chemists on
some of the presented pairs. Specifically some crit-
icism was expressed in regards to some pairs be-
ing inherently hard, as both compounds contained
clearly problematic motifs (e.g., “plague vs. cholera”
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Figure 1: Overall schematic of the main idea behind the study. Molecules are treated as players playing
competitive games against each other. The probability of one winning over the other is provided by feedback
as supplied by chemists. For this, the chemists are asked to select one or the other depending on a pre-specified
question prompt on a web application. An implicit score model is then learned based on this feedback, which
can later be used for downstream cheminformatics tasks.

pairs where both compounds featured known toxi-
cophores). These were then removed according to the
procedure detailed in Section 2.3. A second round
with identical number of pairs was subsequently car-
ried out. Note that in the first and second preliminary
rounds, all chemists were handed out the same pairs
(i.e., we performed inter-rater repetitions), so as to
adequately evaluate the points presented above. Af-
ter both preliminary rounds yielded satisfactory re-
sults (see Section 4.1), we set out for a production
run where we obtained over 5000 responses over the
course of several months. Furthermore, since a rea-
sonable degree of agreement between the chemists in
the preliminary rounds was observed, we forwent the
pair repetition requirement in the production runs
and considered all participating chemists as a single
labeling oracle.

2.3 Data retrieval, cleaning, and pair gen-
eration

For all purposes of the study, we use compounds
extracted from the publicly-available ChEMBL
database15 (version 30). Specifically, all compounds
considered in this study come from a pool where the
following filters were applied: their molecular weight
was between 200 and 1000 g mol−1, their drug like-
ness (QED)16 between 0.2 and 0.9 and up to 2 rule-
of-five violations.17 Additionally, all retrieved com-
pounds were checked so that they could successfully
be read by the RDKit package,18 and subsequently
standardized, which included removal of salts, tau-
tomer normalization,19 and atom neutralization via
O’Boyle’s nocharge code.20 For the second prelimi-

nary study round and subsequent production rounds
(see Section 2.2), the NIBR substructure filters were
also applied,21 and compounds with more than 10 ro-
tatable bonds or 3 fused rings were removed, which
resulted in a final pool of 1, 831, 052 molecules.

For the two preliminary study rounds, and for
the first round of the production stage, the com-
pounds present in the initial pool were grouped in
1000 clusters via the k-means algorithm, as imple-
mented in scikit-learn,22 and using binary extended-
connectivity fingerprints as molecular features. Pairs
were then selected by ensuring that their associated
clusters were not repeated within the same batch of
questions.

3 Methods

We begin by describing the user study design adopted
here, and then follow by providing details on the
neural network methodology applied to ranking com-
pounds based on implicit user feedback. We finally
describe the active learning strategy applied over the
different rounds of the study and briefly showcase the
developed platform for data collection.

3.1 Psychometric study setup

We considered a user study where interviewees were
presented with pairs of choices (i.e., compounds) to
select from. There were several reasons to consider
a pairwise experimental design in contrast to sim-
pler alternatives such as obtaining direct feedback on
individual samples. One of such advantages is that
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there is plenty of evidence from psychometric stud-
ies and decision theory suggesting that humans find
it inherently hard to sort items according to their
preferences,23 whereas making binary decisions is a
task that is in general easier.24–26 Additionally, it
also avoids user or situation-specific baseline biases:
humans are known to start labeling from an anchor
value that is then adjusted towards a final decision
in situations of uncertainty or stress. This has been
demonstrated to be a major issue in other user stud-
ies.27–31

3.2 Learning to rank

Our setting resembles that of preference learning by
pairwise comparisons.32 One naïve approach to tackle
the challenges raised by the proposed pairwise de-
sign is to try and induce a utility function based on
how many times a compound has been preferred over
others (or its proportion), and then frame this prob-
lem as a regular supervised regression task. The main
disadvantage of this procedure, however, is that it re-
quires the same compound to be present in several
comparisons in order to accurately estimate a prefer-
ence, which severely limits how much chemical space
we can explore given a finite amount of time provided
by the volunteer chemists. Instead, we take inspira-
tion from the ELO skill-based systems that were pop-
ularized by the rating schemas for zero-sum games
such as chess or backgammon,33 or more recently by
the TrueSkill algorithm34,35 as used by the Xbox Live
multiplayer videogame service. In the original setting,
the difference in ratings between two players served
as a function of the probability of one player winning
over the other. In our case, we consider the presented
molecules to the chemists as the “players” participat-
ing in our game, the main goal being to rank them36

(Figure 1).
Mathematically, given a (possibly incomplete) set

of molecules m1,m2, . . . ,mn ∈ M, and training data
consisting of k pairs of examples with binary prefer-
ence relations of the type mi ≻ mj (meaning that
mi was preferred over mj in a specific match), our
task is to infer a total ordering over all molecules in
M. Furthermore, such pairs do not need to specify
a complete ranking of the training data or be con-
sistent (i.e., satisfy transitivity). In order to do so,
we consider a function s : M → R, where we as-
sume that each molecule can be parameterized by
a latent score that can be learned by a sufficiently-
expressive model.37 Once this function has been ap-
proximated, it can be then used to impose a complete
order over already seen or new molecules. Denoting
by δij := ŝ(mi) − ŝ(mj) the learned latent score dif-
ference between molecules mi and mj , we estimate
p̂ (mi ≻ mj) := σ (δij), where σ is a sigmoid function.

To learn s, we then simply use standard stochastic
gradient descent and minimize a binary cross-entropy
loss between the probability estimates and the pref-
erence values in the training data. Since this loss is a
function of the learned δ values only, to ensure iden-
tifiability of the scores s, and to guarantee that these
are centered around the real origin, we use a regu-
larization term Lreg(ŝ;λ) := λ ∥ŝ∥2, where ∥·∥ is the
Euclidean norm and λ is a user-defined hyperparam-
eter. Empirically, we found that setting small values
λ ≃ 10−3 is enough to encourage the desired score
behaviour for our use case.

We chose to parameterize s as a standard feed-
forward neural network that uses 2048-bit count-
based extended connectivity fingerprints38 and a list
of two-dimensional descriptors computed via RDKit
as molecular input features. We train all models using
the Adam39 optimizer with an initial learning rate of
3 × 10−4. Additional molecular featurization and ar-
chitectural details are available in the accompanying
code repository to this study.

3.3 Active learning

To achieve the set goal of 5000 user responses in the
study, and to ensure we covered sufficient chemical
space, we considered a simple batched active learn-
ing approach.40,41 Specifically, every 1000 responses
we randomly sampled a large number of pairs from
the initial pool of compounds. These pairs were then
ranked according to their uncertainty, as estimated by
the variance of their predicted δij values using the the
Monte Carlo dropout method42 with a fixed rate of
0.2 and 100 predicted samples. Additionally, to ensure
that comparisons were not drawn between too many
compounds belonging to similar regions of chemical
space, we used the clustering strategy defined in Sec-
tion 2.3 and allowed up to one comparison between
any two clusters in each batch.

3.4 Platform deployment

A platform for questionnaire delivery was internally
developed at Novartis. Users were asked to select be-
tween pairs of compounds presented upon a prede-
fined question. The front-end was developed using
an intuitive ReactJSa web GUI that could be oper-
ated either via a computer or a touchscreen device.
A screenshot of the deployed interface is shown on
Figure 2. Special care was taken to ensure that the
same pair was not presented to different users. Re-
sults were internally stored in a remote PostgreSQL
database43 instance through a custom REST API de-
veloped with FastAPIb . The database was then peri-

areactjs.org
bfastapi.tiangolo.com
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Figure 2: Screenshot of the web interface used for
data collection during the study. Chemists were asked
to select which of two compounds they preferred ac-
cording to a prespecified question presented at the
top of the page.

odically exported to perform model training and run
analyses.

4 Results

We first focus on the evaluation of the results pro-
vided by the first preliminary rounds for the study,
which ultimately led us to pursue the subsequent
production-level runs. This is followed by a quan-
titative evaluation of predictive model performance
over the different rounds considered in the study. We
then proceed to explore several areas where we believe
the proposed scoring function can be practical. We
study the relationship of the learned scoring function
to other common in silico metrics in chemoinformat-
ics and evaluate whether it can distinguish between
chemical sets of different nature. We further inves-
tigate whether more precise learned chemical prefer-
ences can be rationalized via means of a fragment
analysis and, finally, exemplify the usage of the pro-
posed scoring function in biased molecular genera-
tion.

4.1 Preliminary analysis rounds

Results for the two preliminary rounds are summa-
rized in Table 1. As a measure for inter-rater agree-
ment, we consider the Fleiss’ κF coefficient44 among
the responses provided by the chemists in both pre-
liminary rounds. We measured κF1 = 0.4 and κF2 =
0.32 for the first and second round, respectively, and
concluded that there was a moderate agreement be-
tween the preferences expressed by the chemists. One
likely reason for the only moderate agreement is the
fact, that especially in cases where there is no clear-
cut preference, decisions were be driven by prior per-

Table 1: Intra-rater agreement, as measured by the
percentage of times chemists agreed with their previ-
ous choice on a pair and by the Cohen’s κ coefficient.
Left-right bias measured as the percentage of times
a rater chose the compound presented on one side of
the screen. Abbreviations: R1/R2: First/second pre-
liminary round of the study

Intra-rater Ag.
(%)

Intra-rater Ag.
(Cohen’s κ)

Left-right bias
(%)

Chemist Id. R1 R2 R1 R2 R1 R2

1 100.0 100.0 1*** 1*** 48.2 47.7
2 92.1 84.2 0.68*** 0.37* 47.2 54.5
3 86.8 78.9 0.49* 0.16 48.6 55.5
4 79.8 84.2 0.27 0.35* 54.6 48.2
5 85.1 92.1 0.37* 0.69*** 47.2 48.6
6 89.5 - 0.55** - 47.2 -
7 84.2 92.1 0.33 0.65*** 48.6 47.7
8 94.7 92.1 0.79*** 0.69*** 46.8 51.8
9 95.6 89.5 0.89*** 0.58*** 50.9 48.2
10 - 81.6 - 0.28 - 52.7
11 - 92.1 - 0.69*** - 53.2
12 - 92.1 - 0.69*** - 56.8
13 - 92.1 - 0.69*** - 50.9
14 - 89.5 - 0.58** - 51.8
15 - 94.7 - 0.79*** - 54.1

***p < 0.01, **p < 0.05, *p < 0.1

sonal experiences. Still, these results suggested that
there was a pattern to be learned by the responses
to the posed question. Using the redundant pairs
present in both preliminary rounds, we also evalu-
ated intra-rater agreement between the chemists us-
ing the Cohen’s κC coefficient. With κC1 = 0.6 and
κC2 = 0.59 for the first and second preliminary round,
respectively, we conclude that that in most cases,
all chemists displayed a fair degree of response con-
sistency. Additionally, no specific positional bias on
screen was detected for any of the preliminary par-
ticipants, with preferences reasonably close to the
expected random 50% baseline. Additional two-by-
two inter-rater agreement coefficients are presented in
Figure S1, from which we draw similar conclusions.

Overall, the results on the preliminary rounds sug-
gested that there was indeed a signal to be learned
from the opinions expressed by the chemists that had
participated in the study up to that point. These find-
ings convinced us to extend the study and continue
with the subsequently presented, larger production-
level runs.

4.2 Predictive pair preference perfor-
mance

In order to evaluate whether the trained model suc-
cessfully learned the preferences expressed by the
chemists, we iteratively measured its predictive per-
formance via the area under the receiver-operating
characteristic (AUROC) curve under different scenar-
ios (Figure 3). Specifically, we kept the data from
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Figure 3: Predictive performance of the proposed la-
tent score ranking model when evaluating which com-
pounds are preferred within each pair. Results pre-
sented at different train set sizes corresponding to the
associated active learning batches considered during
the study.

the preliminary rounds as external sets for validation
that are not used for model training or uncertainty
quantification during the active learning rounds. Ad-
ditionally, we also evaluated model performance via 5-
fold cross-validation after each labeled batch of 1000
samples. From the cross-validation results, a steady
pair classification performance improvement can be
observed as more data becomes available, starting
from 0.6 and surpassing 0.74 AUROC values at the
1000 and 5000 available pairs thresholds, respectively.
Interestingly, cross-validation results did not display
reaching a performance plateau even when evaluated
at the last available batch of responses, hinting that
performance could further be improved if more data
had been collected. Model results stayed relatively
stable around the 0.75 AUROC value when evalu-
ated on the preliminary round data, which could be
explained by the limited amount of pairs available
in these sets. Overall, these results suggest that the
model is able to correctly learn preferences as ex-
pressed by medicinal chemists in the current exper-
imental setup. For completeness, we also evaluated
to what degree different common molecular represen-
tations had an impact on model overall performance
(Figure S2, Table S1).

Figure 4: Correlation coefficients between several in
silico descriptors computed via RDKit and learned
compound scores in the training set. Results shown
for the 20 most correlated in silico metrics (in abso-
lute value).

4.3 Relationship to other in silico metrics

One of the main assumptions of the main question
presented to the participants in this study is that,
over the course of their careers, medicinal chemists de-
velop an expertise that is hardly quantifiable by other
existing in silico metrics. In order to evaluate whether
such is the case, we measure to what degree the
learned compound scores correlate with other ligand-
based properties that are commonly-used during opti-
mization (e.g., drug-likeness, topological surface area,
number of saturated rings). All properties considered
were computed with the RDKit software package. A
summary of the highest correlated properties (on an
absolute scale) in the training data is presented in
Figure 4. With Pearson correlation coefficients over-
all not surpassing the r = 0.4 threshold, we conclude
that the learned scores are in fact providing a perspec-
tive on molecules that is orthogonal to what can be
currently computed with other cheminformatics soft-
ware routines. Among the most correlated properties
we can find: drug-likeness,16 fingerprint density, the
fraction of allylic oxidation sites, atomic contributions
to the van der Waals surface area,45 or the Hall-Kier
kappa value.46 For completeness, an extensive list of
all of the properties computed as well as their corre-
lations to the learned scores is also provided in Figure
S3.

4.4 Discriminating between chemical sets

As a way of quantitatively evaluating whether the
learned scores can be used to deprioritize compounds
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Figure 5: (a-b) Distribution of MolSkill scores and QED values over three different molecular sets: ChEMBL,
a set of FDA-approved drugs as made available by DrugBank, and a random sample of the combinatorially-
generated GDB17 dataset. (c-d) ROC AUC curves for both MolSkill scores and QED values when tasked
to discriminate between molecules from either ChEMBL or FDA-approved drugs from GDB17-extracted
molecules

that could be seen as undesirable, we consider an ap-
proach similar to that one reported in the original
QED study.16 Specifically, we scored different sets of
molecules: a random subset of 30, 000 ChEMBL com-
pounds present in the original pool for this study, a
set of FDA-approved drugs as made available by the
DrugBank47 database, and a random subset of 10, 000
compounds extracted from the GDB17 database.48

Furthermore, we used the latter GDB17 compounds
as a control, since it was originally generated in a com-
binatorial fashion and should in practice also contain
molecules that do not exhibit drug-like properties.

Furthermore, to ensure that the molecules considered
in these analyses did not fall out of the applicabil-
ity domain of the trained model, we made sure to
apply the same filtering procedures as those detailed
in Section 2.3, resulting on 732, and 4889 analyzed
molecules for the FDA-approved drugs and GDB sets,
respectively. As a baseline method to compare the
learned scores with, we considered the standard QED
implementation as available on the RDKit package.
On Figure 5a, it can be observed that the distribution
of learned scores is clearly well separated between sets
better representing drug-like space (in other words
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those more apealing to medicinal chemists, i.e., Drug-
bank FDA-approved drugs and ChEMBL) against the
GDB17 set. QED scores (Figure 5b) on the other
hand, struggle at making such separation between the
three sets. While an three-way ANOVA test was per-
formed and the null hypothesis of equal mean values
was rejected for both methods with virtually zero p-
values (FMolSkill = 945.69, FQED = 178), receiver op-
erating characteristic curves to distinguish the drug-
like sets against GDB17 showed that only the pro-
posed learned scores were predictive enough in prac-
tice for this task (Figures 5c, d).

4.5 Exploring fragment preference

As means for interpretability towards what structural
information the proposed model has learned over the
course of the study, in this section we aim to disentan-
gle whether it has developed a preference for specific
molecular motifs. In order to do so, we make use of
the BRICS algorithm,49 as implemented in the RD-
Kit software, and compute all available leaf fragments
and associated model scores for each molecule present
in the training set. Since the fragments contained
an “attachment” atom type not seen during train-
ing, fragments were scored according to the average
scores of the compounds they were substructures of in
the training set. Additionally, to avoid biases related
to uncommon motifs or unexplored areas of chemi-
cal space, only fragments appearing a minimum of 5
times in the training set were considered in this analy-
sis. A small selection of the highest and lowest ranked
fragments is presented in Figure 6. Among the worst
ranked fragments we can observe undesirable groups
such as phenols, free acids, ketones, thioureas, al-
lyls, long alkyl chains, naphtyls, cumarines, Hantzsch
esters, quaternary amines, sugar-like structures or
highly-substituted rings. On the other hand, among
the best-ranked groups we can find many commonly-
used medicinal chemistry motifs such as pyrazine,
pyrimidine, sulfones, imidazoles, oxadiazoles, phenyls,
or bicyclic heteroaromatics. Qualitatively, this exper-
iment suggest that the proposed score has learned
patterns that are in line with groups present in ex-
isting drug-like molecules. The full set of fragments,
the frequency of their occurrence, as well as their as-
sociated score is provided in the accompanying code
repository to this work.

4.6 Biased molecular design

As a way of exemplifying how the implicitly-learned
scoring function may be applied in a realistic setting,
in this section we use it to bias a generative model to-
wards favorable regions of chemical space. We make
use of the GuacaMol baselines50 package and imple-
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Figure 6: Some fragment examples evaluated by the
learned scoring function. Fragments representative at
each end of the score distribution (lower is better)

mented a submodule with the proposed scoring func-
tion trained on all available rating data. We then
chose the pretrained SMILES-based LSTM genera-
tive model and the hill-climbing optimization strat-
egy51 to generate 500 molecules both maximizing and
minimizing the learned scoring function. Some gen-
erated molecule examples are presented in Figure 7.
Visually inspecting some of the examples maximized
by the scoring function, we can appreciate that the
model is assigning high scores (i.e., “unattractive”) to
compounds that feature long flexible chains, atypi-
cal groups such as phosphates or azides, conjugated
double bonds and reactive pieces, and overall higher
number of carboxylates and alcohols, among many
other non-drug like properties. On the other hand,
minimizing the learned scoring function results in a
reasonable mix of aromatic rings and aliphatic sp3

carbons, reasonably-sized fragments as well as several
typical groups featured in drug-like molecules. From
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Figure 7: Some molecular examples prioritized by the proposed implicit scoring function when paired with
a generative model. Results presented for both maximization and minimization of the learned score (lower
is better).

these qualitative analyses we conclude that the scor-
ing function has successfully captured a reasonable
degree of chemical intuition.

One caveat that we had experimentally observed
during molecular generation is that it was useful to
constrain or stop optimization of the scoring function
once it had reached values close to the limits to the
empirical distribution of learned scores (|ŝ| ≈ 9 using
the reported regularization strategy during training
in our sets). Not doing so resulted in a certain de-
gree of quirkiness and invalid molecules, which we at-
tribute to the generative algorithm overexploiting the
scoring function on regions of chemical space that it
had not previously observed during training. Addi-
tional details on the generative model and optimiza-
tion hyperparameters are made available in the ac-
companying code repository to this work.

4.7 Qualitative score assessments on
ChEMBL

While the quality of the generated molecules indi-
cate a high relevance of the proposed scoring func-
tion for de novo drug design, we furthermore quali-
tatively evaluated its usefulness to filter out undesir-
able compounds. This was studied especially in the
light of existing rule-based approaches, such as the
NIBR filters,21 which are routinely used to depriori-

tize and flag problematic compounds before consider-
ation. Ideally, our goal was to rationalize compound
features not necessarily captured by such methods
currently, but that are at the same time considered
as undesirable by medicinal chemists. Towards this
goal, we manually reviewed molecules from the ini-
tial pool, which had been already filtered with simple
properties as well as with the aforementioned rules,
and then visually inspected ones that were assigned a
high score by the proposed function. Figure 8 shows
four of such compounds. While there are some fea-
tures that could be described as unattractive and can
be captured with a generic SMARTS pattern (e.g.,
the terminal alkene in compound b, or the aromatic
nitro group in compound c), the overall “unattractive-
ness” seems to be driven by more general properties.
Based on our subjective opinion, among others these
seem to include compound complexity (c and par-
tially a), a mix of flexibility and feature-richness (b
and d), or the distribution of features (b). While the-
oretically possible, defining such rules explicitly is a
difficult task and is unlikely to capture all undesirable
cases.

5 Discussion

In this work, we have proposed and described the
development of a machine-learned scoring function
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NIBR filters but effectively deprioritized by the
learned score (9 or higher).

of human preference in the context of early drug
discovery campaigns. We have done so by adapt-
ing the well-known framework of player ratings to
a pairwise learning-to-rank experimental design be-
tween molecules. In order to do so, we have inter-
nally deployed a large user study at Novartis, where
the expertise of 35 medicinal chemists was taken into
account. To the best of our knowledge, this is the
first study of its kind, where we show that such ex-
pertise can be successfully learned by a latent score
machine-learning model. Such scores have been shown
to be providing additional or orthogonal informa-
tion to what can be obtained by other common in
silico ligand-based properties or substructure-based
fragment definitions. We furthermore exemplify the
utility of such modeling approach in several routine
cheminformatics tasks, such as the deprioritization of
compounds currently not flagged by well-known rule-
based approaches, or biased biased molecular design
via a generative ML model. We furthermore ratio-
nalized and motivated what the model has learned
by means of a fragment analysis on a large set of
compounds and show that it outperforms a popular
quantitative measure of drug-likeness at distinguish-
ing chemical sets of different nature.

We see the utility of the proposed model to go be-
yond what is proposed in the current study. Specifi-
cally, we believe that there is potential to extend the
discussed setup for other observables in drug discov-
ery that are inherently quantifiable but expensive to
obtain experimentally (e.g., compound stability cal-
culations). Additionally, we believe it could provide
insights into unexplored regions of chemical space
currently ignored when applying simpler mnemon-
ics such as Lipinski’s rule of five.52,53 With that in
mind, we believe that “soft” versions of some pop-
ular rule-based filters can be learned by artificially
generating training pairs alongside a similar archi-

tecture as the one proposed. Such models could po-
tentially overcome the main limitation of having to
pre-filter compounds before inference so as to avoid
out-of-distribution risks. Another main limitation of
the study relates to the simplicity of the question
asked during data collection, which was left intention-
ally vague to capture chemical intuition on a timely
manner. Ultimately, whether the proposed function
can be successfully used as an aid to experts at any
stage in the drug discovery process, and especially
in a prospective fashion, remains a topic of further
study.

Data & code availability
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were trained using the PyTorch automatic differentiation li-
brary (version 1.11).
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