
 1 

 Catalytic Activity Maps for Alloy Nanoparticles 

Liang Cao1,*, Tim Mueller2,* 

 

 

1Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 

310058, P. R. China 

2Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, 

Maryland 21218, United States  

 

  



 2 

Abstract 

To enable rational design of alloy nanoparticle catalysts, we develop an approach to generate 

catalytic activity maps of alloy nanoparticles on a grid of particle size and composition. The 

catalytic activity maps are created by using a quaternary cluster expansion to explicitly predict 

adsorbate binding energies on alloy nanoparticles of varying shape, size, and atomic order while 

accounting for interactions among the adsorbates. This cluster expansion is used in kinetic Monte 

Carlo simulations to predict activated nanoparticle structures and turnover frequencies on all 

surface sites. We demonstrate our approach on Pt–Ni octahedral nanoparticle catalysts for the 

oxygen reduction reaction (ORR), revealing that the specific activity is predicted to be optimized 

at an edge length of larger than 5.5 nm and a composition of about Pt0.85Ni0.15 and the mass activity 

is predicted to be optimized at an edge length of 3.3 nm – 3.8 nm and a composition of about 

Pt0.8Ni0.2. 

 

Keywords: rational design, intermetallic, solid-solution, cluster expansion, density functional 

theory, Pt–Ni catalysts, oxygen reduction reaction  
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Introduction 

Alloy nanoparticles are well suited to be catalysts due to their high surface to volume ratios and 

the abundance of ways in which the structures and properties of the catalysts can be tailored.  

Various experimental synthesis strategies (e.g., core-shell1, doping2-4, shape-engineering5) have 

been used to improve the catalytic activity and stability of alloy nanocatalysts, but to limit the 

number of costly and time consuming experiments that must be done there is great interest in 

rational nanocatalyst design. Unfortunately, computational design of alloy nanocatalysts remains 

a significant challenge due to their size and complexity. Density functional theory (DFT)6 

calculations in standard implementations scale with the number of valence electrons as O(N3),7 

limiting the diameter of nanoparticles that can be practically modelled to about 2–3 nm, below the 

typical diameters (4–10 nm) of particles evaluated experimentally.2, 4, 5, 8, 9  In addition, the 

arrangement of atoms in a substitutional alloy can dramatically affect its catalytic properties,10, 11 

making the computational prediction of the atomic structure of the catalyst a critically important 

step in the design process.  Predicting the structure of a substitutional nanoalloy either through 

thermodynamic2, 12-14 or kinetic3, 15, 16 modelling requires the evaluation of the energies of a large 

number of candidate structures, where the energy differences between competing alloy structures 

can be on the order of meV / atom.17  The design of alloy nanocatalysts is further complicated by 

the need to accurately predict adsorbate binding energies, an important descriptor of catalytic 

activity, on a variety of possible adsorption sites. 

Various approaches have been used to computationally predict the structures and properties of 

alloy nanocatalysts.  One strategy is to study nanoparticles that are small enough (~2 nm in 

diameter) to be modeled using DFT.2, 18-20  However the cost of DFT calculations limits the number 

of structures that can be evaluated this way, and this approach cannot in practice be used to model 
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particles of typical experimental sizes.  Alternatively, nanoparticle facets may be approximated as 

extended surfaces, on which adsorbate binding energies can be calculated using DFT.3, 11, 21, 22  The 

disadvantage of this approach is that it does not fully account for the variety of binding sites, 

including sites near edges and vertices, on a nanoparticle surface.   

Due to the cost of directly using DFT, there has recently been significant interest in developing 

fast and accurate surrogate models for nanocatalysts.  Calle-Vallejo et al.23, 24 developed an 

approach in which the *OH and *OOH adsorption energies on Pt nanoparticles were linearly 

correlated with the generalized coordination number (GCN) of the surface binding site, which 

takes both the first- and second-nearest neighbors into account. The GCN model has inspired the 

rational design of highly active monometallic nanoparticles with varied shapes25-28 and has also 

been used to model the strain effect by introducing the interatomic distance difference between 

surface and bulk metal atoms.29 Jinnouchi et al.30 developed a machine-learned interatomic 

potential model based on the smooth overlap of atomic positions (SOAP) kernel31 to predict 

structures, catalytic activities, and N, O, and NO adsorption energies for fixed-shape Au–Rh 

nanoparticles with varied sizes.  For catalysts with structures that can be mapped to a lattice model 

(e.g., an fcc lattice), formation energies can be accurately calculated using cluster expansions.2, 3, 

13, 19, 20, 32 This approach can be extended to the calculation of adsorption energies by including 

coordination-number-dependent and metal-specific correction terms into DFT-parametrized 

cluster expansions3, 15, or by explicitly including adsorbates in the cluster expansion as a separate 

species.14   

Here we present the use of machine-learned cluster expansions to computationally screen 

nanocatalysts of experimentally relevant sizes and identify those that are expected to have high 

activity.  We demonstrate this approach on Pt–Ni nanoparticle catalysts for the oxygen reduction 



 5 

reaction (ORR), which have been extensively studied as promising catalysts in fuel cells.5, 8, 33  We 

use the adsorption energy of OH as a descriptor of catalytic activity, as it has been shown to be an 

accurate descriptor,34, 35 and in operating conditions OH is likely to be the most prevalent species 

on the alloy surface.36 By explicitly including OH in the cluster expansion we realistically account 

for adsorbate-adsorbate interactions (See Methods).  Catalytic activity is then predicted using 

kinetic Monte Carlo (KMC)37, 38 simulations to calculate the turnover frequencies on all surface 

sites. Applying this approach to particles over a range of compositions and sizes yields catalytic 

activity maps for the ORR that indicate the optimal size, composition, and phase of the Pt–Ni 

nanoparticles, an important step towards the rational design of alloy nanocatalysts.   

 

Results and Discussions  

We start by validating our approach for predicting activities against experimental data.  

Experimentally, the measured specific and mass activities of Pt–Ni nanocatalysts are usually 

referenced to those of state-of-the-art commercial Pt/C.3, 5, 15 To simulate this reference state, we 

have calculated size-weighted activity averages according to the diameter length distribution of 

commercial Pt/C used in our previous work (Table S2).15  Based on the Wulff construction of Pt14, 

we chose a truncated octahedron as the shape of Pt nanoparticles. Our KMC simulations predict 

the specific activity of the Pt(111) surface (Table S3) to be about 3.8 times relative to that of 

commercial Pt/C, which is in good agreement with experiments (5 – 10 times).39, 40  We further 

validated our approach for predicting catalytic activities by comparing experimentally measured 

and KMC-predicted activities for two representative Pt–Ni octahedral particles (Table 1).3, 15 The 

simulated structures of these particles were matched to experimental data as described in 
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references 3, 15. The comparison suggests that our approach slightly overestimates the activities 

of the Pt–Ni nanoparticles, relative to Pt/C, by a factor of about 1.3 – 1.7. One possible reason for 

this overestimation is the underestimation of the activity of the Pt/C reference state, which may be 

due to the limited number of Pt particles used to estimate the size distribution of commercial Pt/C.15 

If the estimated size distribution of commercial Pt/C15 is too heavily weighted towards small 

particles, the activity of the Pt/C reference state would be underestimated as the specific activity 

of Pt particles increases as a function of size (Table S2). Another possible source of error is the 

uncertainty of the peak position of Sabatier volcano plot, combined with errors inherent in DFT 

when calculating adsorption energies.41 The exact value of the peak position of volcano plot is not 

well defined, and this uncertainty exponentially affects the predicted specific activity of Pt 

particles.41 For example, if the peak position relative to calculated DFT values were shifted 10 

meV to the left, the predicted specific activity of Pt/C would increase by a factor of about 1.5. 

More details on the specific activities of the Pt(111) surface and representative Pt–Ni(111) surfaces 

are provided in the Supporting Information (Table S3, and Figure S4 and S5).   

Table 1. Validation of the approach for predicting activities of alloy nanoparticles. 

Comparison of the experimentally measured and KMC predicted specific and mass activities of 

two representative Pt–Ni octahedral particles. “before KMC” and “after KMC” mean before and 

after the simulation of Ni dissolution, respectively. The specific and mass activities were predicted 

on the snapshots of Pt–Ni particles after KMC (Ni dissolution). The experimental and predicted 

values are referenced to those of commercial Pt/C, respectively. 

References Pt–Ni octahedral particles specific activity  

based on Hupd 

mass activity 

 before KMC after KMC experiment prediction experiment prediction 

Jia et al.15 Pt4495Ni1680 Pt4495Ni895 10 16.90 6.88 11.03 

Cao et al.3 Pt4045Ni2130 Pt4045Ni1078 13.33 17.65 9.29 12.67 
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To predict the catalytic activity of a nanoparticle it is first necessary to predict the nanoparticle 

structure. Pt–Ni nanoparticles used as ORR catalysts in proton exchange membrane (PEM) fuel 

cells typically start as disordered Pt–Ni solid solutions that achieve a Pt-rich shell through an 

activation process3, 15 which is usually done by performing cyclic voltammetry (CV) in N2-

saturated 0.1 M HClO4.2, 3, 15 Under such acidic treatment, surface Ni oxides will dissolve and 

surface Pt/Ni atoms will migrate.3, 15 42 To construct realistic nanoparticle structures, we initialize 

the particle as a fully disordered solid solution and simulate the activation process using KMC 

simulations that account for the presence of OH adsorbates, as described in our previous work.3, 15  

This approach has been shown to yield activated particles that agree well with experiments3, but it 

does not fully account for possible additional dissolution and restructuring that may occur over the 

much longer time scales of the catalyst lifetime.4, 5, 43, 44  We predict 6175-atom (~5.5 nm) 

nanoparticles with initial (pre-activated) Ni compositions of 40%, 30%, 20% and 10% lose about 

40.0%, 34.9%, 31.2% and 28.0% of their Ni, respectively (Figure S6).   

Once we have predicted the structure of a nanoparticle, we evaluate catalytic activities by using 

KMC to estimate the turnover frequency for each adsorbed OH.  Specific and mass activities are 

then calculated by dividing the sum of turnover frequencies by the number of surface Pt atoms and 

the number of total Pt atoms, respectively.  We construct catalytic activity maps (Figure 1) by 

repeating this process on a grid with respect to composition and particle edge length (as determined 

by the pre-activated particles).  At each point on this grid, we sample 10 structures to reduce noise 

introduced by the stochastic determination of the nanoparticle structure. The resulting catalytic 

activity maps for Pt–Ni octahedral nanoparticles (Figure 1) reveal that specific activity increases 

with particle edge length and starts to plateau at an edge length of about 5.5 nm, reaching a 

maximal value of about 28 times that of Pt/C when the initial (pre-activated) nanoparticle has a 
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composition of about Pt0.85Ni0.15 (Figure 1a).  The mass activity is optimized at a composition of 

about Pt0.8Ni0.2 and an edge length of 3.3 nm – 3.8 nm (Figure 1b).  

 

Figure 1. Size-composition catalytic maps of disordered Pt–Ni nanoparticles. a Predicted 

specific activity of activated particles. b Predicted mass activity of activated particles.  The x-axis 

is the Pt composition before KMC (pre-activation) with an increment of 5%, and the y-axis is the 

edge length before KMC. All specific and mass activity values are referenced to those of simulated 

commercial Pt/C (see details in section 5 of the Supporting Information).  

 

Comparison of our calculations to experimental results is challenging as there have been few 

reports of systematic experimental studies on size and composition effects in Pt–Ni particles.  

Experimentally, the highest reported mass activity for Pt–Ni nanoparticles by Younan Xia et al.45 

is about 17 times that of Pt/C.  This result was achieved on octahedral Pt0.72Ni0.28 particles with an 

edge length of about 9 nm, but results on other sizes and compositions were not reported in that 

work.  The solvent used in the synthesis of the nanoparticles was found to change the mass activity 

by a factor of two, highlighting the importance of factors beyond size and composition in 

determining particle activity.  Alonso-Vante et al. studied composition effects in nanoparticles 
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with diameters of 2–3 nm.46  The variation of particle size with composition among the samples 

complicates the analysis of mass activity, but specific activity was found to have a broad peak 

around a composition of about Pt0.7Ni0.3.  This is consistent with our prediction for 3.3 nm particles, 

which shows broad peaks with maximal activity at a composition of around Pt0.8Ni0.2 and only 

slightly less activity at a composition of Pt0.7Ni0.3 (Figure S7a). More recently, 4.5–7.5 nm (in edge 

length) Pt–Ni nanoparticles with a pre-activated composition of Pt0.6Ni0.4 were reported by Zhang 

et al. to be more active than particles with a pre-activated composition of Pt0.75Ni0.25.47  The highest 

mass activity for the Pt0.6Ni0.4 particles was observed to occur for particles with an edge length of 

5.8 nm, whereas the mass activity of the Pt0.75Ni0.25 nanoparticles showed relatively little change 

with particle size and was maximized for the largest particles.  On the other hand, for pure Pt small 

nanoparticles (~2–3 nm in diameter) have been shown to maximize mass activity.48, 49 

The size and composition at which we predict catalytic activity to be maximized are similar to 

those observed experimentally, but the experimental results suggest that peak activity occurs for 

nanoparticles with initial compositions that are more Ni-rich than those predicted by our models.  

This difference can be partially explained by the amount of Ni dissolution in the particles.  For 

example, Zhang found that Pt0.6Ni0.4 nanoparticles with an edge length between 4.5 nm and 8.0 

nm lost about 60% of the Ni in the particle after activation, but Pt0.75Ni0.25 nanoparticles with an 

edge length between 4.5 nm and 7.5 nm only lost about 25%.47  As a result, the post-activated 

nanoparticles evaluated experimentally had nearly the same composition regardless of their initial 

compositions.  In contrast, for disordered particles with an edge length of 5.5 nm our simulations 

predict 40% Ni loss for Pt0.6Ni0.4 and 32% Ni loss for Pt0.75Ni0.25.  Thus the post-activated Pt0.6Ni0.4 

nanoparticle has more Ni than the post-activated Pt0.75Ni0.25 nanoparticle, which weakens OH 

adsorption and leads to lower catalytic activity (Figure S8).  Maps of predicted specific and mass 
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activities for Pt–Ni nanoparticles as a function of the post-activated composition of the 

nanoparticle are provided in Figure S9.  It is also possible that the particles undergo additional 

structural evolution after activation4, 5, 43, 44 that is not captured by our simulated activation process. 

We have found that in pure Pt and Pt-rich (111) surfaces, density functional theory predicts sub-

surface vacancies to be significantly more stable than surface vacancies, by about 0.5 – 1 eV (Table 

S4).  We believe this is likely related to reports that DFT significantly underpredicts bulk vacancy 

formation energies in Pt.50, 51 Fortunately, this inherent error of DFT is mitigated by using the 

cluster expansion, which predicts much smaller differences between surface and sub-surface 

vacancies (Table S4). This may be a feature common to local energy models, as similar behavior 

has been observed in interatomic potentials trained by DFT – for some metals (including Pt) they 

predict vacancy formation energies more accurately than DFT does.52, 53 The nanoparticle 

structures generated by our KMC calculations had a concentration of sub-surface vacancies below 

flat (111) surfaces of about 0.1% (Figure S10a). Most of the sub-surface Pt vacancies exist in the 

2nd layer of the activated disordered particles. If this concentration is too high due to errors inherent 

in DFT, the resulting over-stabilization of Pt-rich (111) surfaces provides a possible explanation 

for the apparent under-prediction of Ni dissolution. There is evidence that the initial Pt 

concentration in Pt–Ni particles is greater near the particle edges,5, 8 which may also explain the 

discrepancy between our predictions and experimental results.  To investigate this possibility, we 

ran simulations on disordered Pt–Ni particles initialized with different degrees of Pt-rich edges.  

This process is described in detail in section 11 of the Supporting Information. We observed little 

change in the composition that is predicted to maximize activity (Figure S11), indicating that the 

initial distribution of Pt and Ni atoms cannot fully explain the slight difference between our 

calculations and experiments. 
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The calculated catalytic activity maps provide insights into the atomic origins of catalytic 

activity trends for alloy nanoparticles.  At a composition of Pt0.85Ni0.15, which is predicted to yield 

nearly optimal specific activity, the specific activity increases as the edge length increases from 

2.1 nm to 5.5 nm, and then starts to plateau when the edge length is larger than 5.5 nm (Figure 

2a).  This behavior can be largely attributed to the fraction of surface Pt atoms that are at sites with 

a GCN larger than  6.667, denoted as Pt(111) sites (Figure 2a).  The average turnover frequencies 

are predicted to be maximized at these sites (Figure 3b-e and Figure 4e), as sites with lower GCN 

are effectively poisoned by strongly bound *OH.  Comparison of the adsorption energies and 

turnover frequencies for steady-state OH coverage with those on clean nanoparticles (Figure S12) 

indicates that interactions between adsorbed *OH systematically weaken the OH binding energies 

on Pt(111) sites and decreases the turnover frequency.  

The fraction of Pt(111) sites on the surface reaches a plateau of about 0.72 at an edge length of 

about 5.5 nm (Figure 2a), with the remaining surface Pt atoms on edge sites, vertex sites, near step 

edges, or near sub-surface vacancies (Figure 3b).  This is in contrast to the expected behavior for 

an octahedral particle, in which the fraction of (111) sites should increase monotonically with 

particle size (Figure 2d). This observation indicates that when the pre-activated edge length gets 

larger than about 5.5 nm, any size-dependent increase in the density of Pt(111) sites on the surface 

is offset by an increase in the density of step edges (or other defects) on the surfaces of activated 

particles (Figure S13).  Other factors, such as the second-layer composition (Figure S13 and S14b, 

and Table S6) are not as well correlated with specific activity.   
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Figure 2. Size effect on specific and mass activities of Pt–Ni particles. a Predicted specific 

activity and ratio of the number of surface Pt(111) sites (GCN ≥ 6.667) to the number of total 

surface Pt atoms of disordered Pt0.85Ni0.15. b Predicted mass activity and ratio of the number of 

surface Pt(111) sites (GCN ≥ 6.667) to the number of total Pt atoms of disordered Pt0.85Ni0.15. c 

Predicted specific activity of disordered Pt0.85Ni0.15 and intermetallic Pt–Ni particles at the Pt and 

Ni chemical potentials that maximize the specific activity of 5.5 nm particles.  The red line 

represents the Pt29Ni7(111)@298K surface with 100%, 75%, 75%, and 75% in the first, second, 

third, and fourth layers.12  d Ratio of the number of surface Pt(111) atoms  (GCN ≥ 6.667) to the 

number of total surface Pt atoms of activated disordered Pt0.85Ni0.15 (labeled as “activated particles”) 

and octahedral particles. All specific activity and mass activity values are referenced to those of 

simulated commercial Pt/C.  
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Figure 3. Layer-by-layer snapshots of disordered and intermetallic Pt–Ni particles. a A 

snapshot of disordered Pt0.85Ni0.15 nanoparticle with randomly occupied Pt/Ni atoms. b, c, d, e The 

first (b), second (c), third (d), and fourth (e) layers of a snapshot of activated disordered Pt0.85Ni0.15 

nanoparticle after KMC simulation of Ni dissolution and Pt/Ni migration at 298 K. f, g, h, i The 

first (f), second (g), third (h), and fourth (i) layers of a snapshot of intermetallic Pt0.82Ni0.18 

nanoparticle after Metropolis Monte Carlo simulation at 298 K.  
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Figure 4.  Predicted *OH binding energy and turnover frequency. a, b, c The average *OH 

binding energy on each surface site of three representative nanoparticles with an edge length of 

~5.5 nm: Pt (a), disordered Pt0.85Ni0.15 in Figure 3b-e (b), and intermetallic Pt0.82Ni0.18 in Figure 

3f-i (c). d, e, f The corresponding average turnover frequency on each site. Binding energies and 

turnover frequencies are referenced to those at the peak of the volcano plot and are averaged over 

the KMC recording steps.  Corresponding histograms of binding energies and turnover frequencies 

are provided in Figure S23 and S24.   

 

At the composition of Pt0.85Ni0.15, mass activity is predicted to increase as the edge length 

increases from 2.2 nm to 3.3 nm, and then it decreases as the edge length increases further (Figure 

2b). The low mass activity at small sizes can be explained by the prediction that OH binding on 

Pt(111) sites becomes stronger at small particle sizes (Figure S15), consistent with DFT-calculated 

results that oxygen binding becomes stronger as the size of nanoparticle size decreases.49  At larger 
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sizes, the change in the *OH binding energy slows,54 and the ratio of surface Pt(111) sites to the 

number of total Pt atoms becomes a more important factor in determining the size-dependent mass 

activity, leading to decreased mass activity (Figure 2b). 

The highest reported specific activity for a Pt–Ni catalyst is on the extended Pt3Ni(111) surface 

36, which is likely to be at least partially ordered in the thermodynamically stable L12 intermetallic 

phase.55 We have thus also investigated an alternative hypothetical scenario, in which 2.2–9.9 nm 

octahedral nanoparticles are initialized with thermodynamically stable atomic ordering as 

determined using Metropolis Monte Carlo simulations56 (described in detail in section 15 of the 

Supporting Information). The particles are estimated to maintain their octahedral shape due to their 

thermodynamic stability and the kinetic protection provided by the well-ordered Pt shell; this is 

supported by the fact that there is almost no Ni dissolution and shape change after running KMC 

on these intermetallic nanoparticles at 298 K.   Within the chemical potential window in which 

bulk Pt3Ni is stable, maximal specific and mass activities are achieved in intermetallic 6175-atom 

(~5.5 nm in the edge length) particles with a composition of about Pt0.82Ni0.18 (Figure S16a). These 

particles have an L12-ordered core (Figure 3f-i and Figure S17 and S18) and a Pt monolayer skin, 

in good agreement with the bulk phase diagram55, 57 and previous calculations.2, 13 Although 

intermetallic Pt0.82Ni0.18 particles and disordered Pt0.85Ni0.15 nanoparticles both have a Pt skin 

(Figure 3b, f), the activities of the intermetallic particles are much more sensitive to the overall 

particle composition than the activities of the disordered particles, as changes in the composition 

of the intermetallic particles largely occur through changes in the composition of the near-surface 

layers (Figure S17 and Table S7).   

  To investigate the size effect on specific and mass activities of intermetallic particles we set 

the chemical potential difference between Pt and Ni to that which maximizes activity in the 6175-
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atom particles, resulting in an ordered L12 structure at all subsurface layers for particles with edge 

length larger than 3.3 nm (Figure 3f-i and Figure S18). For smaller particles, similar atomic 

structures have been observed but with slightly lower Pt content in sub-surface layers (Figure S19 

and Table S8). The predicted specific activity and mass activity of intermetallic particles reaches 

a maximum value at about 2.7 nm edge length (Figure 2c and Figure S20). This peak can be 

explained by the fact that the average *OH binding energy on (111) sites for intermetallic particles 

increases with particle size and crosses over the volcano plot peak at about 2.7 nm (Figure S21). 

The predicted specific activity eventually converges to that of the extended Pt29Ni7(111) surface, 

which is predicted to be about 24 times that of commercial Pt/C (Figure 2c).  Thus in the limit of 

large particle sizes the intermetallic nanoparticles are predicted to be less active than the most 

active activated disordered particles (Figure 2c). This observation can be explained by the fact 

that the second-layer Pt content is predicted to be lower in these intermetallic particles (Figure S19 

and Table S8) than that in disordered particles (Figure S14 and Table S6) due to the dissolution of 

Ni atoms from the disordered particles.  The relatively Pt-rich second layer in the disordered 

particles increases the strength of *OH adsorption and increases catalytic activity.  This suggests 

that the additional stability that may be gained through the synthesis of intermetallic nanoparticles 

may come at the cost of slightly reduced activity. 

We choose to model the octahedral shape for Pt–Ni nanoparticles because the (111) facets of 

the octahedra are highly active for the ORR. However one of the benefits of our approach is that 

it can be applied to a variety of shapes, reflecting the diversity of nanoparticle shapes that have 

been experimentally synthesized5, 58-66 and theoretically investigated. 3, 15, 26-28, 59, 67  To investigate 

the effect of particle shape on catalytic activity, we have modeled the specific and mass activities 

of 6000-atom particles with octahedral, tetrahedral, spherical, and ellipsoidal shapes (Figure S22). 
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These calculations reveal that the (111)-rich tetrahedral and octahedral particles are predicted to 

have the highest activities, with the octahedral particle having slightly higher specific activity but 

the tetrahedral particle having higher mass activity.    

 

Summary and Conclusions  

Computational design of alloy nanocatalysts is challenging due to the need to predict 

nanoparticle structures, atomic ordering, adsorbate binding energies, adsorbate-adsorbate 

interactions, and kinetic evolution.  We have demonstrated a novel approach using an accurate 

surrogate model trained on DFT calculations to address all of these challenges, enabling the 

construction of computationally-generated size-composition activity maps for Pt–Ni nanoparticles 

for the oxygen reduction reaction.  The optimal size and composition predicted by these maps are 

close to those reported experimentally but slightly more Pt rich (before activation), which may be 

due to the underprediction of the amount of Ni that is lost to dissolution.  One possible reason for 

this underprediction is that density functional theory predicts subsurface vacancies on Pt(111) to 

be about 1 eV more stable than surface vacancies.  This surprising result is likely related to the 

well-established problems DFT has in predicting accurate Pt vacancy formation energies.   

Our analysis of site-specific OH binding energy and turnover frequency on Pt–Ni nanoparticles 

demonstrates that surface sites with low generalized coordination number (GCN<6.667), such as 

edge and vertex sites, are highly inactive due to strong OH binding; while surface Pt(111) sites 

(GCN≥6.667) are relatively more active.  The fraction of these Pt(111) sites on the surfaces of 

activated nanoparticles does not grow as quickly as expected with increasing particle size, likely 

due to the presence of step edges and other defects.  In the limit of large particle sizes, the activated, 
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disordered nanoparticles are still predicted to have slightly higher specific activity than 

intermetallic Pt3Ni with an L12-structured second layer due to lower Ni content in the second layer.  

At smaller particle sizes, well-ordered particles may have an advantage as they are predicted to be 

more resistant to Ni dissolution and thus may be better able to maintain the (111)-rich octahedral 

shape.  However these predictions may not bear out in practice if Ni dissolution from either the 

disordered or intermetallic particle is greater than what we have modeled. 

The comprehensive and systematic approach presented in this work has been demonstrated on 

Pt–Ni catalysts but is well suited to study other alloy systems (or multicomponent materials) and 

other catalytic reactions, especially those for which the binding energies of simple adsorbates have 

been established as accurate descriptors.  The key to modeling these complex systems is to develop 

an accurate surrogate model, which has become increasingly feasible through advances in machine 

learning.  Such models enable researchers to address problems with scale and complexity beyond 

those achievable with purely ab initio methods but with comparable accuracy. We believe this 

approach will be a valuable tool for computational chemists to conduct the rational design of alloy 

nanocatalysts.  

 

Methods 

Density functional theory (DFT) calculations 

DFT calculations were run using the Vienna Ab Initio Simulation Package (VASP)7 and the 

revised Perdew-Burke-Ernzerhof (RPBE) exchange-correlation functional.68 The Ni, Pt_pv_GW, 

H_GW, and O_GW PBE projector-augmented wave (PAW)69 potentials provided with VASP  

were used. VASP was run with accurate precision with a plane wave cutoff energy of 434 eV, at 
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which the surface energy of 9-layer Pt(111) converges within 1 meV/Å2 and the *OH binding 

energy on the top site of 9-layer Pt(111) converges within 10 meV. The Brillouin zone was 

sampled using a single k-point at the Г point for DFT calculations of nanoparticles and gas-phase 

molecules. All DFT-calculated nanoparticles with fewer than 300 metal atoms were contained in 

a cubic cell with a lattice parameter of 28.8 Å, and Pt338 and Pt483 particles were contained in a 

cubic cell with a lattice parameter of 32.4 Å, to make sure that the vacuum layers between particles 

were larger than 10 Å. The vacuum layer for 9-layer Pt–Ni slabs was set as 9 equivalent layers of 

vacuum spacing (about 20 Å).  For crystals the Brillouin zone was sampled using grids generated 

by the k-point grid server70 with a minimum distance of 46.5 Å between real space lattice points 

for DFT calculations of slab and bulk materials. Spin polarization was taken into account in the 

calculations and the Methfessel–Paxton method71 of order 2 was employed to determine electron 

occupancies with a smearing parameter of 0.2 eV. Real-space projectors were used to evaluate the 

non-local part of the PAW potential. The convergence criteria for the electronic self-consistent 

iteration and the ionic relaxation loop were set to be 10-4 eV and 10-3 eV, respectively.   

Calculation of *OH binding energies 

The *OH binding energy ( OHE ) on the surface site, i, of a nanoparticle was calculated as  

 ( ) ( ) ( ) ( )* *

2 2NP+k OH NP+(k 1) OH 0.5 H H O ,OH DFT DFT DFT DFTE E E E E = − − + −   (1) 

where ( )*NP+n OHDFTE  is the DFT energy of the nanoparticle with k adsorbed *OH, 

( )*NP+(n 1) OHDFTE −  is the DFT energy of the same nanoparticle with one *OH on site i 

removed, and ( )2HDFTE  and ( )2H ODFTE  are the DFT energies of gas-phase H2 and H2O. By this 
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definition, more negative values of OHE  indicate stronger binding between *OH and the surface 

of the nanoparticle.  

Cluster expansion construction 

Cluster expansions are generalized Ising models commonly used to model atomic order,72 in 

which the “spin” variables assigned to each site in an Ising model is replaced by “site” variables 

that indicate which species (or vacancy) is present at each site.32 They are capable of very rapidly 

and accurately predicting the energies of different arrangements of atoms and vacancies, and they 

can be applied to bulk materials73, 74, extended surfaces12, 55, and nanoparticles.3, 14 A detailed 

overview of the fundamentals and applications of cluster expansions, with a focus on nanoparticles 

and surfaces, is provided in reference 75.  

The Pt–Ni–Vacancy cluster expansion built on a bulk fcc crystal lattice included 341 distinct 

cluster functions and was trained on 201 structures using the Bayesian approach76 with a 

multivariate Gaussian prior distribution, resulting in a leave-one-out cross validation (LOO CV) 

error of 2.2 meV per atom relative to DFT.  To predict OH binding energies on the surface of Pt–

Ni nanoparticles with varied sizes, compositions, and shapes we constructed a quaternary Pt–Ni–

OH@Pt–Vacancy cluster expansion on a bulk fcc crystal lattice. As catalytic activities were only 

calculated on structures that had a Pt skin, we were able to include OH in the cluster expansion by 

defining a dummy species representing a Pt atom bound to OH, which we refer to as OH@Pt. The 

Pt–Ni–OH@Pt–Vacancy cluster expansion included 1302 distinct cluster functions and was 

trained on 352 structures (including 144 Pt–Ni nanoparticles with adsorbed *OH) using the 

Bayesian approach, resulting in a LOO CV error of 2.3 meV per atom relative to DFT.  To account 

for higher coverages of oxygen-related species on the Pt surface77, 78,  14 structures with *OH 

coverages higher than 0.3 ML have been included in the training set, and the maximal *OH 
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coverage in the training structures is 0.56 ML. The details of building two cluster expansions 

models in this work are provided in the part 1 of the Supporting Information.   

KMC algorithm to predict nanoparticle structures 

The Pt–Ni–Vacancy cluster expansion was used in kinetic Monte Carlo (KMC) simulations to 

predict the atomic structures of Pt–Ni nanoparticles after experimental CV activation.  Detailed 

descriptions of this approach can be found in references 3, 15. 

KMC algorithm to predict ORR activities  

To evaluate the ORR specific activity of Pt–Ni nanoparticles, we used a standard “rejection-

free” KMC algorithm37, 38 to predict the turnover frequency on each site, here given by the *OH 

desorption rate. For each KMC step, the only allowed events were adsorption and desorption.  We 

did not model surface diffusion, which should not affect the equilibrium *OH coverage and 

distribution.  Only atoms with coordination numbers larger than 2 and smaller than 10 were 

considered to be surface atoms. The transition rate for each event is calculated as 

E

kT

a

e
−

, where Ea  

is the activation free energy for OH to desorb or adsorb.  The free energy for adsorption was 

calculated as a function of the *OH binding energy to ensure that the turnover frequency was 

consistent with the right (adsorption-limited) leg of the Sabatier volcano as determined by the work 

of Norskov et al.79, 80,  and the free energy for desorption was similarly calculated to be consistent 

with the left (desorption-limited) leg. Additional details are provided in the Supporting Information.  
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1. Cluster expansion  

  Cluster expansions are generalized Ising models commonly used to model atomic order,1 

in which the “spin” variables assigned to each site in an Ising model are replaced by “site” 

variables that indicate which species (or vacancy) is present at each site.2, 3 Cluster 

expansions are capable of very rapidly and accurately predicting the properties of different 

arrangements of atoms and vacancies. A property (e.g., formation energy) of a material, 

which could be a bulk material4, 5, extended surface6, 7, or nanoparticle8, 9, can be expressed 

as a function of these site variables: 

 

 ( ),i0( ) b icluster
clusters i cluster

F V V s


= +  s      [1] 

 

where the unknown coefficients, 
clusterV , are known as effective cluster interactions (ECIs), 

is  is the site variable at the thi  site, 
,b i  is the thb  basis function for the thi  site, and 0V  is 

a constant term representing the ECI for the “empty” cluster.  The sum is over clusters of 

sites, where the number of sites in a cluster may range from 1 to all the sites in the material. 

When all possible clusters are included in the expansion, the expansion in Eq. [1] is exact.  

In practice, the ECIs for clusters that contain a large number of sites or sites that are far 

apart are usually negligible, allowing for the expansion to be truncated to a sum with a 

finite number of ECIs with little loss of accuracy. The remaining ECIs accounting for 

many-body interactions are then fit to a set of training data (e.g., DFT-calculated formation 

energies of training structures). 

To calculate the ORR activities on Pt–Ni nanoparticles, two cluster expansions models 

have been developed. The first one is a quaternary Pt–Ni–OH@Pt–Vacancy cluster 

expansion, which is used to explicitly predict *OH binding energies on the nanoparticle 

surface and account for the interactions among adsorbed *OH.  The second one is the Pt–

Ni–Vacancy cluster expansion, which is used to simulate the structural evolution of Pt–Ni 

nanoparticles using kinetic Monte Carlo and to predict the thermodynamically stable 

nanoparticles using Metropolis Monte Carlo.  

  



S3 
 

1.1 Pt–Ni–OH@Pt–Vacancy cluster expansion on nanoparticles  

The Pt–Ni–OH@Pt–Vacancy cluster expansion was built using an approach similar to 

one we previously used to build a Pt–Ni–Mo–Vacancy cluster expansion.10-12 In the present 

work, we consider a surface Pt atom and a hydroxyl (OH) adsorbed on its top site as a 

single dummy species, which is expressed as *OH@Pt.  The quaternary Pt–Ni–OH@Pt–

Vacancy cluster expansion was generated on an fcc lattice in which each site could be 

occupied by *OH@Pt, nickel (Ni), platinum (Pt), or a vacancy. Site variable values of 0, 

1, 2, and 3 respectively were assigned to these species. The constraint for the dummy 

species *OH@Pt is that it only can occupy surface sites. For each nanoparticle, atoms with 

coordination number (nearest-neighboring metal sites) larger than 2 and smaller than 10 

are considered to be on surface sites.  Pt and Ni Atoms were not permitted to have fewer 

than 3 nearest neighbors in Monte Carlo simulations.  A discrete cosine basis was used to 

generate the cluster functions, where the thb  basis function of the site variable s  is given 

by 

 
1 for b = 0

,
2cos( (2s + 1) / 8) for b > 0

b
b


 = 


  [2] 

for  0,1,2,3b .   

For the generation of training data, we reused all training structures that do not contain 

Mo atoms from the Pt–Ni–Mo–Vacancy cluster expansion11, leading to an initial set of 151 

random clean Pt–Ni particles. By randomly selecting from the pool of 151 clean particles, 

we created additional 95 random Pt–Ni particles with randomly decorated *OH on surface 

Pt atoms at varied coverages (68 particles with coverages between 0 and 0.1 ML, 23 

particles with coverages between 0.1 ML and 0.2 ML, and 4 particles with coverages 

between 0.2 ML and 0.3 ML, respectively). All nanoparticles were generated under the 

constraint that there had to be more than 100 total Pt/Ni atoms in the nanoparticle, as we 

have found that the inclusion of smaller particles can lead to cluster expansions with poor 

predictive accuracy for multi-nanometer nanoparticles (probably due to quantum size 

effects). Nanoparticles that experienced significant reconstruction upon relaxation, defined 

as an atom traveling more than 75% the nearest-neighbor distance from its initial site, were 

excluded. All nanoparticles were contained in a cubic cell with a lattice parameter of 28.8 
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Å. The resulting set of random nanoparticles included 151 clean Pt-Ni nanoparticles 

without *OH and 95 Pt-Ni nanoparticles with *OH. To improve the accuracy of predicted 

ORR activities, we included 22 additional Pt–Ni nanoparticles with varied coverages and 

patterns of adsorbed *OH determined by KMC simulations of ORR activities (see details 

in section 2) and 7 9-layer Pt–Ni(111) surfaces into the training set. All DFT-calculated 

nanoparticles with fewer than 300 metal atoms were contained in a cubic cell with a lattice 

parameter of 28.8 Å, and Pt338 and Pt483 particles were contained in a cubic cell with a 

lattice parameter of 32.4 Å, to make sure that the vacuum layers between particles were 

larger than 10 Å. The vacuum layer for 9-layer slabs was set as 9 equivalent layers of 

vacuum spacing (about 20 Å). 

In addition to these structures, the training data consisted of the pure elements Ni, and Pt 

in a bulk fcc crystal, vacuum (a lattice containing only vacant sites), and various low-

energy structures predicted over the course of this research, for a total of 352 unique 

structures. These 352 unique training structures included 198 clean Pt–Ni nanoparticles, 

144 Pt–Ni nanoparticles with *OH, 7 9-layer Pt–Ni(111) surfaces, 1 Pt bulk, 1 Ni bulk, and 

1 vacuum structure. There are 100 structures with *OH coverages between 0 and 0.1 ML 

(included), 26 structures with *OH coverages between 0.1 ML and 0.2 ML (included), 9 

structures with *OH coverages between 0.2 ML and 0.3 ML (included), 3 structures with 

*OH coverages between 0.3 ML and 0.4 ML (included), 7 structures with *OH coverages 

between 0.4 ML and 0.5 ML (included), and 4 structures with *OH coverages between 0.5 

ML and 0.6 ML (included). There are 14 structures with *OH coverages higher than 0.3 

ML in the training set, and the maximal *OH coverage in the training structures is 0.56 

ML. To reduce the prediction error of the cluster expansion13, the pure elements and 

vacuum were included twice in the training set. All energies of training set structures were 

calculated using density functional theory (DFT). Details of the DFT calculations are 

provided in the Methods section of main body. The effective cluster interactions (ECIs) of 

the cluster expansions were fit to the DFT-calculated formation energies of fully relaxed 

nanoparticles relative to the reference states of bulk fcc Ni, bulk fcc Pt, and 0.5E(H2)–

E(H2O) for OH.  The formation energy can be expressed as 
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( )

( ) ( ) ( ) ( ) ( )

*

m n k

*

m n k 2 2

Pt Ni OH

Pt Ni OH Pt Ni 0.5 H H O ,

DFT

DFT DFT DFT DFT DFT

FE

E mE nE k E E= − − + −  

  [3] 

 

where ( )*

m n kPt Ni OHDFTE  is the total DFT energy of the Pt–Ni nanoparticle ( m nPt Ni ) 

with k adsorbed *OH, ( )PtDFTE and ( )NiDFTE  are the DFT energies of bulk fcc Pt and Ni 

per atom, and ( )2HDFTE  and ( )2H ODFTE  are the DFT energies of gas-phase H2 and H2O. 

Our choice of H2(g) and H2O(g) as reference states avoids potential errors in the calculation 

of the energy of O2(g) and allows for more direct comparisons with previous calculations.14  

The Pt–Ni–OH@Pt–Vacancy cluster expansion was truncated to include the empty 

cluster, the one-body (point) cluster, all 2-body clusters up to the seventh-nearest neighbor, 

all 3-body clusters up to the fifth-nearest neighbor, all 4-body clusters up to the third-

nearest neighbor, and 5-, and 6-body clusters up to the second-nearest neighbor, for a total 

of 1302 symmetrically distinct cluster functions. The ECIs for these cluster functions were 

fit to the training data using the Bayesian approach with a multivariate Gaussian prior 

distribution.15 The inverse of the covariance matrix for the prior,  , was diagonal, with 

elements given by 
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

=


= =
 + 

 [4] 

 

where n  is the number of sites in cluster function  , r  is the maximum distance 

between sites, and the parameters 1 , 2 , 3 , and 4  were determined by using a 

conjugate gradient algorithm to minimize the root mean square leave-one-out cross 

validation (RMS LOOCV) score, an estimate of prediction error.4 The final values for these 

parameters were 1.000×10-8, 9.414×10-12, 4.286, and 2.986 respectively. The resulting 

cluster expansion had a RMS LOOCV error of 2.3 meV per atom relative to DFT 

calculations.  
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1.2 Pt–Ni–Vacancy cluster expansion on nanoparticles  

The Pt–Ni–Vacancy cluster expansion was built by removing the dummy species 

(*OH@Pt: surface Pt atom adsorbed with *OH) from Pt–Ni–OH@Pt–Vacancy cluster 

expansion, removing the training structures containing adsorbed *OH, and removing the 

9-layer Pt–Ni(111) slabs. The number of structures in the resulting training set is 201. The 

final values of fitting parameters in Eq. [4] were 1.000×10-8, 9.414×10-9, 4.286, and 2.986, 

respectively. The resulting cluster expansion had a RMS LOOCV error of 2.2 meV per 

atom relative to DFT calculations. This cluster expansion is used to simulate the structural 

evolution (Ni dissolution and Pt/Ni migration) during the experimental CV activation8, 12 

via kinetic Monte Carlo (KMC) as well as predict the thermodynamically stable Pt-Ni 

nanoparticles via Metropolis Monte Carlo.10, 11 
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2. Assessment of the accuracy of predicted *OH binding energies  

 

 

Figure S1.  (a-d) The layer-by-layer atomic configuration of ground-state Pt178Ni47, which 

is predicted by the cluster expansion in vacuum (reported in our previous work10, 11). The 

225-atom nanoparticle can be created by truncating one atom on each vertex of perfect 

octahedral 231-atom nanoparticle. (e) The six types of surface sites by their distinguished 

numbers of the nearest neighboring Pt/Ni atoms and the 2nd-nearest neighboring atoms.  
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Table S1.  The comparison of DFT-calculated and CE-predicted *OH binding energy on 

varied nanoparticles with a dilute *OH coverage. The surface sites on Pt178Ni47 were 

defined in Figure S1e. and Pt225 was created by replacing all Ni atoms with Pt atoms. Pt79, 

Pt140, Pt225, Pt338, and Pt483 are octahedral nanoparticles with all vertex sites atoms truncated, 

where “surface-center” sites are the sites furthest to the edges. The generalized 

coordination number (GCN) was firstly introduced by Calle-Vallejo et al.16, 17 

particle surface  

site 

CN GCN ΔEOH, DFT 

/eV 

ΔEOH, CE 

/eV 

diff 

/eV 

Pt225 face-1 9 7.5 1.082 0.979 0.103 

 face-2 9 7.167 1.006 0.935 0.071 

 face-3 9 6.667 0.992 0.902 0.090 

 edge-1 7 5.167 0.660 0.640 0.020 

 edge-2 7 5.083 0.653 0.614 0.039 

 vertex 6 4.083 0.375 0.332 0.043 

Pt178Ni47 face-1 9 7.5 1.322 1.323 –0.001 

 face-2 9 7.167 1.293 1.200 0.093 

 face-3 9 6.667 1.077 1.046 0.031 

 edge-1 7 5.167 0.878 0.792 0.086 

 edge-2 7 5.083 0.762 0.712 0.050 

 vertex 6 4.083 0.458 0.459 –0.001 

Pt79 face-center 9 7.5 0.955 0.891 0.064 

Pt140 face-center 9 7.5 1.029 0.947 0.082 

Pt225 face-center 9 7.5 1.082 0.979 0.103 

Pt338 face-center 9 7.5 1.077 0.984 0.093 

Pt483 face-center 9 7.5 1.115 0.994 0.121 

Note: To make sure that the vacuum layers between particles were larger than 10 Å, all 

DFT-calculated nanoparticles with less than 300 metal atoms were contained in a cubic 

cell with a lattice parameter of 28.8 Å, and Pt338 and Pt483 particles were contained in a 

cubic cell with a lattice parameter of 32.4 Å.  
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3. Sabatier volcano relating ΔEOH to activation free energy   

In this work,  we assume the ORR occurs via the associative mechanism in acidic 

solution with an applied potential of 0.9 V (vs. the reversible hydrogen electrode, RHE) 

based on previous studies.14, 18 The binding energies of three intermediate adsorbates 

(*OOH, *O and *OH) are linearly related.19 The activation free energy along the reaction 

pathway ( Ea ) is correlated to oxygen binding energy (ΔEO) through a Sabatier volcano 

plot.6, 7, 18 This Sabatier volcano plot maps adsorption energies to activation free energies 

in a way that takes into account solvation effects (water-adsorbate interactions), zero-point 

energies, and entropy corrections.18 The solvation effect has been treated by adding 

correction terms to the free energies of *OOH, *O and *OH. At an applied potential of 0.9 

V, *OH is the most stable adsorbate on Pt–Ni surface. Thus we converted the Sabatier 

volcano as a function of oxygen binding energy to *OH binding energy by using the linear 

relationships among *OOH, *O, and *OH.19  Thus the activation free energy is expressed 

as a function of the *OH binding energy (ΔEOH)  

 OH OHE = min( 0.297 + 1.0(ΔE 1.153), 0.297 +1.06(1.153 ΔE ))a − − − − − .   [5] 

where all energies are given in eV and peak position of Sabatier volcano is ΔEOH, peak=1.115 

eV. There is a difference between the peak position and OH binding energy on Pt(111) 

with a 1/4 ML coverage (ΔEOH, Pt(111)=1.035 eV), which is ~0.1 eV based on previous 

theoretical predictions14, 20, 21, and ~0.135 eV based on experimental measurements.22 The 

peak position (ΔEOH, peak=1.153 eV) was determined by adding the average of above 

theoretical and experimental differences, which is (0.1 + 0.135) / 2 ≈ 0.118 eV, to 

OH, Pt(111)ΔE .  

To determine whether the linear relationships still hold on edge and face sites of a 

nanoparticle, we have performed DFT calculations on 225-atom particles (include Pt225 and 

Pt178Ni47, as shown in Figure S1). We find that the linear scaling still holds for both 

face(111) sites and edge sites only with slight differences between the intercepts and slopes. 

As shown in Figure S2, the fitted linear scaling between adsorption energies of *OOH and 

*OH including 12 different (111) face sites and 15 different edge sites is 

1.03 2.99OOH OHE E =  + , which is in good agreement with the one only including 12 (111) 



S10 
 

face sites ( 0.98 3.06OOH OHE E =  + ), and the one only including 15 edge sites 

( 1.05 2.98OOH OHE E =  + ). These results indicate that the volcano plot built on the (111) 

slab model by Norskov et al. and his colleagues still works for octahedral particles.18, 19 

 

 

Figure S2. The linear relationship between DFT-calculated *OH and *OOH binding 

energies on (a) 12 (111) face sites and 15 edge sites, (b) just the 12 (111) face sites, (c) just 

the 15 edge sites of a 225-atom particles (including Pt225 and Pt178Ni47 as shown in Figure 

S1). 
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4. Kinetic Monte Carlo (KMC) simulation to predict ORR activities  

To estimate ORR specific activity, we have developed an approach in which the 

turnover frequency at each site is determined through a KMC simulation. The site-specific 

turnover frequency is expressed as  

 turnover frequency ,
aE

kTe
−

=  [6] 

where   is the activation free energy and calculated using the Sabatier volcano at varied 

*OH coverages.  

This approach is similar to the one used in our previous work on Pt–Ni(111) surfaces 

with one monolayer of adsorbed *O/Vacancy.7 We use a standard “rejection-free” KMC 

algorithm 23, 24 in which the only allowed transitions are adsorption and desorption.  Each 

simulation was done on each independent nanoparticle, so the number of possible transition 

events for each KMC step is actually equal to the number of surface Pt atoms (i.e. 1596 for 

the intermetallic Pt3Ni nanoparticle in Figure 1f). In this work, only surface atoms whose 

coordination number (nearest-neighboring Pt/Ni atoms) is larger than 2 and smaller than 

10 are considered as surface atoms. The transition rates (or turnover frequencies) for the 

transition events were calculated as 
E

kT

a

e
−

. 

Specifically, for an adsorption event,   

 OHE = 0.297+ max(0, 1.06(ΔE 1.153))a − , [7] 

where 1.115 is the peak position (ΔEOH, peak=1.115 eV) of the volcano plot. For a desorption 

event,  

 OHE = 0.297+ max(0, 1.0(1.153 ΔE ))a − . [8] 

The maximum of Ea
 for an adsorption and a desorption event reproduces the equation of 

Sabatier volcano (Eq. [5]). After each event, the total elapsed “KMC time” was 

incremented by  

 

 
1

1 1
*lnKMC

N

t
R u

   
 =    

  

  [9] 
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where NR  is the total rate that sum all possible transition events, and 1u  is a uniform 

random number with 1 (0,1]  . At the end of the run, the ORR specific activity ( KMCSA ) 

was then calculated using 

 KMC 0

KMC_record

 n(accepted desorption events)
 =  SA SA

t




 
 

  [10] 

where 0SA  is a prefactor, n(accepted desorption events)  is the number of accepted *OH 

desorption events, and 
KMC_record

t  is the total “KMC time” of KMC recording steps. 

When 0SA  is the inverse of the number of adsorption sites on the surface of the studied 

nanoparticle (i.e. 1/1596 for the intermetallic Pt3Ni nanoparticle in Figure 1f), then the 

KMC current agrees with the current calculated from the Sabatier volcano (Eq. [5]) in the 

limit of dilute coverage of *OH. The above specific activity ( KMCSA ) can be converted to 

mass activity ( KMCMA ) by multiplying the ratio of the number of surface Pt atoms 

(
,Pt surfaceN ) to the number of total Pt atoms ( PtN ) for a particle. 

 KMC

,

S  = 
Pt surface

I
A

N
  [11] 

 
KMC ,

KMC

S
 = = ,

Pt surface

Pt Pt

A NI
MA

N N


  [12] 

where I  is the hypothetical total current.  

To determine the atomic structures, 10 different octahedral Pt–Ni nanoparticles with the 

same size and same Pt composition were randomly initialized, and 10 parallel KMC 

simulations of structural evolution (or Metropolis Monte Carlo simulations) were used to 

generate 10 different snapshots of activated disordered (or intermetallic) nanoparticles. To 

calculate the specific and mass activities, we ran a KMC simulation on each disordered or 

intermetallic nanoparticle. For each KMC simulation, the numbers of both equilibration 

steps and recording steps are 15 times the number of adsorption sites, and the predicted 

specific and mass activities and errors were average values and standard deviations (SA 

based on Eq. [10] and MA based on Eq. [12]) over 10 independent KMC runs on 10 

nanoparticles. An example of *OH evolution on the surface of an activated 5.5-nm 
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disordered Pt0.85Ni0.15 particle is given in Figure S3. The *OH coverage at edge sites 

(surface sites with GCN<6.667) dramatically increases as the normalized KMC time 

increases from 0 to 0.05 and reaches the plateau of 0.97 ML.  It reaches this plateau well 

before the end of the equilibration period (the midpoint of the total simulation). 

  

Figure S3.  The KMC-predicted average *OH coverage (ML) at GCN<6.667 surface sites 

as a function of normalized KMC time. The total number of KMC iterations is 43200, 

which is 30 times the number of adsorption sites (1440).  Snapshots of the nanoparticle 

structures are shown on the bottom row. The grey and red spheres represent Pt atoms and 

*OH adsorbed on surface Pt atoms, respectively. The inset is over the course of the entire 

KMC simulation. 
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5. Benchmark of ORR activities of commercial Pt/C 

The definitions of specific activity (SA) and mass activity (MA) for a single Pt–Ni 

particle are expressed in Eq. [11] and Eq. [12]. To simulate the SA and MA of state-of-the-

art commercial Pt/C, we chose a cuboctahedron as the shape of pure Pt nanoparticles based 

on the Wulff construction of Pt demonstrated in the work of Li et al.9 The size (in diameter 

length) distribution of commercial Pt/C (Table S2) was pulled from our previous work.12 

The weighted average values of SA (3.04E-08) and MA (1.21E-08) for commercial Pt/C 

were calculated according to the following expressions.  

 
, ,

, , , , ,

( )

;
i i i Pt surface i i

i i

Pt surface Pt surface i i Pt surface i i

i i

I p SA n p
I

SA
N n p n p

  

= = =
 

 

 
  [13] 
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I p SA n p
I

MA
N n p n p
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= = =
 

 

 
  [14] 

As shown in Table S2, ip  is the percentage of particles listed for a specific diameter d is 

the total percentage of particles with the diameters in the range of d±0.275 nm, and 

, ,Pt surface in  and 
,Pt in  are the number of surface Pt atoms and the number of all Pt atoms.  
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Table S2. The simulated specific activity (SA) and mass activity (MA) of commercial Pt/C 

with the size in diameter (d) distribution of commercial Pt/C pulled from our previous 

work.12 The percentage of particles listed for a specific diameter d is the total percentage 

of particles with the diameters in the range of d±0.275 nm. The nanoparticles with the 

diameters smaller than 2 nm have not been counted because the KMC-predicted ORR 

activities are likely to be less accurate at such small sizes due to quantum finite-size effects. 

The values of iSA  were predicted using the KMC simulations.  

cubo-

octahedron 

size in 

diameter 

(d)/nm 

percentage 

( ip ) 

iSA   iMA   , ,Pt surface in   ,Pt in   

Pt5851 5.504 0 6.97E-8 1.73E-8 1452 5851 

Pt4249 4.954 2.353 6.61E-8 1.79E-8 1148 4249 

Pt3101 4.403 1.176 5.40E-8 1.62E-8 930 3101 

Pt2075 3.853 5.882 4.78E-8 1.59E-8 690 2075 

Pt1385 3.302 14.118 3.54E-8 1.34E-8 524 1385 

Pt807 2.752 41.176 2.35E-8 1.01E-8 348 807 

Pt459 2.202 35.295 1.45E-8 7.39E-9 234 459 

weighted 

average of SA 

  3.04E-8    

weighted 

average of MA 

   1.21E-8   

 

Using the Pt–Ni–OH@Pt–Vacancy cluster expansion, the predicted specific activity of 

Pt(111) on a 12×12 Pt(111) supercell is 1.15E-7 (Table S3), which is about 3.8 times that 

of commercial Pt/C (3.04E-8 in Table S2) and agrees well with experiments (5 – 10 

times).25, 26 The predicted specific activity of the theoretically identified ground state 

Pt29Ni7(111)6 in equilibrium with bulk Pt3Ni, which we will refer to as “Pt29Ni7(111)” 

(Figure S4a), is about 24.0 times that of commercial Pt/C (3.04E-8). The Pt3Ni(111) 

catalyst (PNAS) 7-layer surface7 and Pt3Ni(111)  catalyst (JPCC) 9-layer surface6 (Figure 

S5) were cluster-expansion-predicted surfaces closely matching the layer-by-layer Pt 

compositions of the highly active Pt3Ni(111) catalyst reported by Stamenkovic et al.27  



S16 
 

Table S3. The KMC-predicted specific activities of 7-layer and 9-layer Pt–Ni(111) 

surfaces compared with the predicted ones of 9-layer Pt(111) and commercial Pt/C 

provided in Table S2. The highly active Pt3Ni(111) surface reported by Stamenkovic et al. 

is also included. The specific activity simulations of 7-layer, and 9-layer Pt–Ni(111) were 

conducted on a 12×12(111) supercell with a vacuum thickness of 11-layer, 9-layer Pt/Ni 

atoms, respectively.    

prediction  SAKMC SAKMC referenced 

to commercial Pt/C 

SAKMC referenced 

to Pt(111) 

Pt(111) 1.15E-7 3.8 1 

Pt29Ni7(111) 7.28E-7 24.0 6.3 

Pt3Ni(111)  catalyst 

(PNAS) 

6.18E-07 20.3 5.4 

Pt3Ni(111)  catalyst 

(JPCC) 

7.10E-07 23.4 6.2 

Pt25Ni11(111)-a 1.22E-07 4.0 1.1 

Pt25Ni11(111)-b 9.14E-10 0.03 0.01 

    

experiment SA (mA/cm2) SA referenced to 

commercial Pt/C 

SA referenced to 

Pt(111) 

Pt3Ni(111) reported by 

Stamenkovic at al.27  

18 90 10 

Note: Pt25Ni11(111)-a (Figure S4a) and Pt25Ni11(111)-b (Figure S4c) are 9-layer surfaces 

with a Pt-skin in the 1st layer and ordered Pt3Ni in the 4th and 5th layers.6 The 2nd and 3rd 

layers are 75% and 25% Pt for Pt25Ni11(111)-a, and 100% and zero Pt for Pt25Ni11(111)-b. 
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Figure S4. The top four layers of three symmetric 9-layer surfaces with a lattice parameter 

of intermetallic bulk Pt3Ni. (a, c) ground state surfaces in equilibrium with bulk Pt3Ni at 0 

K predicted in our previous work6; (b) a dummy surface with 25%, 75%, and 75% Pt in 

the 2nd, 3rd, 4th layers, respectively. The grey and blue spheres are Pt and Ni atoms 

respectively. 

 

 

Figure S5. The top four layers of two snapshot slabs with a 12 × 12 (111) unit cell from 

Monte Carlo simulations. (a) a 7-layer snapshot7 and (c) a 9-layer snapshot6 matching the 

layer-by-layer Pt compositions of the highly active Pt3Ni(111) catalyst reported by 

Stamenkovic et al.27 The grey and blue spheres are Pt and Ni atoms respectively. 
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6. Predicted Ni loss of activated disordered Pt–Ni nanoparticles 

 

 

Figure S6. Predicted Ni loss of activated disordered Pt–Ni nanoparticles.  The x-axis is the 

Pt composition after KMC with an increment of 5%, and the y-axis is the edge length before 

KMC (edge length). All specific and mass activity values are referenced to those of 

simulated commercial Pt/C. 
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7. Precited specific and mass activities of 3.3 nm disordered particles  

 

 

Figure S7. The predicted (a) specific activity and (b) mass activity of 3.3 nm activated 

disorder Pt–Ni particles as a function of pre-activation Pt composition. The values of 

activities are referenced to those of commercial Pt/C. 
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8. Predicted average *OH binding energies of post-activated disordered 6175-atom 

nanoparticles as a function of Pt composition 

 

 

Figure S8. The predicted average *OH binding energies, referenced to that of volcano plot 

peak, on surface sites with coordination number equal to 9 for activated disordered 

octahedral nanoparticles with initial 6175 atoms as a function of Pt% (a) before KMC (pre-

activation) and (b) after KMC (post-activation).   
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9. Catalytic activity maps as a function of post-activated Pt composition and pre-

activated particle size 

 

 

Figure S9. Predicted size-composition catalytic activity maps for the ORR. (a) Specific 

activity and (b) mass activity of activated disordered Pt–Ni nanoparticles.  The x-axis is 

the Pt composition after KMC (post-activation), and the y-axis is the edge length before 

KMC (pre-activation). All specific and mass activity values are referenced to those of 

simulated commercial Pt/C. 
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10. Vacancy formation energies and sub-surface Pt vacancies 

 

Table S4. On the (111) surfaces of 225-atom octahedral nanoparticles and Pt(111) as well 

as representative Pt-rich (111) surfaces, the DFT-calculated and CE-predicted vacancy 

formation energies (VFE) on the 1st and 2nd layers. 

structure position of 

Pt vacancy 

vacancy formation 

energy (VFE) / eV 

difference of VFE between 

the 2nd and 1st layers / eV 

DFT CE DFT CE 

Pt225 particle 1st layer 0.990 0.784 -1.070 -0.206 

2nd layer -0.080 0.579 

Pt206Ni19 particle 1st layer 1.260 0.761 -0.867 0.045 

2nd layer 0.393 0.806 

Pt(111) with 2×2 

supercell 

1st layer 0.895 0.660 -0.710 -0.049 

2nd layer 0.184 0.611 

Pt(111) with 4×4 

supercell 

1st layer 1.081 0.860 -0.653 -0.184 

2nd layer 0.428 0.676 

Pt29Ni7(111) with 

2×2 supercell 

1st layer 1.209 0.534 -0.562 0.191 

2nd layer 0.670 0.726 

Pt29Ni7(111) with 

4×4 supercell 

1st layer 1.291 0.891 -0.578 0.083 

2nd layer 0.712 0.975 

Note: Pt225 particle is the octahedral particle with six vertex-site Pt atoms removed (the 

shape is the same as the Pt178Ni47 particle in Figure S1; Pt206Ni19 particle is the Pt225 particle 

with Pt atoms deeper than the 2nd layer replaced by Ni atoms; Pt29Ni7(111) is the surface 

illustrated in Figure S4a.  

 

 



S23 
 

 

Figure S10. The (a) concentration of sub-surface Pt vacancies of activated disordered Pt–
Ni particles as a function of the pre-activated Pt composition (b-e) Distribution of surface 

site coordination numbers of activated disordered particles with pre-activated Pt 

composition of (b) 65%, (c) 75%, (d) 85%, (e) 95%. In figure b-e, the surface sites on (111) 

surface with generalized coordination numbers (GCN) less than 6.67 have nearest-

neighboring sub-surface Pt vacancies.  On the fcc (111) surface, the GCN and CN of 

surface atoms without subsurface vacancies are 6.67 (=20 /3) and 9, respectively.  
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11. Determination of atomic structures of activated disordered Pt–Ni particles with 

Pt-rich edges 

 

According to the experimental observation of Pt-rich edges for octahedral Pt-Ni 

nanoparticles from  Strasser et al.’s work28, we assume that the deposition rate of Pt atoms 

on edge sites is faster than that on (111) facet sites, and define the degree to which edges 

are more Pt-rich than (111) facets as A using the following equation, 

 ,,

, ,

( )

( )
/ ,

( )

( )

Pt

Pt fPt eNi

Pt Ni e Ni f

Ni

r e

rfr e
A

r f f r

r f

= =   [15] 

where the related notations are defined as follows: 

( )

( )

Pt

Ni

r e

r e
 is the deposition rate of Pt referenced to that of Ni on edge sites;  

( )

( )

Pt

Ni

r f

r f
 is the deposition rate of Pt referenced to Ni on facet sites;   

,Pt ef  is the fraction of Pt on the edge sites; 

,Ni ef  is the fraction of Ni on the edge sites and is equivalent to ( ),1 Pt ef− ; 

,Pt ff  is the fraction of Pt on the face sites; 

,Ni ff  is the fraction of Ni on the face sites and is equivalent to ( ),1 Pt ff− . 

Then ,Ni ff  can be calculated using the following equation: 

 
,

2

2
,

[ ( 1) ] [ ( 1) ] 4 (1 )

Ni
Ni f

e f Ni e f Ni Ni f

Af
f

f Af A f f Af A f Af A f
=

+ + − + + + − + −

  [16] 

where the related definitions are as follows: 

ef  is the fraction of total atoms on the edge sites; 
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ff  is the fraction of total atoms on the face sites and is equivalent to ( )1 ef− ; 

Nif  is the total fraction of Ni atoms within the nanoparticles; 

Ptf  is the total fraction of Pt atoms within the nanoparticles and is equivalent to ( )1 Nif− ; 

,Ni ef  is the fraction of Ni on the edge sites and is equivalent to ( ),* /Ni f eNi ff f f f− . 

For a 6175-atom octahedral nanoparticle, we define the width of each edge as the three-

layers of atoms along the edge and immediately adjacent to the edge, which means there 

are 3199 atoms on edge sites and 2976 atoms on face sites ( 3199 / 6175ef = and 

1f ef f= − ). The 
,Ni ff  and corresponding distributions of Pt and Ni atoms within the 

whole Pt-Ni nanoparticles with Pt-rich edges are demonstrated in Table S5 for A=5. 

Accordingly the Pt and Ni atoms are randomly distributed to initialize the disordered 

particles, then atomic structures of activated disordered particles are simulated using the 

kinetic Monte Carlo simulations. The predicted average specific activities over 10 

independent snapshot structures for each individual overall Pt composition are 

demonstrated for A=3, 5, 10, and +  in Figure S11. We observed little change in the 

composition (about 85% Pt for pre-activated particles) predicted to maximize activity 

across all values of A.   
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Table S5. The distributions of Pt and Ni atoms between edge and face sites across the 

octahedral Pt-Ni nanoparticles with Pt-rich edges for A=5. 

Ptf  ,Ni ff  ,Ni ef  distributions of Pt and Ni atoms 

,Ni eN  ,Pt eN  ,Ni fN  ,Pt fN  

0.6 0.5899 0.2234 715 2484 1755 1221 

0.65 0.5290 0.1834 587 2612 1574 1402 

0.7 0.4639 0.1475 472 2727 1381 1595 

0.75 0.3947 0.1154 369 2830 1175 1801 

0.8 0.3218 0.0867 277 2922 958 2018 

0.85 0.2455 0.0611 196 3003 731 2245 

0.9 0.1663 0.0384 123 3076 495 2481 

0.95 0.0843 0.0180 58 3141 251 2725 
 

 

 

Figure S11. The average specific activities (over 10 independent snapshot structures) of 

activated Pt–Ni particles with Pt-rich edges as a function of pre-activation Pt composition 

for (a) A=3, (b) A=5, (c) A=10, and (d) A=infinitely large, respectively.  
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12. Predicted *OH binding energy and turnover frequency on clean particle surfaces 

 

 

Figure S12.  Predicted *OH binding energy and turnover frequency on clean particle 

surfaces. a, b, c The OH binding energy on each surface site of three representative 

nanoparticles with an edge length of ~5.5 nm: Pt (a), disordered Pt0.85Ni0.15 in Figure 3b-e 

(b), and intermetallic Pt0.82Ni0.18 in Figure 3f-i (c). d, e, f The corresponding turnover 

frequency (TOF) on each site. Binding energies and turnover frequencies are referenced to 

those at the peak of the volcano plot. 
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13. Layer-by-layer atomic structures of disordered Pt0.85Ni0.15 nanoparticles 

 

 

Figure S13. The layer-by-layer atomic structures of representative snapshots at 298 K for 

disordered Pt0.85Ni0.15 nanoparticles with adsorbed *OH determined by a KMC run on 

nanoparticles with edge lengths (before activation) of 5.5 nm, 6.6 nm, 7.7 nm, and 8.8 nm. 
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Figure S14. The (a) layer-by-layer Pt composition and (b) predicted specific activity 

compared with the 2nd layer Pt composition for disordered Pt0.85Ni0.15 nanoparticles as a 

function of particle edge length.  
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Table S6. The predicted layer-by-layer Pt composition for disordered Pt0.85Ni0.15 

nanoparticles at 298 K as a function of edge length from 2.2 nm to 9.9 nm. 

size in 

edge 

length 

(nm) 

Pt composition (%) 

overall 1st layer 2nd layer 3rd layer 4th layer 5th layer 

2.19 93.0 100 85.7 86.9 83.9 100 

2.73 91.9 100 85.7 86.4 85.4 85.6 

3.28 90.9 100 84.8 86.9 85.0 85.5 

3.83 90.2 100 83.9 88.1 85.1 85.9 

4.37 89.7 100 84.0 88.5 84.6 85.7 

4.92 89.4 100 84.1 88.6 84.7 85.2 

5.47 88.9 100 83.2 89.2 84.4 85.8 

6.01 88.6 100 83.3 88.7 85.0 85.0 

6.56 88.3 100 82.5 89.5 84.9 85.0 

7.11 88.1 100 82.3 89.4 85.3 84.6 

7.66 87.9 100 82.2 89.8 84.6 85.1 

8.20 87.7 100 81.9 89.7 84.9 84.7 

8.75 87.5 100 81.6 89.8 84.8 84.9 

9.30 87.4 100 81.5 90.1 84.6 84.9 

9.84 87.3 100 81.0 90.2 85.1 85.2 
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14. Average *OH binding energies on (111) sites with GCN≥6.667for disordered 

Pt0.85Ni0.15 nanoparticles 

 

 

 

Figure S15.  Average *OH binding energies on (111) sites with GCN≥ 6.667 for 

disordered Pt0.85Ni0.15 nanoparticles a function of particle size (edge length). The horizontal 

red line indicates the volcano plot peak.  
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15. Determination of chemical potentials of Pt and Ni maximizing catalytic activities 

of intermetallic Pt–Ni particles  

To determine the atomic structures of intermetallic Pt3Ni particles with maximal specific 

and mass activities, we have run Metropolis Monte Carlo29 simulations under a grand 

canonical ensemble within the chemical potential window where bulk ordered Pt3Ni is 

stable. To perform above simulations, firstly we refer the chemical potential difference 

between Pt and Ni as (Pt) (Ni)   − , where reference chemical potentials of the bulk 

metals are set to zero. Using the same strategy in our previous work6, 7, the window of   

where bulk Pt3Ni is stable is between 0.04 eV and 0.50 eV according to the energies of 

bulk Pt, ordered Pt3Ni and ordered Pt2Ni2 predicted by Pt–Ni–Vacancy cluster expansion 

in section 1.2. Within the   window between 0.04 and 0.50 eV (with a grid of 0.025 eV), 

the thermodynamically stable atomic structures of 6175-atom nanoparticles are simulated 

using the Metropolis Monte Carlo simulations. The corresponding averaged specific and 

mass activities over 10 thermodynamic snapshot structures for each chosen value of   

are shown as a function of   in Figure S16b. The maximal activities are achieved at 

0.45 eV =  and an overall Pt composition of ~82%. Thus in the present work we will 

choose 0.45 eV = when running Metropolis Monte Carlo simulations to determine the 

atomic structures of intermetallic Pt–Ni octahedral particles with maximal activities at 

varied sizes. 
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Figure S16. The predicted specific and mass activities of intermetallic octahedral 

nanoparticles with an edge length of 5.5 nm (6175 atoms) as a function of (a) Pt 

composition and (b) chemical potential difference between Pt and Ni ( (Pt) (Ni)   − ). 

The chemical potential window where bulk Pt3Ni is stable is [0.04, 0.5 ] eV , which 

was predicted based on the Pt–Ni–Vacancy cluster expansion in section 1.2. 
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Figure S17. The predicted (a) specific activity, (b) mass activity, and (c) layer-by-layer 

compositions as a function of overall Pt composition for 6175-atom activated disordered 

and intermetallic nanoparticles. The “6175-atom” for disordered nanoparticles refers to the 

pre-activated number of total Pt and Ni atoms. 

 

  



S35 
 

Table S7. Layer-by-layer Pt compositions vs. overall Pt composition for 6175-atom 

disordered and intermetallic nanoparticles. The 6175 atoms for disordered nanoparticles 

are the pre-activated number of total Pt and Ni atoms. 

Pt composition (%) 

6175-atom intermetallic nanoparticles 6175-atom disordered nanoparticles 

overall 2nd layer 3rd layer 4th layer overall 2nd layer 3rd layer 4th layer 

54.76 3.17 75.15 32.14 55 67.55 53.71 54.95 

56.24 3.64 78.51 33.37 60 70.60 59.49 59.92 

58.22 4.71 80.42 36.67 65 72.95 64.80 64.77 

59.41 6.28 81.89 39.07 70 74.83 71.19 69.76 

60.79 9.00 82.18 42.90 75 76.55 77.52 74.94 

67.38 16.30 80.21 57.79 80 80.06 83.59 79.98 

70.00 23.01 77.76 68.26 85 83.18 89.22 84.42 

71.66 28.37 78.39 72.16 90 88.11 93.25 89.65 

73.31 35.50 77.87 73.88 95 94.31 95.84 95.14 

75.02 43.98 76.81 74.56 100 100 100 100 

76.69 52.46 75.88 74.80     

78.00 59.07 75.39 74.84     

79.16 64.73 75.16 74.84     

79.60 66.57 75.21 74.91     

79.87 67.67 75.34 74.98     

80.48 69.72 75.69 75.32     

81.36 72.49 76.03 75.74     

82.29 73.82 76.95 77.16     

83.25 74.63 78.19 78.70     

84.95 74.88 81.61 81.93     

92.05 75.48 90.05 93.92     

97.23 87.90 99.40 99.50     
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16.  Layer-by-layer atomic structures of intermetallic Pt–Ni nanoparticles 

 

 

Figure S18. The layer-by-layer atomic structures of representative snapshots at 298 K for 

intermetallic Pt–Ni nanoparticles at µ=0.45 eV with adsorbed *OH determined by KMC 

run at an edge length of 5.5 nm, 6.6 nm, 7.7 nm, and 8.8 nm. There exists an L12 structure 

on subsurface layers.  
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Figure S19. The layer-by-layer Pt composition for intermetallic Pt–Ni nanoparticles at 

µ=0.45 eV as a function of particle edge length.  
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Table S8. The predicted layer-by-layer Pt composition for intermetallic Pt–Ni 

nanoparticles at µ=0.45 eV at 298 K as a function of edge length from 2.2 nm to 9.9 nm. 

size in edge 

length (nm) 

Pt composition (%) 

overall 1st layer 2nd layer 3rd layer 4th layer 5th layer 

2.19 86.6 100 70.8 76.5 67.8 10 

2.73 85.4 100 71.6 77.1 75.3 71.1 

3.28 84.5 100 72.6 76.8 76.5 75.9 

3.83 83.8 100 73.0 76.8 76.6 77.6 

4.37 83.1 100 73.4 76.6 76.9 77.2 

4.92 82.8 100 73.7 76.9 77.4 77.5 

5.47 82.3 100 73.8 76.9 77.2 77.4 

6.01 82.0 100 74.1 77.0 77.4 77.6 

6.56 81.6 100 73.9 76.7 77.4 77.1 

7.11 81.4 100 74.2 76.8 77.3 77.4 

7.66 81.1 100 74.2 76.8 77.6 77.6 

8.20 81.0 100 74.2 77.0 77.6 77.6 

8.75 80.8 100 74.2 77.0 77.6 77.8 

9.30 80.6 100 74.3 77.1 77.6 77.6 

9.84 80.5 100 74.4 77.0 77.5 77.7 
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17. Mass activity of disordered and intermetallic nanoparticles as a function of size 

 

Figure S20. Predicted mass activity of disordered Pt0.85Ni0.15 nanoparticles and 

intermetallic Pt–Ni nanoparticles at µ=0.45 eV at 298K as a function of edge length. The 

mass activity values are referenced to that of simulated commercial Pt/C. The 

corresponding predicted specific activities are provided in Figure 2c.  
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18. Average *OH binding energies on (111) sites with GCN≥6.667 for disordered 

Pt0.85Ni0.15 and intermetallic Pt–Ni nanoparticles 

  

 

Figure S21. Average *OH binding energies on (111) sites with GCN≥6.667 for disordered 
Pt0.85Ni0.15 nanoparticles and intermetallic Pt–Ni nanoparticles at µ=0.45 eV as a function 
of particle size (edge length). The horizontal red line indicates the volcano plot peak. 
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19. Predicted ORR activities of activated disordered particles with varied shapes 

 

 

Figure S22. The predicted specific and mass activities of 6000-atom activated disordered 

Pt0.85Ni0.15 particles with octahedral, tetrahedral, spherical and ellipsoidal shapes. Before 

predicting activities, the Pt－Ni particles have been activated (simulated by KMC). The 

predicted values are referenced to those of commercial Pt/C. 
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20. Distribution of OH binding energy and turnover frequencies 

 

Figure S23. Under the KMC-determined *OH coverages, the histograms showing the 

distribution of average ∆𝐸OH on the surface of three representative nanoparticles in Figure 

4a-c: (a) Pt, (b) disordered Pt0.85Ni0.15 nanoparticles, and (c) intermetallic Pt–Ni 

nanoparticles at µ=0.45 eV, respectively. The range of distribution of ∆𝐸OH in figures (a-

c) is [–1.0, 1.0] eV, and the width of histograms is 0.05 eV. For each KMC simulation, the 

numbers of both equilibration steps and recording steps are 15 times the number of 

adsorption sites. The average values of ∆𝐸OH were averaged over the recording steps. 
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Figure S24. Under the KMC-determined *OH coverages, the site-specific average 

turnover frequency for each surface site of (a, d, g) disordered Pt0.85Ni0.15 nanoparticles and 

(b, e, h) intermetallic Pt–Ni nanoparticles at µ=0.45 eV in an edge length of (a, b) 3.3 nm, 

(d, e) 5.5 nm, and (g, h) 7.7 nm, respectively. (c, f, i) The corresponding histograms of 

average turnover frequencies. Both the kinetic Monte Carlo simulations to determine the 

disordered particles and Metropolis Monte Carlo simulations to determine intermetallic 

particles were run at 298K. Figures d and e are the same as Figure 4e, f. The histograms 

were constructed using all surface sites.  
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