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Abstract

Quantum-chemical calculations of enzymatic thermochemistry require hundreds of atoms to ob-
tain converged results, severely limiting the levels of theory that can be used. Fragment-based
approaches offer a means to circumvent this problem, and we present calculations on enzyme mod-
els containing 500–600 atoms using the many-body expansion with three- and four-body terms.
Results are compared to benchmarks in which the supramolecular enzyme–substrate complex is
described at the same level of theory. When the amino acid fragments contain ionic side chains,
the many-body expansion oscillates under vacuum boundary conditions, exaggerating the role of
many-body effects. Rapid convergence is restored using low-dielectric boundary conditions. This
implies that full-system calculations in the gas phase are inappropriate benchmarks for assessing
errors introduced by fragment-based approximations. For calculations with dielectric boundary con-
ditions, a three-body protocol with distance cutoffs retains sub-kcal/mol fidelity with respect to a
supersystem calculation at the same level of theory, as does a two-body protocol when combined
with a full-system correction at a low-cost level of theory. Both calculations dramatically reduce
the cost of large-scale enzymatic thermochemistry, paving the way for application of high-level ab
initio methods to very large systems.

TOC Graphic

Fragment-based approximations1–6 represent an at-
tractive way to circumvent the nonlinear scaling of com-
putational quantum chemistry (QC), whose floating-
point cost normally grows like O(Np) as a function of
system size (N), with exponents ranging from p = 3 for
density functional theory (DFT) up to p = 7 or higher
for levels of theory that provide thermochemical bench-
marks. Fragmentation into Nsub separate subsystems,
each of size n, reduces that cost to Nsub × O(np) in a
manner that is amenable to distributed computing and
which does not require modification to electronic struc-
ture codes. Nonlinear growth in Nsub with system size
can be mitigated by means of distance- or energy-based
thresholds.6–8

The present work presents a protocol for using frag-
mentation to compute enthalpy changes and activation
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barriers for enzyme-catalyzed reactions. Over the past
decade, benchmark QM calculations have revealed that
enzymatic thermochemistry does not converge until hun-
dreds of atoms are included,9–17 which is much larger
than the QC region in typical quantum mechanics/
molecular mechanics (QM/MM) calculations. Fragmen-
tation may therefore offer an efficient route to obtain con-
verged thermochemical calculations at benchmark levels
of theory for N > 500 atoms, provided that errors as-
sociated with the fragmentation approximation can be
controlled. The present work demonstrates that these
errors can be reduced below the “thermochemical accu-
racy” threshold of 1 kcal/mol, yet highlights the fact that
straightforward comparison of fragment-based approxi-
mations to full-system benchmarks (as a means to assess
errors) is ill-posed, if the calculations are carried out with
vacuum boundary conditions.

We will consider sizable models of enzyme–substrate
complexes containing N ∼ 500–600 atoms. Total ener-
gies are approximated by means of a many-body expan-
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∆EIJK + · · · .

(1)

Individual terms are

∆EIJ = EIJ − EI − EJ (2)

for the two-body corrections, where EIJ is the energy of
the dimer formed from fragments I and J , and

∆EIJK = EIJK − EIJ − EIK − EJK
− EI − EJ − EK

(3)

for the three-body corrections. Truncating eq. 1 at n-
body terms, we will denote the resulting approximation
as MBE(n). Electrostatic embedding of the subsystem
calculations, using classical point charges derived from
the fragment wave functions, is often used in an ef-
fort to hasten convergence of the MBE.18–28 We avoid
this, however, because we have found that charge embed-
ding can lead to inconsistent convergence of the n-body
expansion.29–31 The use of self-consistent point charges
also significantly complicates the formulation of analytic
energy gradients.32–36

Fragments I, J,K, . . . are taken to be individual amino
acids of the enzyme (except where stipulated other-
wise, for testing purposes), with the substrate as its
own fragment. Although larger fragments have some-
times been used for proteins,37 we are able to achieve
our target accuracy of 1 kcal/mol using mostly single-
residue fragments, except for the substrate whose treat-
ment is discussed below. Alternatively, overlapping frag-
ments have sometimes been used for polypeptides and
proteins,24–28,37–42 which can be rationalized in terms of a
generalized (G)MBE.1,6,43,44 To date, most overlapping-
fragment applications use a one-body approach that cap-
tures through-bond interactions but not through-space
interactions. A two-body GMBE can capture both, but
is relatively expensive in terms of the number of subsys-
tems that are generated.31,37 As such, we stick to the
simple MBE(n) approach in this work.

As a first test, we consider SN2 methyl transfer45

catalyzed by then enzyme human catechol O-
methyltransferase (COMT).46–48 This particular enzyme
has become something of a benchmark,14,49–52 because
it has a well-resolved crystal structure,48 kinetics data,46

and numerous known inhibitors.14–16 A Mg2+ ion in
the active site is essential to its function,53 but leads
to charge-transfer effects in QC calculations that can
significantly alter the barrier height, depending on the
size of the model system.14,49,52 Kulik et al.14 considered
a sequence of COMT models with QM regions up to
940 atoms, and we selected “model 8” from Ref. 14,
which contains 632 atoms and 35 fragments. The largest
fragment consists of the octahedral coordination sphere
around Mg2+, including deprotonated catechol (2-
hydroxyphenolate, C6H5O−

2 ), two aspartic acid residues,
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Figure 1: Errors in MBE(n) calculations at the ωB97X-D/
def2-SVP level as compared to a supersystem calculation at
the same level of theory. (a) Ea for COMT, (b) ∆rxnE for
COMT, (c) Ea for AspDC, and (d) ∆rxnE for AspDC. For the
COMT model, results are shown for vacuum boundary con-
ditions (ε = 1) versus PCM boundary conditions (ε = 4),
and also for a charge-coordinated model that uses larger,
charge-neutral fragments. The AspDC system does not con-
tain charged fragments.

an asparagine residue, and a water molecule (58 atoms).
Reactant, product, and transition state structures for
methyl transfer from S-adenosyl-l-methionine (SAM) to
catecholate were protonated and relaxed as described in
the Computational Details. All calculations were per-
formed at DFT levels of theory, so that we may obtain
energies for the full enzyme–substrate complex at the
same level of theory and thereby examine convergence of
MBE(n) towards a well-defined supersystem target. As
such, the errors discussed below are defined with respect
to a supersystem calculation at the same level of theory.

The overall charge on this QM model is −1 but the
system contains 9 fragments with non-zero charge. Small
anions in the gas phase are sometimes inherently unstable
(or metastable), as in the case of SO2−

4 ,54,55 and delocal-
ization errors in DFT can exacerbate this problem.55 To
avoid artifacts, charged residues are often neutralized in
fragment-based calculations on proteins.56–58 This is not
always a viable or realistic option, however, as charged
side chains may be directly involved in stabilizing the pro-
tein structure or binding to a ligand (as in the present
example), or may be vital to a reaction mechanism. A
general procedure for enzymatic thermochemistry must
admit the possibility of fragments with non-zero charge.

When we naively apply MBE(n) to a large COMT
model with charged residues, however, we find that con-
vergence is erratic. This is shown for the barrier height
(activation energy Ea) in Fig. 1a, where MBE(2) over-
estimates the barrier by 5.4 kcal/mol but MBE(3) un-
derestimates it by 16.7 kcal/mol. To verify that charged
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residues are the problem, we prepared a second model
of COMT in which fragments are combined to neutralize
charge, e.g., a negatively-charged aspartic acid residue
is combined with a positively-charged ligand, forming a
single fragment. This increases the largest fragment size
from 58 to 124 atoms but does not change any proto-
nation states. Using this “charge-coordinated” model of
COMT, we observe rapid convergence of MBE(n), such
that two- and three-body calculations afford essentially
identical values of both Ea (Fig. 1a) and ∆rxnE (Fig. 1b).
Even one-body calculations perform reasonably well for
the charge-coordinated model, due to the larger fragment
size, but enlarging the fragments is not an attractive
strategy for levels of theory beyond DFT.

Each of the calculations described above was per-
formed using vacuum boundary conditions. As an al-
ternative, we introduce low-dielectric boundary condi-
tions using a polarizable continuum model (PCM).59 For
protein electrostatics calculations based on the Poisson-
Boltzmann equation, it is common to use a dielectric con-
stant in the range ε = 2–4 to represent the hydrophobic
interior of the protein,60–65 although larger values have
occassionally been suggested.65–71 The precise value of
ε may matter for pKa calculations, but reaction barrier
heights converge quickly as a function of ε and results
for ε = 2 are often indistinguishable from much larger
values,72,73 although different from gas-phase (ε = 1) val-
ues.

When the fragment calculations required for MBE(n)
are performed using PCM boundary conditions, and re-
sults compared to a supramolecular calculation with the
same boundary conditions, we recover good convergence
of MBE(n) even for single-residue fragments having net
charge. Results for several other DFT functionals and ba-
sis sets are provided in Tables S1 and S2, and in Fig. S2
we extend some of these results to n = 4 in order to check
convergence. Using PCM boundaries, the difference be-
tween the MBE(3) and MBE(4) results is . 1 kcal/mol,
while gas-phase calculations sometimes afford errors >
150 kcal/mol at the four-body level! MBE(3) calculations
with low-dielectric boundary conditions consistently pro-
vide sub-kcal/mol accuracy for various functionals and
basis sets, whereas MBE(3) with vacuum boundary con-
ditions affords errors of 10–30 kcal/mol in many cases.
Notably, we obtain stable results even when the basis
set contains diffuse functions. These can be problem-
atic when self-consistent charge-embedding schemes are
used.6,74–76

These results suggest that large errors for enzymatic
thermochemistry obtained using MBE(n) with vacuum
boundary conditions originate not from the fragmenta-
tion approximation itself, or from the simple hydrogen
atom caps that we use to saturate the severed valencies
upon fragmentation. (This is less sophisticated as com-
pared to “conjugated caps” that try to replicate amino
acid moieties,25–28,77,78 but our results demonstrate that
sub-kcal/mol accuracy is achievable even with hydro-
gen atom caps.) Instead, errors arise due to inconsis-
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Figure 2: Multilayer techniques applied to the complex of an
enzyme (depicted as a chain of amino acids) and a substrate
(labeled “S”). Colors encode the level of theory, with the
higher-level method in orange and the lower-level method in
blue. (a) Conventional ONIOM method, in which high-level
calculations are applied only to the model system (b) Multi-
layer fragmentation method, where the high-level method is
applied to the entire system by means of fragmentation.

tent charge (de)localization in the n-body calculations for
charged fragments. To obtain a polarization environment
that is comparable to that of the supersystem, high-order
n-body calculations are required, beyond n = 4. Alter-
natively, dielectric boundary conditions provide a simple
and low-cost means to mimic this polarization. In prin-
ciple, one might consider the use of heterogeneous dielec-
tric boundaries,79–81 such that hydrophobic parts of the
protein are treated differently from solvent-exposed por-
tions. This has not been pursued in the present work,
where we simply aim to demonstrate that convergence of
the MBE in vacuo is not well-defined.

To confirm this explanation, we also examined a differ-
ent enzymatic reaction that does not involve charged moi-
eties near the active site. For this example we chose the
decarboxylation of l-apartate by the enzyme l-aspartate
α-decarboxylase (AspDC), which has also been studied
using QC models of varying size.82 Here, we consider
only the C–C cleavage step, using a model consisting of
30 monomers (511 atoms), corresponding to a 5 Å ra-
dial cutoff around the active site of the relaxed crystal
structure. This system has zero net charge but two ionic
amino acids, which we placed together in a single frag-
ment in order to avoid having any charged fragments.
Results for Ea (Fig. 1c) and for ∆rxnE (Fig. 1d) demon-
strate that n-body results with either vacuum (ε = 1) or
PCM (ε = 4) boundary conditions converge similarly, al-
though the PCM-based error is smaller at the n = 2 level.
Unlike the charge-coordinated results for COMT, where
the fragments are large and thus many-body effects are
small, here the n = 1 results are unacceptable but two-
body results with low-dielectric boundary conditions are
rather good.

Together, these results demonstrate that the applica-
tion of MBE(n) with vacuum boundaries, to an enzyme–
substrate model extracted from a crystal structure, need
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Figure 3: Errors in Ea for COMT, computed using two-layer fragmentation methods at the (a) MBE(2) or (b) MBE(3)
level. Target levels of theory (used for the fragments) are indicated by the colored bars, and error is assessed with respect to
a supersystem calculation at that level of theory. Several low-cost supersystem corrections are evaluated, as indicated along
the horizontal axis. All calculations use PCM boundary conditions with ε = 4 without any distance-based cutoff applied the
MBE(n) calculations.

not converge to the supermolecular result at low orders,
n ≤ 4. This behavior results from charge (de)localization
that may vary greatly from monomer to dimer to trimer,
etc., when the subsystems contain fragments with net
charge. Elsewhere, low-dielectric boundary conditions
(ε ≈ 1.5) have been shown to reduce density delocal-
ization error in isolated-peptide DFT calculations,83 and
in the present context the use of ε = 4 appears to prevent
oscillatory changes the corrections ∆EIJ ,∆EIJK , . . ..

Given a two- or three-body approximation for a large
enzyme model possessing charged side chains, one might
worry about neglect of long-range interactions. We
address this by assessing a multilayer fragmentation
scheme6 in which a low-level calculation on the entire
system is used to correct for errors introduced by frag-
mentation, while the subsystems are described at a higher
level of theory. This strategy has been suggested by
others under various names,84–86 and is illustrated in
Fig. 2 by analogy to the “ONIOM” approach for QM/
MM calculations.87 Both the subsystems and the super-
system are computed at the lower level of theory and
the difference between low-level supersystem and low-
level MBE(n) calculations provides a correction for the
effects of fragmentation, including the possible neglect
of long-range polarization. Raghavachari and co-workers
have made extensive use of this idea for calculations in

proteins,56–58,88–90 and our two-layer procedure is equiv-
alent to the “MIM2” strategy defined in Ref. 85.

We tested several low-level supersystem corrections in
combination with four different target levels of DFT, for
the activation energy in COMT. Errors with respect to
the target level of DFT (applied to the entire enzyme–
substrate model) are illustrated in Fig. 3 and numerical
valuess for each supersystem correction can be found in
Table S3. The low-level methods that we tested include
the semi-empirical thrice-corrected methods HF-3c91 and
PBEh-3c,92 which use a minimal and a double-ζ basis
set, respectively. We also tested Hartree-Fock (HF) the-
ory and the functional LRC-ωPBEh,93 both with the 6-
31G basis set. Note that 6-31G is much less expensive
than other double-ζ basis sets,94 if the electronic struc-
ture software can take advantage of compound sp shells.
For this particular 632-atom enzyme–substrate complex,
all four of these supersystem corrections require simi-
lar computational time, which constitutes less than 20%
overhead on top of a MBE(2) calculation.

Even without the supersystem correction, results in
Fig. 3a indicate that a two-body expansion can achieve
∼ 1 kcal/mol accuracy for Ea using various density func-
tionals. Low-cost supersystem corrections reduce this to
∼ 0.5 kcal/mol. MBE(3) is an order-of-magnitude more
accurate than MBE(2) and achieves ∼ 0.1 kcal/mol accu-
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Figure 4: Total aggregate CPU time (on a logarithmic scale)
for a single-point calculation on the COMT enzyme–substrate
complex, at the ωB97X-D/def2-SVP level. The supersystem
calculation contains 6,042 basis functions and was performed
on a single 28-core node (Dell Intel Xeon E5-2680 v4). Frag-
ment calculations were performed on the same hardware with
7 worker processes per node, each using 4 cores.

racy even without the supersystem correction. MBE(3)
seems to represent something of an accuracy limit, as
low-cost supersystem corrections no longer improve the
results.

Importantly, HF-3c performs just as well as HF/6-31G
as a supersystem correction despite using only a mini-
mal basis set (“MINIX”91). For the 632-atom COMT
enzyme–substrate complex, this means 1,944 basis func-
tions for HF-3c/MINIX versus 3,510 functions for HF/
6-31G. On a single 28-core node, these supersystem cal-
culations can be completed in 0.6 h (HF-3c/MINIX) and
1.0 h (HF/6-31G), with 80–90% of that time spent in the
PCM solver, which is less well-parallelized than the two-
electron integrals. (The PCM cost could be reduced by
using a less dense surface discretization.)

Having established that we can consistently obtain
converged results, we next turn to computational effi-
ciency. The cost of fragmentation methods is not always
discussed honestly, and should be measured in aggregate
computer time rather than wall time.6,37,95 Timing data
for single-point energy calculations on COMT are pro-
vided in Fig. 4, with the corresponding numerical data in
Table S5. In the absence of any supersystem correction,
MBE(2) with PCM boundary conditions costs about 60%
as much a supersystem calculation at the same level of
theory (ωB97X-D/def2-SVP), whereas MBE(3) is about
14× more expensive than the supersystem calculation.
Despite using larger fragments, the charge-coordinated
MBE(3) calculation is actually about 10% cheaper than
MBE(3) with single-residue fragments, because the for-
mer calculation reduces the number of unique subsystems
from 7,175 to 3,581. This balance would likely shift in
favor of the single-residue calculation if a method more
expensive than DFT were used, provided that good fi-
delity is maintained.

The number of subsystems required for MBE(n) grows

as Nn for a protein with N residues, and this combi-
natorial growth imposes a severe computational bottle-
neck, even for n = 3.31 In what follows, we screen the
dimers and trimers based on distance, removing them
from the calculation if the minimum interatomic distance
between any two fragments exceeds a specified threshold,
Rcut. We then recompute Ea and ∆rxnE for COMT, with
the caveat that we are careful to ensure that the same
residues are included in the reactant, product, and tran-
sition state models. Tests of a distance-screened MBE(3)
approximation (Fig. S3) demonstrate that the predicted
value of Ea for COMT changes by < 0.1 kcal/mol as Rcut

is reduced from 25 Å to 8 Å. Setting Rcut = 8 Å reduces
the number of subsystems from 7,175 to 1,499 (as shown
in Fig. S4), yet has negligible effect on accuracy. Setting
Rcut = 8 Å, the computational effort is reduced from
2,025 h (which is the value shown in Fig. 4) to 657 h.
This figure is still 5× greater than the cost of the corre-
sponding supersystem calculation, however.

We include diffuse functions in our next set of tests
(ωB97X-D/def2-SVPD), because a method that is in-
tended for general application to enzymatic thermochem-
istry must be able to accommodate diffuse functions, in
order to describe anionic side chains, yet these can be
quite problematic for self-consistent charge schemes.74,75

Even if electrostatic embedding charges are fixed (say,
from a force field), the use of diffuse functions can
lead to overpolarization of the QM system by the MM
charges.96 Errors in Ea for COMT, computed using
MBE(2) and MBE(3) approximations, are provided in
Table 1. This includes results both with and without
a HF/6-31G supersystem correction, and also with and
without distance-based screening using Rcut = 8 Å. We
have also tabulated errors with respect to a ωB97X-D/
def2-TZVP calculation, which provides a measure of the
basis-set incompleteness error when the smaller def2-
SVPD basis set is used.

Both the MBE(2) and MBE(3) approximations at
the ωB97X-D/def2-SVPD level afford sub-kcal/mol er-
ror with respect to supersystem results using the larger
def2-TZVP basis set, suggesting that the basis-set in-
completeness error is < 1 kcal/mol. MBE(3) achieves
this feat without a supersystem correction, inclusion of
which scarcely alters the results, whereas the supersys-
tem correction does afford a small but noticeable im-
provement to MBE(2). It is worth noting that the su-
persystem ωB97X-D/def2-TZVP calculation on this 632-
atom model consists of 11,767 basis functions and re-
quires an aggregate computation time of 17,546 h run-
ning on a single 40-core node.

These results once again demonstrate that consistent,
sub-kcal/mol accuracy is achievable is two ways: MBE(3)
alone, or MBE(2) with a supersystem correction. Dis-
tance cutoffs with Rcut = 8 Å can safely be applied in
either case. This consistency indicates that the super-
system correction (which is performed at the HF/6-31G
level for the calculations reported in Table 1) primar-
ily accounts for three-body polarization, and that four-
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Table 1: Errors in Ea for COMT, Computed at the ωB97X-D/def2-SVPD Level.a

Method
Error in Ea (kcal/mol) CPU Time

vs. same methodb vs. triple-ζc (hours)d

MBE(3) −0.00 0.76 11,253
MBE(3) + HF/6-31Ge 0.04 0.83 11,656
MBE(3) + 8 Åf −0.05 0.71 4,170
MBE(3) + HF/6-31Ge + 8 Åf 0.04 0.80 4,300

MBE(2) 0.81 1.57 460
MBE(2) + HF/6-31Ge 0.20 0.96 491
MBE(2) + 8 Åf 0.83 1.59 354
MBE(2) + HF/6-31Ge + 8 Åf 0.20 0.96 379

aAll calculations were performed using a PCM with ε = 4. bError with respect
to a supersystem calculation at the same level of theory. cError with respect to
a supersystem calculation at the ωB97X-D/def2-TZVP level. dAggregate computer
time for one single-point energy calculation, using a single 48-core node (Intel Xeon
Platinum 8268). Fragment calculations employ 12 worker processes, each running on
4 cores. eHF/6-31G as a supersystem correction. fRcut = 8 Å screening threshold.

body terms make a negligible (sub-kcal/mol) contribu-
tion when PCM boundaries are applied. (See Fig. S2.)
Of these two high-fidelity fragment-based procedures,
MBE(2) with cutoffs and a supersystem correction is
more affordable, by 11× as compared to MBE(3) with
cutoffs and no supersystem correction. Although the
best measure of real-world cost is total (aggregate) time
across all processors, if one wants to use throughput as
the figure of merit then it is worth noting that the 379 h
required for the supersystem-corrected MBE(2) calcula-
tion corresponds to 329 distinct subsystems that can be
distributed across compute nodes.

In summary, we find that low-dielectric boundary con-
ditions lead to rapid convergence of the many-body ex-
pansion, which otherwise suffers from oscillatory behav-
ior in the presence of charged fragments. Larger, charge-
neutral fragments can be used as an alternative strategy
to avoid these oscillations, but this will significantly in-
crease the cost if a correlated wave function method is
used for the two-body interactions. At the same time,
ionic residues must be anticipated in general, and this
makes dielectric boundary conditions effectively manda-
tory for QC calculations of enzymatic thermochemistry.
These observations furthermore suggest that the use of
gas-phase supersystem calculations to benchmark frag-
mentation approximations distorts the performance of
those approximations. Where charged fragments are in-
volved, comparison to a gas-phase benchmark may exag-
gerate the role of higher-order n-body terms.

When dielectric boundaries are employed, MBE(3)
provides converged results with sub-kcal/mol fidelity,
without the need for electrostatic embedding, conjugated
caps, or an ONIOM-style supersystem correction, and us-
ing single-residue fragments for most of the protein. This
relatively simple three-body approach represents a reli-
able fall-back procedure for systems that are too large
even for conventional DFT. That said, even for a 632-
atom enzyme–substrate model, a full-system DFT cal-

culation is far less expensive when a high-performance
electronic structure code is used. A practical alterna-
tive to MBE(3) is MBE(2) with distance screening, in
a double-ζ basis set, plus an ONIOM-style supersystem
correction at the HF/6-31G level. This composite ap-
proach is converged below 1 kcal/mol with respect to a
triple-ζ benchmark and is generally less expensive than
the full-system calculation. Moreover, that cost is readily
distributable across hardware.

In the end, we find that enzymatic thermochemistry
can be reproduced with sub-kcal/mol fidelity using prac-
tical protocols based on fragmentation. The stage is
now set to push the accuracy of these calculations be-
yond the DFT level, by means of hybrid methods that
deploy high-level methods for the two-body interactions
combined with three-body DFT to capture polarization
by the environment. We are also exploring the use of
fragment-based vibrational frequency calculations, as pi-
oneered by others,97–99 to include zero-point corrections
and finite-temperature thermal corrections. (The use
of smooth cutoffs in gradient calculations has already
been demonstrated.7) Network analysis can be used to
build sensible (if sizable) models of the enzyme–substrate
complex,52,100,101 and then the protocols developed here
can provide converged results for any given model. To-
gether, these developments promise to make QC model-
ing of enzymatic reactions more robust and systematic.

Computational Details

The crystal structure48 of COMT (PDB code: 3BMW)
was protonated using the H++ web server102 at pH
= 7.0, salinity of 0.15 M, εin = 10, and εout = 80.
Ligand atoms were protonated separately using Py-
MOL, then validated against reactant and product struc-
tures taken from Ref. 14. As in that work, the in-
hibitor 3,5-dinitrocatechol in the crystal structure was re-
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placed with catecholate (C6H5O−
2 ). Reactant and prod-

uct structures were relaxed using the GFN2-xTB semi-
empirical model103 with a generalized Born/surface area
(GBSA) implicit solvent model for water.104 GFN2-xTB
with implicit solvent has been recently benchmarked
for protein structure, with results that compare well to
experiment.105 To obtain the transition state, we scanned
the bond length between the sulfur atom on SAM and the
transferred methyl group. The system was then trimmed
to obtain the 632-atom “model 8” from Ref. 14, which
contains residues within a 5 Å radius of active site along
with three important residues identified experimentally.
This model affords converged energetics with respect to
larger models.14

For AspDC (PDB code: 1UHE),106 a single monomer
unit can be directly downloaded from the protein
database although the complete structure is an octamer.
Starting from the latter, a large radial cutoff of 12 Å was
used for structure relaxation using GFN2-xTB in implicit
solvent. From that relaxed structure, a smaller 5 Å region
was created for a scan along the bond-breaking coordi-
nate, and from that scan a transition state and a product
structure were selected. For fragmentation calculations,
the negatively charged ligand and the cationic arginine
residue coordinated to it were included in a single frag-
ment, such that all fragments are uncharged.

In creating fragments, we avoid cutting the polar C–N
peptide bond (following previous recommendations),37,56

and instead create fragments by cutting the C–C bond
at Cα, as indicated in Fig. S1. The severed valency is
capped with a hydrogen atom that is positioned accord-
ing to eq. S1, as in previous work.37

All QM calculations were run using a home-built
interface (PyFragme∩t) to Q-Chem.107 For all cal-
culations, the self-consistent field convergence thresh-
old is set to τSCF = 10−8 Ha and the integral
and shell-pair drop tolerances are set to τints =
10−12 a.u. We use the conductor-like PCM (C-PCM),59

implemented with the switching/Gaussian discretization
scheme.108–111 The continuum interface is defined by a
van der Waals cavity,59 constructed using modified Bondi
atomic radii112 that are scaled by a factor of 1.2. That
surface is discretized using 110 Lebedev points for hydro-
gen and 194 points for other atoms.108 A conjugate gra-
dient algorithm was used to solve the C-PCM equations
for the full protein model,111 whereas matrix inversion
was used for the subsystem C-PCM calculations. Calcu-
lations with ωB97X-D and M06-2X+D3 use the SG-2
quadrature grid,113 whereas SG-1114 is used for other
functionals.

Supporting Information

Additional data including convergence tests with various
functionals and basis sets.
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40 Bozkaya, U.; Ermiş, B. Linear-scaling systematic molec-
ular fragmentation approach for perturbation theory
and coupled-cluster methods. J. Chem. Theory Comput.
2022, 18, 5349–5359.

41 Du, J.; Liao, K.; Ma, J.; Li, W.; Li, S. General-
ized energy-based fragmentation approach for the elec-
tronic emission spectra of large molecules. J. Chem. The-
ory Comput. 2022, 18, 7630–7638.

42 Chen, W.-K.; Fang, W.-H.; Cui, G. Extending multi-
layer energy-based fragment method for excited-state cal-
culations of large covalently bonded fragment systems.
J. Chem. Phys. 044110:1–13, 158,.



9

43 Richard, R. M.; Herbert, J. M. The many-body expansion
with overlapping fragments: Analysis of two approaches.
J. Chem. Theory Comput. 2013, 9, 1408–1416.

44 Jacobson, L. D.; Richard, R. M.; Lao, K. U.; Her-
bert, J. M. Efficient monomer-based quantum chemistry
methods for molecular and ionic clusters. Annu. Rep.
Comput. Chem. 2013, 9, 25–58.

45 Hegazi, M. F.; Borchardt, R. T.; Schowen, R. L. SN2-like
transition state for methyl transfer catalyzed by catechol-
O-methyltransferase. J. Am. Chem. Soc. 1976, 98, 3048–
3049.

46 Lotta, T.; Vidgren, J.; Tilgmann, C.; Ulmanen, I.; Me-
len, K.; Julkunen, I.; Taskinen, J. Kinetics of human sol-
uble and membrane-bound catechol O-methyltransferase:
A revised mechanism and description of the thermolabile
variant of the enzyme. Biochemistry 1995, 34, 4202–4210.

47 Bonifácio, M. J.; Archer, M.; Rodrigues, M. L.; Ma-
tias, P. M.; Learmouth, D. A.; Carrondo, M. A.;
Soares-da-Silva, P. Kinetics and crystal structure of cate-
chol O-methyltransferase complex with co-substrate and
a novel inhibitor with potential therapeutic application.
Mol. Pharmacol. 2002, 62, 795–805.

48 Rutherford, K.; Le Trong, I.; Stenkamp, R. E.; Par-
son, W. W. Crystal structures of human 108V and 108M
catechol O-methyltransferase. J. Mol. Biol. 2008, 380,
120–130.

49 Jindal, G.; Warshel, A. Exploring the dependence of QM/
MM calculations of enzyme catalysis on the size of the QM
region. J. Phys. Chem. B 2016, 120, 9913–9921.

50 Zhang, J.; Kulik, H. J.; Martinez, T. J.; Klinman, J. P.
Mediation of donor–acceptor distance in an enzymatic
methyl transfer reaction. Proc. Natl. Acad. Sci. USA
2015, 112, 7954–7959.

51 Patra, N.; Ioannidis, E. I.; Kulik, H. J. Computa-
tional investigation of the interplay of substrate position-
ing and reactivity in catechol o-methyltransferase. PLoS
ONE 2016, 11, e0161868:1–23.

52 Summers, T. J.; Cheng, Q.; Palma, M. A.; Pham, D.-T.;
Kelso III, D. K.; Webster, C. E.; DeYonker, N. J. Chem-
informatic quantum mechanical enzyme model design:
A catechol-O-methyltransferase case study. Biophys. J.
2021, 120, 3577–3587.

53 Axelrod, J.; Tomchick, R. Enzymatic O-methylation of
epinephrine and other catechols. J. Biol. Chem. 1958,
233, 702–705.

54 Whitehead, A.; Barrios, R.; Simons, J. Stabilization cal-
culation of the energy and lifetime of metastable SO2−

4 .
J. Chem. Phys. 2002, 116, 2848–2851.

55 Herbert, J. M. The quantum chemistry of loosely-
bound electrons. In Reviews in Computational Chemistry,
Vol. 28; Parill, A. L.; Lipkowitz, K., Eds.; Wiley-VCH:
Hoboken, NJ, 2015; Chapter 8, pages 391–517.

56 Thapa, B.; Beckett, D.; Jose, K. V. J.; Raghavachari, K.
Assessment of fragmentation strategies for large proteins
using the multilayer molecules-in-molecules approach.
J. Chem. Theory Comput. 2018, 14, 1383–1394.

57 Thapa, B.; Beckett, D.; Erickson, J.; Raghavachari, K.
Theoretical study of protein–ligand interactions using
the molecules-in-molecules fragmentation-based method.
J. Chem. Theory Comput. 2018, 14, 5143–5155.

58 Thapa, B.; Raghavachari, K. Energy decomposition
analysis of protein–ligand interactions using molecules-
in-molecules fragmentation-based method. J. Chem. Inf.
Model. 2019, 59, 3474–3484.

59 Herbert, J. M. Dielectric continuum methods for quantum
chemistry. WIREs Comput. Mol. Sci. 2021, 11, e1519:1–
73.

60 Gilson, M. K.; Honig, B. H. The dielectric constant of a
folded protein. Biopolymers 1986, 25, 2097–2119.

61 Gilson, M. K.; Honig, B. Calculation of the total elec-
trostatic energy of a macromolecular system: Solvation
energies, binding energies, and conformational analysis.
Proteins 1988, 4, 7–18.

62 Rodgers, K. K.; Silgar, S. G. Surface electrostatics, re-
duction potentials, and internal dielectric constant of pro-
tiens. J. Am. Chem. Soc. 1991, 113, 9419–9421.

63 Nakamura, H. Roles of electrostatic interaction in pro-
teins. Q. Rev. Biophys. 1996, 29, 1–90.

64 Grochowski, P.; Trylska, J. Continuum molecular elec-
trostatics, salt effects, and counterion binding—A review
of the Poisson–Boltzmann theory and its modifications.
Biopolymers 2008, 89, 93–113.

65 Alexov, E.; Mehler, E. L.; Baker, N.; Baptista, A. M.;
Huang, Y.; Milletti, F.; Nielsen, J. E.; Farrell, D.;
Carstensen, T.; Olsson, M. H. M.; Shen, J. K.; War-
wicker, J.; Williams, S.; Word, J. M. Progress in the
prediction of pKa values in proteins. Proteins 2011, 79,
3260–3275.

66 King, G.; Lee, F. S.; Warshel, A. Microscopic simulations
of macroscopic dielectric constants of solvated proteins.
J. Chem. Phys. 1991, 95, 4366–4377.

67 Antosiewicz, J.; McCammon, J. A.; Gilson, M. K. Pre-
diction of pH-dependent properties of proteins. J. Mol.
Biol. 1994, 238, 415–436.

68 Demchuk, E.; Wade, R. C. Improving the continuum di-
electric approach to calculating pKas of ionizable groups
in proteins. J. Phys. Chem. 1996, 100, 17373–17387.

69 Grycuk, T. Revision of the model system concept for the
prediction of pKa’s in proteins. J. Phys. Chem. B 2002,
106, 1434–1445.

70 Truchon, J.-F.; Nicholls, A.; Roux, B.; Iftimie, R. I.;
Bayly, C. I. Integrated continuum dielectric approaches
to treat molecular polarizability and the condensed phase:
Refractive index and implicit solvation. J. Chem. Theory
Comput. 2009, 5, 1785–1802.

71 Li, L.; Li, C.; Zhang, Z.; Alexov, E. On the dielec-
tric “constant” of proteins: Smooth dielectric function
for macromolecular modeling and its implementation in
DelPhi. J. Chem. Theory Comput. 2013, 9, 2126–2136.

72 Sevastik, R.; Himo, F. Quantum chemical modeling on
enzymatic reactions: The case of 4-oxalocrotonate tau-
tomerase. Bioorg. Chem. 2007, 35, 444–457.

73 Dasgupta, S.; Herbert, J. M. Using atomic confining po-
tentials for geometry optimization and vibrational fre-
quency calculations in quantum-chemical models of en-
zyme active sites. J. Phys. Chem. B 2020, 124, 1137–
1147.

74 Fedorov, D. G.; Slipchenko, L. V.; Kitaura, K. System-
atic study of the embedding potential description in the
fragment molecular orbital method. J. Phys. Chem. A
2010, 114, 8742–8753.

75 Fedorov, D. G.; Kitaura, K. Use of an auxiliary basis
set to describe the polarization in the fragment molecular
orbital method. Chem. Phys. Lett. 2014, 597, 99–105.

76 Holden, Z. C.; Richard, R. M.; Herbert, J. M. Periodic
boundary conditions for QM/MM calculations: Ewald
summation for extended Gaussian basis sets. J. Chem.
Phys. 2013, 139, 244108:1–13 Erratum: ibid. 142,



10

059901:1–2 (2015).
77 Zhang, D. W.; Zhang, J. Z. H. Molecular fractionation

with conjugate caps for full quantum mechanical calcu-
lation of protein–molecule interaction energy. J. Chem.
Phys. 2003, 119, 3599–3605.

78 Jiang, N.; Ma, J.; Jiang, Y. Electrostatic field-adapted
molecular fractionation with conjugated caps for energy
calculations of charged biomolecules. J. Chem. Phys.
2006, 124, 114112:1–9.

79 Iozzi, M. F.; Cossi, M.; Improta, R.; Rega, N.;
Barone, V. A polarizable continuum approach for the
study of heterogeneous dielectric environments. J. Chem.
Phys. 2006, 124, 184103.

80 Si, D.; Li, H. Heterogeneous conductorlike solvation
model. J. Chem. Phys. 2009, 131, 044123:1–8.

81 Coons, M. P.; Herbert, J. M. Quantum chemistry in ar-
bitrary dielectric environments: Theory and implementa-
tion of nonequilibrium Poisson boundary conditions and
application to compute vertical ionization energies at the
air/water interface. J. Chem. Phys. 2018, 148, 222834:1–
21 Erratum: J. Chem. Phys. 151, 189901:1–2 (2019).

82 Liao, R. Z.; Yu, J. G.; Himo, F. Quantum chemical mod-
eling of enzymatic reactions: The case of decarboxylation.
J. Chem. Theory Comput. 2011, 7, 1494–1501.

83 Ren, F.; Liu, F. Impacts of polarizable continuum models
on the SCF convergence and DFT delocalization error of
large molecules. J. Chem. Phys. 2022, 157, 184106:1–11.

84 Tschumper, G. S. Multicentered integrated QM:QM
methods for weakly bound clusters: An efficient and ac-
curate 2-body:many-body treatment of hydrogen bonding
and van der Waals interactions. Chem. Phys. Lett. 2006,
427, 185–191.

85 Mayhall, N. J.; Raghavachari, K. Molecules-in-molecules:
An extrapolated fragment-based approach for accurate
calculations on large molecules and materials. J. Chem.
Theory Comput. 2011, 7, 1336–1343.

86 Sahu, N.; Gadre, S. R. Molecular tailoring approach: A
route for ab initio treatment of large clusters. Acc. Chem.
Res. 2014, 47, 2739–2747.

87 Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.;
Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.;
Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Mo-
rokuma, K. The ONIOM method and its applications.
Chem. Rev. 2015, 115, 5678–5796.

88 Saha, A.; Raghavachari, K. Analysis of different fragmen-
tation strategies on a variety of large peptides: Implemen-
tation of a low level of theory in fragment-based methods
can be a crucial factor. J. Chem. Theory Comput. 2015,
11, 2012–2023.

89 Jose, K. V. J.; Raghavachari, K. Fragment-based ap-
proach for the evaluation of NMR chemical shifts for large
biomolecules incorporating the effects of the solvent envi-
ronment. J. Chem. Theory Comput. 2017, 13, 1147–1158.

90 Chandy, S. K.; Thapa, B.; Raghavachari, K. Accurate
and cost-effective NMR chemical shift predictions for pro-
teins using a molecules-in-molecules fragmentation-based
method. Phys. Chem. Chem. Phys. 2020, 22, 27781–
27799.

91 Sure, R.; Grimme, S. Corrected small basis set Hartree-
Fock method for large systems. J. Comput. Chem. 2013,
34, 1672–1685.

92 Grimme, S.; Brandenburg, J. G.; Bannwarth, C.;
Hansen, A. Consistent structures and interactions by den-
sity functional theory with small atomic orbital basis sets.

J. Chem. Phys. 2015, 143, 054107:1–19.
93 Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M.

A long-range-corrected density functional that performs
well for both ground-state properties and time-dependent
density functional theory excitation energies, including
charge-transfer excited states. J. Chem. Phys. 2009, 130,
054112:1–8.

94 Gray, M.; Herbert, J. M. Comprehensive basis-set testing
of extended symmetry-adapted perturbation theory and
assessment of mixed-basis combinations to reduce cost.
J. Chem. Theory Comput. 2022, 18, 2308–2330.

95 Gavini, V. et al. Roadmap on electronic structure codes
in the exascale era. 2022, (arXiv:2209.12747).

96 Lin, H.; Truhlar, D. G. QM/MM: What have we learned,
where are we, and where do we go from here? Theor.
Chem. Acc. 2007, 117, 185–199.

97 Jose, K. V. J.; Raghavachari, K. Evaluation of energy gra-
dients and infrared vibrational spectra through molecules-
in-molecules fragment-based approach. J. Chem. Theory
Comput. 2015, 11, 950–961.

98 Jose, K. V. J.; Raghavachari, K. Molecules-in-molecules
fragment-based method for the evaluation of Raman spec-
tra of large molecules. Mol. Phys. 2015, 113, 3057–3066.

99 Jose, K. V. J.; Raghavachari, K. Molecules-in-molecules
fragment-based method for the accurate evaluation of vi-
brational and chiroptical spectra for large molecules. In
Fragmentation: Toward Accurate Calculations on Com-
plex Molecular Systems; Gordon, M. S., Ed.; Wiley: 2017;
Chapter 4, pages 141–164.

100 Summers, T. J.; Daniel, B. P.; Cheng, Q.; DeY-
onker, N. J. Quantifying inter-residue contact through in-
teraction energies. J. Chem. Inf. Model. 2019, 59, 5034–
5044.

101 Cheng, Q.; DeYonker, N. J. A case study of the glycoside
hydrolase enzyme mechanism using an automated QM-
cluster model building toolkit. Front. Chem. 2022, 10,
854318:1–14.

102 Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V.
H++ 3.0: Automating pK prediction and the preparation
of biomolecular structures for atomistic molecular model-
ing and simulation. Nucl. Acids Res. 2012, 40, 537–541.

103 Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—an
accurate and broadly parameterized self-consistent tight-
binding quantum chemical method with multipole electro-
statics and density-dependent dispersion contributions.
J. Chem. Theory Comput. 2019, 15, 1652–1671.

104 Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust
and efficient implicit solvation model for fast semiempiri-
cal methods. J. Chem. Theory Comput. 2021, 17, 4250–
4261.
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