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Abstract 

The development of single-molecule magnets (SMMs) for information storage and processing 

relies on compounds with long spin lifetimes, and thus requires an understanding of the spin-

phonon coupling. The phonon bath itself has a central role in these interactions, and hence 

knowledge of the impact of the intrinsic phonon lifetimes is crucial. Here we address this 

challenge by performing fully ab initio calculations of the phonon linewidths for a molecular 

crystal of a high-performance SMM. We find that the commonly assumed Born-Markov 

approximation is justified as phonon dynamics are orders of magnitude faster than the spin 

dynamics, and that employing ab initio-calculated linewidths in spin-dynamics simulations are 

secondary to employing a dense numerical sampling of the phonon modes in reciprocal space. 

 

Introduction 

Single-molecule magnets (SMMs) are molecules that possess magnetic bistability and show 

magnetic memory effects at low temperatures in the absence of long-range order.1,2 SMMs are 

proposed as platforms for nanoscale information storage,3 quantum information processing,4,5 

and molecular spintronics.6 One of the main goals has been pursuit of ever-slower spin 

dynamics to ensure that magnetic memory and quantum phase coherence remain for as long as 

possible, which are key challenges for practical applications to data storage and in quantum 

computing, respectively. The timescale for magnetic memory, 𝜏, is set by the interactions of 

the molecule with its environment and is mediated by the vibrational modes (the phonons in 

the solid-state),7,8 and the same interactions limit the timescale of quantum coherence when 

other mechanisms are suppressed.9 



Loss of magnetic memory in SMMs, also known as magnetic reversal or magnetic relaxation, 

occurs through different processes dictated by the spin dynamics. Single–phonon interactions 

lead to magnetic relaxation via the Orbach mechanism, for which the characteristic time has an 

exponential temperature dependence 𝜏 = 𝜏#exp(𝑈)** 𝑘,𝑇⁄ ) with an attempt time 𝜏# and an 

energy barrier 𝑈)**. In recent “high-temperature” SMMs the Orbach process has been found to 

be driven by high-energy optic phonons.10,11 At lower temperatures, the Orbach mechanism is 

suppressed since the populations of high-energy phonons are very low, and the spin dynamics 

are instead dominated by two-phonon Raman mechanisms driven by low-energy (pseudo-

)acoustic phonons. This generally leads to a power-law temperature dependence of 𝜏 in the 

range of T-1 to T-7,12 although the appearance of a fixed power-law dependence is the result of 

the small temperature window where the process is isolated.13 There are two forms of the 

Raman mechanism, which arise from their derivation using time-dependent perturbation 

theory:14 the Raman-I mechanism (first-order in spin-phonon coupling, second-order in time) 

does not depend on the magnitude of an external magnetic field,15 while the Raman-II 

mechanism (second-order in spin-phonon coupling, first-order in time) has a quadratic 

dependence on the field.13 There are other mechanisms pertinent to the spin dynamics of 

SMMs, such as the Direct and Quantum Tunnelling of the Magnetisation (QTM) mechanisms,1 

which are not discussed here as they are not relevant in zero magnetic field and are not 

primarily activated by phonons, respectively. 

Among the current best-performing SMMs, magnetic hysteresis has been observed as high as 

80 K for [Dy(Cp*)(CpiPr5)][B(C6F5)4] (Cp* = pentamethyl-cyclopentadienyl),16 and more 

recently for the mixed-valence CpiPr5DyI3DyCpiPr5 (CpiPr5 = pentaisopropyl-cyclopentadienyl) 

featuring strong magnetic exchange coupling mediated by the Ln-Ln half-𝜎 bond.17 In both 

cases, a large axial magnetic anisotropy is imposed by the cyclopentadienyl ligands, leading to 

large Ueff values and slow Orbach relaxation. For [Dy(Cpttt)2][B(C6F5)4] (Cpttt = C5H2-1,2,4-
tBu)10 it has been demonstrated that the slow spin dynamics in the Raman regime result from a 

separation in energy between very high-energy optical phonons, due to the conjugated five-

membered rings being the only ligands in the first coordination sphere, and low-energy pseudo-

acoustic phonons due to the soft intermolecular potential energy.13 Variation of the 

cyclopentadienyl substituents can have a significant effect on the spin dynamics10,16,18 since it 

impacts both the magnetic anisotropy and vibrational spectrum19 – yet, control of the spin 

dynamics through chemical modification remains an open challenge for the design of improved 



SMMs. Given the vastness of the chemical space, strategies employing machine learning are 

likely to be particularly promising.20 

To this end, a number of research groups have recently started to develop ab initio methods for 

calculating molecular spin-phonon coupling and modelling spin dynamics.19,21,22 This area 

started to grow rapidly with reports from three separate groups in 2017. Lunghi et al. examined 

the spin-phonon coupling and spin dynamics in the Fe(II) SMM [(tpaPh)Fe]- (H3tpaPh = tris((5-

phenyl-1H-pyrrol-2-yl)methyl)amine) and showed that phonon dissipation and anharmonicity 

were important in governing under-barrier relaxation processes.23 Escalera-Moreno et al. 

explored the spin-phonon coupling in the Cu(II) molecular qubit [Cu(mnt)2]2- (mnt2- = 1,2-

dicyanoethylene-1,2-dithiolate) and found that the lowest-energy intramolecular vibrational 

modes were of most concern for mitigating quantum decoherence.21 Finally, work in our group 

examined the spin-phonon coupling and spin dynamics of [Dy(Cpttt)2][B(C6F5)4] to establish 

that relaxation in the Orbach regime was due to high-energy optic modes, and that substitution 

of the Cp-bound C-H groups could have a significant impact on the magnetic memory 

timescales.10 [This prediction was later confirmed in work by the Layfield and Long and 

Harvey groups,16,18 though the origin of the improved performance was more nuanced than 

originally thought.19] 

Our approach to ab initio spin dynamics has hitherto been to examine spin-phonon coupling in 

the gas-phase, which was necessarily limited to single-phonon processes as the rotational and 

translational modes are zero energy by construction and there are thus no low-energy phonons 

to mediate the two-phonon Raman mechanisms.19,24,25 On the other hand, Lunghi et al. 

considered the solid-state from the start, initially focussing on the Γ-point phonon modes23,26 

and more recently expanding this to an integration over the first Brillouin zone to obtain the 

first fully-ab initio simulations of the Raman spin dynamics in an SMM.27 In the absence of a 

full solid-state calculation in our previous ab initio studies, we used a phonon linewidth 

function to generate a “pseudo” density of states (pseudo-DoS) for modelling single-phonon 

processes, based on the discrete set of modes obtained from a gas-phase harmonic calculation. 

This linewidth approximates the dispersion of the phonon energy as a function of wavevector, 

which is naturally included in solid-state calculations with appropriate reciprocal-space 

sampling. However, in reality, phonons have finite lifetimes 𝜏1 due to a variety of scattering 

processes, which means that the intrinsic linewidths Γ = ℏ 𝜏1⁄  (where Γ is the full-width-at-

half-maximum (FWHM) Lorentzian linewidth) may also vary intricately as a function of 

energy and wavevector.28 Disregarding scattering from structural or magnetic impurities and 



features such as crystallite boundaries, the leading contributor to finite phonon lifetimes are 

interactions with other phonons, of which the lowest-order are three-phonon scattering 

processes.28 The 𝜏1 depend on the nature of the modes, their energy, and their wavevectors, 

and are intrinsically temperature-dependent through the populations of the modes involved in 

the scattering processes. In our own work, we have previously treated the linewidths as a 

parameter.19 On the other hand, the 2017 study by Lunghi et al. suggested that the phonon 

lifetimes would play a crucial role in the magnetic relaxation processes, and proposed a 

simplified model for an effective phonon linewidth based on the NVT canonical ensemble 

(Equation 1).23  
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(Equation 1) 

While the question of the phonon linewidths may sound trivial, they can affect magnetic 

relaxation rates by orders of magnitude, and a proper treatment is therefore a significant 

question for research in this field. 

Anticipating that ab initio spin-phonon coupling calculations will continue to play an important 

role in studying SMMs, we sought to directly investigate the phonon linewidths in molecular 

solids and to assess their impact on the spin dynamics. In this work, we approach this by 

calculating the phonon linewidths of the high performance Dy(III) SMM, [Dy(bbpen)Br] (1),29 

using a perturbative approach based on the third-order (anharmonic) force constants.28 This 

system was chosen because of its small unit-cell size, relatively high-symmetry space group 

(C2221), and excellent SMM performance. CASSCF-SO calculations were performed to 

quantify the spin-phonon coupling for the full set of phonon modes on a series of Brillouin-

zone sampling grids. We then calculated the magnetic relaxation rates including the phonon 

dispersion and ab initio temperature-dependent linewidths, providing the least approximate 

model for the molecular spin dynamics to date. Our results show that the phonon linewidths 

are highly energy- and wavevector-dependent, with the FWHM varying between 0.1 – 40 cm-

1 in 1 at 300 K. However, we find that the magnetic relaxation rates are relatively insensitive 

to the linewidths, provided a sufficient integration of the Brillouin zone is performed, with 

similar results obtained using a fixed linewidth, the function proposed by Lunghi et al. 

(Equation 1), or the ab initio temperature-dependent linewidths.  

 



Methods 

Lattice-dynamics calculations were performed on the primitive cell of 1, obtained from the 

Cambridge Structural Database (CCDC: 1416543), using periodic density-functional theory 

(DFT) as implemented in VASP 5.4.4.30–33 The PBE functional34 with the DFT-D3 semi-

empirical dispersion correction35 was employed to model the electron exchange and 

correlation. The ion cores were modelled with projector augmented-wave (PAW) 

pseudopotentials,36,37 with a 4f-in-core potential for Dy(III) used to avoid issues with treating 

the strongly-correlated f electrons on the lanthanide using semi-local DFT. We used a plane 

wave basis set with an energy cutoff of 800 eV at the Γ point to model the valence electronic 

structure, with both parameters determined via explicit convergence testing. The cell content 

and parameters of 1 were optimised starting from the primitive cell of the published X-ray 

structure, with the atomic positions (128 atoms), unit cell parameters and unit cell volume 

allowed to relax, to tight tolerances of 10-8 eV on the electronic total energy and 10-2 eV Å-1 on 

the forces. Lattice-dynamics calculations were performed using the supercell finite-difference 

method implemented in the Phonopy38 and Phono3py28 codes. A 2×2×1 supercell with 512 

atoms was employed to determine the second-order force constants in Phonopy,38 which was 

required to remove imaginary modes at the Y and T wavevectors in the calculated phonon 

dispersion. The third-order force constants for the primitive cell were determined using 

Phono3py,28 where the phonon frequencies and linewidths were then evaluated on uniform 

2×2×2, 3×3×3, 4×4×4 and 5×5×5 q-point grids using Fourier interpolation. 

We adapted our established protocol for modelling molecular spin dynamics19 to take into 

account the phonon modes in the crystalline phase. The set of phonon wavevectors q on a Γ-

centred q-point sampling grid with q1×q2×q3 subdivisions are commensurate with a q1×q2×q3 

supercell expansion in real space (i.e. the supercell is of the correct size to contain an integer 

number of phonon wavelengths for all the q on the sampling grid). Given a q-point grid, the 

spin-phonon coupling must be evaluated for the corresponding supercell. We first take the 

optimised unit cell and generate the required supercell. We then take each unique molecule in 

the supercell (expanded to contain complete molecules) and perform a gas-phase DFT 

calculation using Gaussian 09d,39 with Dy substituted by Y to avoid a multiconfigurational 

ground state, and determine the atomic charges required to reproduce the external molecular 

electrostatic potential using the CHELPG method40 (PBE functional,34 Stuttgart RSC 1997 

ECP for Y41–43 and the cc-pVDZ basis sets for all other atoms44). A periodic shift is then applied 

to place a single molecule of 1 at the centre of the supercell, and the remaining atoms are 



replaced by the atomic point charges. The molecule is then treated with a state-average 

complete active space self-consistent field spin-orbit (SA-CASSCF-SO) calculation in 

OpenMolcas.45 

We consider 18 S = 5/2 states (6H and 6F terms) in a 9-in-7 active space (4f9 configuration) 

using the second-order Douglas-Kroll-Hess relativistic decoupling,46 the Cholesky “atomic 

compact” resolution of the identity method for approximating the two-electron integrals,47 and 

ANO-RCC basis sets for all atoms (VTZP for Dy, VDZP for the first coordination sphere, and 

VDZ for all other atoms).48,49 These 18 spin-free states are then mixed with SO coupling and 

the lowest 16 resulting states (6H15/2 multiplet) are projected onto a crystal field (CF) 

Hamiltonian acting in the (2J+1)-dimensional |mJ⟩ basis.50 The spin-phonon coupling 

Hamiltonian for each mode is evaluated using a linear vibronic coupling model, where we first 

determine the first derivatives of the CF parameters for each atomic Cartesian degree of 

freedom, then convert these into the normal mode basis using the appropriate linear-

combination of atomic displacements from the normal mode vector.50 This is done for all 

phonon modes, at all q-points in the sampling mesh. 

Magnetic relaxation rates are determined using our code Tau, considering the Orbach and 

Raman-I rate expressions derived from perturbation theory,14,22 which are given by Equations 

1–6 in the supporting information of Ref. 50. Calculation of the Raman rates using these 

perturbative expressions requires an energy gap between the lowest Kramers doublet, which 

occurs in experiments due to the presence of a dipolar magnetic field and/or the driving AC 

magnetic field in the experiment, and thus we apply a magnetic field of 2 Oe along the main 

magnetic axis of the molecule, splitting the ground doublet by ca. 0.002 cm-1. The Raman 

mechanism involves two phonons, with no restrictions on the energies and wavevectors, and 

the rate is obtained as the double-integral over pairs of modes.22,50 We restrict the domain of 

the phonon energies to 0 ≤ 𝜔 ≲ 𝜔GHI, where 𝜔GHI = 267 cm-1 is chosen as the minimum in the 

DoS above the low-energy pseudo-acoustic peak. The cut-off is applied to avoid divergences 

in the in the Raman-I rates (where the denominator of Equations 3–6 in the supporting 

information of Ref. 50 would go zero when ℏ𝜔 is resonant with a CF excitation), and is 

sufficiently smaller than the first crystal field excitation of 421 cm-1. The double-integral is 

transformed into a one-dimensional integral due to the conservation of energy via the Dirac 

delta function, and is performed over anti-Lorentzian phonon lineshapes (Equation 7 in the 

supporting information of Ref. 50) to an equivalent range of 𝜇 ± 2𝜎 (95%) using the trapezoidal 



method with 40 equidistant steps; anti-Lorentzian lineshapes are used to ensure that the DoS 

goes exactly to zero at zero energy. 

To assess the results of our solid-state calculations, we also calculated the spin-phonon 

coupling coefficients and magnetic relaxation rates for a gas-phase molecule of 1. For that, we 

optimise the geometry of 1, again with Dy replaced by Y, with Gaussian09d39 using PBE-

D3,34,35 the Stuttgart RSC 1997 ECP41–43 for Y and the cc-pVDZ basis sets for all other atoms. 
44 

Results and discussion 

Compound 1 is a monometallic Dy(III) molecule with a pentagonal bipyramidal coordination 

geometry. The molecule crystallises in the orthorhombic space group C2221 with half a 

molecule in the asymmetric unit and two complete molecules in the conventional unit cell 

(Figure 1). Liu et al. report that compound 1 shows slow magnetic relaxation with Ueff = 712 

cm-1 and τ0 = 4.21´10-12 s.29 Optimisation of the crystal structure of 1 with periodic DFT yields 

a very similar structure to the experimental one used as the starting point: the optimised unit 

cell parameters are very similar to the measured values (Table S1), and the root-mean-square 

deviation (RMSD) for all the atomic positions (maximal overlap) is 0.10 Å. The low-energy 

phonon dispersion (Figure 2a) comprises the three acoustic modes (corresponding to rigid 

translations with zero energy at the Γ point) and a high density of dispersive pseudo-acoustic 

modes that arise predominantly from combinations of rigid molecular translations and 

rotations. Over the same region the DoS shows a high-density continuum of phonon modes 

below ca. 200 cm-1 (Figure 2b), while the complete spectrum extends up to 3500 cm-1 and at 

higher frequencies comprises relatively flat bands of intramolecular modes (Figure 2c). 

 



 
Figure 1. a) Molecular structure of 1 from X-Ray diffraction.29 b) Optimised conventional unit 

cell containing two molecules of 1. The atoms are colour coded as follows: Dy = pink, N = 

dark blue, Br = brown, O = red, C = grey, H = light blue. 

 

 
Figure 2. Calculated phonon spectrum for the crystal structure of 1. a, b) Low-energy 

dispersion and density of states (DoS). c) Full energy range DoS. Both DoS plots are calculated 

using an 8×8×8 q-point grid with Gaussian lineshapes and a 0.53 cm-1 FWHM linewidth. 

 

Having determined the phonon spectrum of 1, we then proceeded to calculate third-order 

(anharmonic) force constants and model the phonon-phonon interactions.28 To obtain the 

lifetime 𝜏1 and linewidths Γ, the phonon-phonon scattering processes are calculated explicitly 

for a grid of wavevectors in reciprocal space at a finite temperature (thermal occupation of the 

phonon modes are important for determining scattering). Here we have used 2×2×2, 3×3×3, 

4×4×4 and 5×5×5 q-point grids (which have 6, 8, 21 and 27 unique q-points, respectively), and 



performed the calculations at 10, 20, 30, 40, 50, 60 and 300 K. We find that calculated 

linewidths vary both as a function of wavevector and mode energy (Figure 3), but that the 

variation is relatively insensitive the choice of grid (Figure S1). There is also a marked 

temperature dependence (Figures S2 and S3), which above 30 K is well approximated as Γ ∝

𝑇. In contrast, the high-temperature limit of Equation 1 is Γ ∝ T: and the linewidths predicted 

by Equation 1 differ substantially from these ab initio calculations (Figure 3a). The calculated 

phonon linewidths for 1 at 300 K are on the order of 0.1-40 cm-1 (corresponding to lifetimes 

on the order of 100-0.1 ps, respectively), and some modes become much longer lived at low 

temperatures with lifetimes up to 4.5 ns (corresponding to linewidths of 0.001 cm-1) at 10 K. 

This strong temperature dependence arises from the fact that with increasing temperature the 

phonons are more heavily populated, according to Bose-Einstein statistics, resulting in larger 

scattering probabilities.28 Even this extremely long calculated lifetime is orders of magnitude 

shorter than the experimental spin lifetimes for this compound, which are seconds to hundreds 

of microseconds, justifying the commonly assumed Born-Markov approximation for molecular 

spin-dynamics.19,27 To the best of our knowledge the present study represents one of very few 

explicit calculations of the phonon linewidths and lifetimes for a molecular crystal, and the 

only such calculation for solid-state SMM. 

The central quantity of interest for molecular spin-dynamics is the total DoS. Usually, the DoS 

is obtained using a chosen q-point grid and using arbitrary Gaussian or Lorentzian smoothing 

functions (e.g. Figure 3b). Here, because we have calculated the linewidths ab initio, we can 

directly calculate an ab initio DoS with no artificial smoothing functions (Figure 3c). The 

resulting low-energy DoS is sharply featured when using a small q-point grid (i.e. the 2×2×2 

q-point grid), but the low-energy DoS as 𝜔 → 0 (determined solely by the three acoustic 

modes) is expected to be quadratic in the frequency.51 The sharp features are due to the finite-

sum of q-points the Brillouin zone, and can be improved by using a larger grid to sample the 

dispersion of the modes more accurately (i.e. the 5×5×5 q-point grid, though we note that this 

grid still does not fully capture the dispersion cf. Figure 3b). We note that using a small grid 

would be more problematic at lower temperatures given the drastic narrowing of the linewidths 

(Figure S4). Given the similar profiles of the linewidths obtained with different grids (Figure 

S1), the difference in the DoS obtained with the different q-point sampling in Figure 3b can be 

attributed to better integration of reciprocal space rather than to an improved accuracy of the 

calculated linewidths. We note that issues of a sharply-featured DoS can potentially be avoided 



by using a fixed phonon linewidth of Γ	 = 	10 cm-1, as this gives a smooth DoS even with a 

comparatively sparse 2×2×2 q-point grid (Figure S5). 

 

Figure 3. a) Phonon linewidths as a function of mode energy at 50 K for the 27 q points on a 
5×5×5 Brillouin zone sampling mesh; the different q points have differently coloured and 
shaped symbols. The dashed line shows the predictions from Equation 1. b) Low-energy DoS 
at 50 K constructed from the calculated frequencies and linewidths obtained on 2×2×2 and 
5×5×5 q-point grids, using an anti-Lorentzian lineshape. 

 

To examine the influence of calculated phonon linewidths on the spin dynamics, we proceeded 

to calculate the spin-phonon coupling and magnetic relaxation rates (see Methods). First, we 

examined the spin dynamics under the gas-phase ansatz by optimising the neutral molecule of 

1 in the gas-phase, which yields an RMSD for all the atomic positions (maximal overlap) 

compared to the experimental crystal structure of 0.13 Å. The calculated single-phonon 

magnetic relaxation rates for the Orbach mechanism, using the gas-phase vibrational modes 

and fixed linewidths show good agreement to the experimental data in the high-temperature 

Orbach region (Figure S6). As we have shown before, the absolute rates show a significant 

dependence on the choice of linewidth,10,19,24 with broader linewidths leading to faster 

relaxation rates. This behaviour occurs for single-phonon processes because there is only one 

possible energy that a phonon can have to cause a transition – ℏ𝜔 = P𝐸R − 𝐸SP (where 𝐸R  and 

𝐸S are the final and initial electronic state energies) – and a larger linewidth gives a larger 

probability that an overlap between P𝐸R − 𝐸SP and the set of calculated vibrational energies can 

occur. We find that the best agreement is obtained with Γ	 = 	1 cm-1 (Figure S6), which is 

consistent with the approximate centre of the distribution of the calculated phonon linewidths 

at 300 K. 



Two-phonon Raman rates can only be reliably obtained by considering the (pseudo-)acoustic 

phonons, in the solid-state, so this calculation cannot be performed using the gas-phase 

vibrational spectrum. We therefore also calculated the spin-phonon coupling and magnetic 

relaxation rates using the solid-state phonon modes generated using the set of supercell 

expansions commensurate with the q-point grids on which the calculated frequencies and 

linewidths were obtained (see Methods). To compare with the gas-phase calculations, we first 

performed calculations with fixed linewidths (i.e. disregarding the calculated Γ; Figure S7). 

We again find that the single-phonon rates in the Orbach region are positively correlated with 

the choice of linewidth, but the dependence is far less significant than in the gas phase: the 

rates for Γ	 = 	0.1 cm-1 and Γ	 = 	10 cm-1 differ by 1.3 orders of magnitude at 60 K in the gas-

phase calculations, but by significantly smaller values of 0.8, 0.9, 0.4 and 0.8 orders of 

magnitude for the phonon calculations with 2×2×2, 3×3×3, 4×4×4 and 5×5×5 q-point grids, 

respectively. Convergence toward the experimental data with respect to the size of the q-point 

grid is not continuous. In particular, we observe better convergence behaviour with “odd” 

versus “even” grids such that the 3×3×3 grid improves over the 2×2×2 grid, the 4×4×4 grid 

gives less accurate results than the 3×3×3 grid, and the largest 5×5×5 grid improves over the 

3×3×3 grid (Figure S7). We attribute this to the inclusion/exclusion of the Brillouin-zone 

boundary points in the even/odd grids, and we would expect both types of grid to converge to 

the same result with higher sampling density, but our grids are clearly not yet in that limit. 

Overall, these results indicate that the choice of linewidth in the single-phonon Orbach region 

becomes less important when the solid-state phonons, rather than the gas-phase vibrations, are 

used with appropriate integration of the first Brillouin zone. 

Calculating the two-phonon Raman rates with fixed linewidths shows that the calculated 

magnetic relaxation rates give the same temperature trend as in the experimental data but are 

ca. an order of magnitude faster (Figure S8). Counter-intuitively, and opposite to the behaviour 

of the single-phonon Orbach rates, the two-phonon Raman rates have a negative correlation 

with linewidth, i.e. the rates become slower with broader linewidths. This arises owing to the 

double-integral over the DoS containing terms such as (see Equations 3–6 in the supporting 

information of Ref. 50) ∑ ∬𝑛X(ℏ𝜔)(𝑛X(ℏ𝜔Y) + 1)𝜌4(ℏ𝜔)𝜌\(ℏ𝜔Y)δ(𝐸R − 𝐸S − ℏ𝜔 +4^\

ℏ𝜔′)dℏ𝜔dℏ𝜔′, where 𝑛X(ℏ𝜔) and 𝑛X(ℏ𝜔′) are the Bose-Einstein occupations of the phonons, 

𝜌4(ℏ𝜔) and 𝜌\(ℏ𝜔′) are the anti-Lorentzian lineshape functions of the phonons centred at ℏ𝜔4 

and ℏ𝜔\ , respectively, and the integral is over the energies of the two phonons ℏ𝜔 and ℏ𝜔′. 

Here, the delta function (which enforces conservation of energy) allows many more pairs of 



phonons to cause a transition between two states, because the difference in the phonon energy 

−ℏ𝜔 + ℏ𝜔′ must match the difference in electronic state energy 𝐸R − 𝐸S . When the linewidths 

are larger, the phonons lines extend to higher energies, and the Bose-Einstein occupation 

factors strongly down-weight phonons at higher energies, hence reducing the magnitude of 

these contributions when the linewidths are larger. 

As for the Orbach rates, we see that the dependence on the linewidth becomes smaller with 

improved reciprocal-space integration, and that the agreement with experiment improves with 

larger grids. However, the convergence with respect to q-point sampling is slower than for the 

single-phonon Orbach rates. Given that choosing a fixed Γ	 = 	10 cm-1 results in a smooth DoS 

even for the 2×2×2 grid (Figure S5), and the magnetic relaxation rates with the fixed linewidth 

also converge towards the experimental data as the grid density is increased (Figures S7 and 

S8), this means that improving the integration of the Brillouin zone does not merely generate 

a smooth DoS, but rather more accurately captures the dispersion of the spin-phonon couplings 

across the Brillouin zone. Given that we observed the same behaviour with the high-

temperature Orbach rates, this strongly suggests that Γ-point-only spin-phonon coupling 

calculations are insufficient. We also note that the sensitivity of the magnetic relaxation rates 

in the Raman region to the phonon linewidth could provide an explanation for the correlation 

between crystalline disorder and the width of the distributions of magnetic relaxation rates,52 

as well as the increase in the distribution in magnetic relaxation rates for this compound as the 

temperature is decreased; that is, the presence of crystalline disorder has more of an effect on 

the rates (i.e. increasing their distribution) as temperature is reduced where the Raman 

relaxation mechanism dominates. 

 

a) b)



Figure 4. Experimental (black circles) and calculated magnetic relaxation rates for 1. 
Calculations are performed using the solid-state phonon modes on 5×5×5 grid, considering 
single- (a) and two-phonon (b) mechanisms, with a fixed Γ = 10 cm-1 (blue), linewidths 
predicted by Equation 1 (red), mode-dependent calculated linewidths at 300 K (green), and 
calculated mode- and temperature-dependent linewidths (purple points and dashed lines). The 
error bars on the experimental data points denote one estimated standard deviation of the 
distribution of relaxation rates.52 

 

We now examine the impact of using the calculated phonon linewidths. In the Orbach region, 

the rates obtained using mode- and temperature-dependent linewidths coincide with the fixed 

linewidth calculations using Γ = 10 cm-1 (Figures 4 and S7). For the Raman region, the rates 

with calculated linewidths are close to those calculated with the fixed Γ = 10 cm-1 at 60 K, but 

increasingly approach the smaller fixed-linewidth calculations at lower temperature, crossing 

the Γ = 0.1 cm-1 rates between 20 and 10 K (Figures 4 and S8). As the Raman rates are more 

strongly affected by the choice of linewidth than the Orbach rates, it is unsurprising that the 

extreme narrowing of some of the calculated phonon linewidths at low temperatures has a 

marked impact on the temperature-dependent relaxation rates. However, we note that the 

profile of the rates calculated using mode- and temperature-dependent linewidths does not 

agree with the experimental data at the lowest temperatures, and in particular, they appear to 

level-off while the experimental rates continue to decrease. Hence, we suggest that the extreme 

narrowing of the calculated linewidths at low temperatures is overestimated, and that there are 

likely other sources of phonon scattering (such as boundary effects, impurities, defects and/or 

disorder) in real crystals that would lead to shorter phonon lifetimes and therefore broader 

linewidths than estimated by our DFT calculations on a perfect infinite crystal. 

Finally, we compared our results to the effective NVT phonon linewidth proposed by Lunghi 

et al. (Equation 1). We find that in both the Orbach and Raman regions this expression gives 

rates that are close to the fixed Γ = 10 cm-1 curves (Figures 4, S9 and S10), and, in fact, gives 

rates nearly identical to those obtained using calculated linewidths at 300 K, which agree well 

with the ab initio linewidth results at high temperature. However, the phonon linewidths 

predicted for the low-energy phonons using this function increase drastically at high 

temperature such that the numerical integration over the anti-Lorentzian phonon lineshapes in 

the two-phonon Raman mechanism becomes difficult, and we therefore only present these data 

for T ≤ 46 K. 



Overall, it appears that considering the solid-state phonons, as compared to gas-phase 

vibrations, along with a dense sampling of reciprocal space is important. However, that the 

choice of phonon linewidth model is not crucial. Indeed, due to the likely unphysical narrowing 

of calculated phonon linewidths at very low temperature, and the similar results obtained using 

the calculated 300 K and temperature-dependent linewidths, we do not suggest using 

temperature-dependent ab initio linewidths. Furthermore, owing to the large computational 

burden of calculating ab initio linewidths and their similarity to the NVT approximation, we 

suggest that calculation of linewidths is not worth the effort. Finally, considering the difficulties 

with numerical integration using the NVT linewidths and their huge energy dependence (Figure 

3a), and yet the similarity of the results to calculations with a fixed Γ = 10 cm-1, we suggest 

that the simple fixed-linewidth method is the most transferrable and economic for molecular 

spin-dynamics calculations. 

 

 

 

Conclusions 

We have performed ab initio calculations of the phonon lifetimes and linewidths for a single-

molecule magnet in its molecular crystalline phase. We find that the calculated linewidths 

deviate from the approximate model derived from the NVT canonical ensemble and have a 

significant dependence on the mode energy, phonon wavevector, and temperature. However, 

ab initio calculations of the spin-phonon coupling and spin dynamics show that the choice of 

linewidth model (fixed, NVT, or fully ab initio) is less important than the density of the 

integration grid used to sample the phonon Brillouin zone, which is required to capture the 

intrinsic dispersion of the spin-phonon coupling strengths. Hence, we advise that solid-state 

phonon calculations with dense grids should be used in conjunction with either the NVT 

approximation for the phonon linewidths or a fixed linewidth on the order of Γ = 10 cm-1 for 

accurate and efficient spin dynamics calculations. 
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