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ABSTRACT: 

A concise total synthesis of the complex guanidinium toxin KB343 is reported traversing through 

an unusual sequence of chemoselective transformations and strategic skeletal reorganization.  The 

absolute configuration is confirmed through an enantioselective route and the structures of all key 

intermediates and the natural product itself are unassailably confirmed through X-ray 

crystallographic analysis. 

 

MAIN TEXT: 

KB343 (1, Figure 1), is a structurally fascinating pentacyclic guanidinium alkaloid recently 

isolated by the Sakai group from a tunicate (Epizoanthus illoricatus) off the coast of the republic 

of Palau.1 It exhibits toxicity in line with other guanidinium toxins such as tetrodotoxin and thus 

may represent a promising lead to study ion channel biology.2 A long-held fascination with the 

synthesis of cyclic guanidine-containing alkaloids such as the pyrrole-imidazoles3 and indole-

imidazoles4 drew our attention to 1. Historically such structures present a multitude of challenges 

stemming from their dense functionality and the high polarity of intermediates. In the present case, 

1 harbors three cyclic guanidines (2-aminoimidazoles) expressed as spiro-fused, ring fused, and 

aromatic variants annealed onto a decalin core. This Communication discloses a concise route 



(both racemic and enantioselective) to 1 featuring a number of unconventional tactics and a 

strategy relying on skeletal reorganization to precisely install the key ring systems (Scheme 1). 

 
Figure 1. KB343 (1): Evolution of synthetic approaches. 

Several generations of retrosynthetic analyses were applied resulting in a successful solution to 

this puzzle. In the initial design, an ambitious approach wherein a simple linear intermediate would 

undergo a series of self-condensations controlled by a single methyl-containing stereocenter was 

pursued (Gen. 1, Figure 1). Unfortunately, the polarity of intermediates and difficulty in 

controlling the reactivity of such compounds proved unfeasible.  Next, a “two-phase” strategy5 

was investigated through the sequential amination of a simple polyunsaturated decalin (Gen. 2). 

This path, however, resulted in a linear route stymied by functionalization challenges (regio- and 

stereo-selectivities). The learnings from these two excursions led to a third design plan aiming to 

annulate multiple rings from a central B-ring precursor (Gen. 3). This plan also faltered due to 

improper control of stereochemistry and C–N bond forming steps that would not proceed.  The 

final successful route to 1 hinged upon a more convergent design that implemented the lessons of 

prior approaches and addressed stereochemical and chemoselectivity issues6 with exquisite 

control. 

 

The synthesis of 1 commenced with commercial benzyl alcohol 3 onto which was appended the 

first guanidine unit on multi-decagram scale under conventional Mitsunobu conditions to furnish 
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4 in 87% yield (structure confirmed via X-ray crystallography). The first dearomative cyclization 

converting 4 to 5 required invention as cyclizations of this type with guanidine nucleophiles either 

employ expensive transition metals with sulfonamide-protected guanidines7a or hypervalent 

iodine-based oxidants resulting in low-yields of product.7b Inspiration was drawn from the scalable 

synthesis of axinellamine and related alkaloids3 wherein an electrophilic guanidine species forged 

a key spirocyclic center onto a pendant olefin. That observation subsequently led to the 

development of a highly effective electrophilic chlorinating reagent.8 Thus, guanidine 4 was first 

treated with tBuOCl at room temperature. After 20 minutes TBAF and tBuOK were added 

sequentially to deliver dearomatized spirocycle 5 (structure confirmed via X-ray crystallography) 

in 65% isolated yield (80 g scale). This reaction presumably proceeds by way of intermediate 30 

and it is worth noting that although the initial N-chlorinated species is isolable (not very stable) 

the entire sequence takes place in one reaction vessel. The seemingly simple desymmetrizing 

installation of the methyl group via conjugate addition proved unusually difficult as canonical 

conditions all delivered undesired byproducts or the wrong stereochemical outcome (see inset 

Table 1 and see SI for a more detailed screening table).9 Eventually it was discovered that when 

the in situ derived magnesiated guanidine was formed it could direct addition to the desired face 

furnishing 6 (structure confirmed via X-ray crystallography) as a single diastereomer in 74% yield 

(decagram scale). Following a-iodination10 of the remaining enone a convergent coupling with the 

stannane 18 (see SI) was accomplished via Stille coupling. Of note, Stille coupling proved to be 

the only viable cross-coupling for this pivotal C–C bond forming step and the initial hit (trace 

product) was optimized to 70% yield on decagram scale through judicious choice of Pd and Cu 

sources and ligand.11 Aldol annulation of adduct 8 using aq. NaOH followed by addition of BnBr 

led to the hydroxylated tetracycle 9 (structure confirmed via X-ray crystallography) as a single 

diastereomer. Presumably following aldol addition/dehydration the resulting quinone methide 

species is immediately captured by hydroxide. It was anticipated that either a simple SN2 reaction 

of the benzylic alcohol or in situ trapping of the putative quinone methide with an amine source 

would easily deliver the requisite amine stereochemistry at C-7. In the former case, this proved to 

be impossible as the benzyl alcohol could not be converted to a leaving group of any kind. For the 

latter case, only attack by hydroxide was observed rather than any N-based nucleophile employed 

and addition only occurred from the top face due to a rigid conformation blocking attack from the 

bottom. A rapid detour was therefore undertaken wherein SN1 substitution using NbCl5/TMSN3 



afforded azide 10 (structure confirmed via X-ray crystallography) in 78% yield (single 

diastereomer) followed by Staudinger reduction (88% yield, gram-scale), and an unusual C–N 

epimerization (48% yield) to deliver 12 (structure confirmed via X-ray crystallography). With 

regards to the azide installation, NbCl5 was singularly successful amongst all Lewis-acids 

screened.12 The amine redox-epimerization strategy, classically employed for alcohols, is rare in 

natural product synthesis.13 In this instance, TPAP/NMO was the only successful oxidant of those 

screened. Finally, during this step an unusual and fortuitous skeletal rearrangement took place 

wherein the free amine underwent acyl-transfer thereby protecting itself and setting up a favorable 

geometry for the ensuing steps. The tenth step of the synthesis yet again required an 

unconventional solution to a simple reaction: SNAr. Under a variety of known conditions with 

various nucleophiles only loss of the Boc groups and decomposition was observed, in some cases 

trace quantities of product could be detected. Ultimately, the use of an ionic liquid ([BMIM]BF4)14 

with NaN3 at 70 °C delivered azido-imidazole 13 (structure confirmed via X-ray crystallography) 

in 73% yield (small amount of deprotected product was re-protected in one-pot afterwards). At 

this juncture the final guanidine unit had to be installed on a preexisting guanidine unit – a 

challenge with little precedent in the literature.15 One of the most powerful reagents for installation 

of this functional group, TurboguanTM,4 was evaluated but proceeded with low conversion. An 

analog of this reagent bearing a 1,2,4-triazole leaving group16 proved successful delivering phenol 

14 (structure confirmed via X-ray crystallography) in 64% yield after hydrogenolytic benzyl group 

removal and azide reduction in a one pot process. All that remained was formation of the C-ring, 

restoration of the spirocyclic A-ring, global deprotection, and a stereoselective reduction on the D-

ring. PIDA-mediated dearomatization17 occurred smoothly to deliver 15 in 76% yield. Subsquent 

exposure to BCl3 removed the Boc groups and the BOM group along with concomitant 

equilibration to the correct connectivity expressed in the pentacyclic ring system thereby affording 

16 (structure confirmed via X-ray crystallography) in almost quantitative yield. The selective 

installation of two hydrogen atoms were all that remained to complete the total synthesis of 1. Not 

surprisingly, this required extensive experimentation due to the highly polar nature of 16, its 

multiple Lewis-basic sites and its tendency to aromatize via guanidine fragmentation under 

reductive conditions. Furthermore, the X-ray structure of 16 suggested that the requisite 

hydrogenation might be favored on the undesired face of the molecule.  Indeed, amongst the 

numerous conditions screened (see inset Table 2 for a small selection and SI for an extensive list), 



aromatization products and epi-KB343 (2) predominated. Even under radical-based reduction 

Scheme 1. Racemic synthetic route toward KB343 (1)a 

aFor detailed reagents and conditions, see SI. 
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conditions, the undesired diastereomer was formed exclusively. The first glimmer of hope emerged 

from standard Pd/C-based hydrogenation in MeOH solvent. Whereas screening of chiral ligands 

had only a detrimental effect on selectivity, careful selection of guanidinium counterions showed 

some promise. Ultimately, by employing a trifluoromethanesulfonic acid counterion, a 2:1 dr 

favoring 1 (ca. total 90% yield) was achieved. The spectra of synthetic 1 matched that of the 

isolation report1 and its structure was unequivocally confirmed via X-ray crystallography. 
Scheme 2. Enantioselective synthesis of intermediate 6b 

 
bFor detailed reagents and conditions, see SI. 
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to afford the fused rather than the spiro-ring system.  Processing 6 through the route outlined in 

Scheme 1 led to enantiopure 1, enabling the assignment of absolute configuration as depicted in 

Scheme 2 (by comparison of both optical rotation and CD). 

 

The synthesis of (+)-1 represents another interesting addition to the field of guanidinium-

containing natural product total synthesis. It features a number of unusual maneuvers that might 

find use in other settings such as N-assisted dienone synthesis and desymmetrization, Nb-catalyzed 

SN1 substitution, hindered amine epimerization, ionic-liquid enabled SNAr, and counterion-

assisted diastereoselective late-stage hydrogenation from a tactical standpoint. Strategically, a 

convergent assembly/annulation approach coupled to temporary skeletal reorganization via acyl 

transfers effectively simplified an otherwise complex problem. 
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