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Abstract 

The activity coefficients of ions in polymeric ion-exchange membranes (IEMs) dictates the 

equilibrium partitioning coefficient of the ions between the membrane and the liquid. It also affects 

ion transport processes, such as conductivity, in ion-exchange membranes. Accurately predicting 

the ion activity coefficient without experimental data has been elusive as most models are 

empirical or semi-empirical. This work employs an embedding process that maps microscopic and 

macroscopic properties for modeling of ion activity coefficients in IEMs with molecular dynamics 

and machine learning (ML). This strategy is effective for accurately predicting activity coefficients 

in various IEMs materials – including random copolymer and block copolymer systems. ML 

algorithms are increasingly being used for the analysis of complex systems when limited 

knowledge is available. The framework uses small experimental activity coefficient datasets in 

conjunction with polymer structure information and molecular attributes describing the solvation 

of ions and polymers to predict the ion activity coefficient in IEMs. Two different ML models 

were developed to estimate the molecular attributes and the ion activity coefficient. The best ML 

model accurately predicts the solvation descriptors and ion activity coefficient with an average 

mean absolute error of <7% and 10%, respectively. Adopting the said approach allow for the 

estimation of ion activity coefficients in IEMs without the need for new time-consuming MD 

simulation runs and experiments. 
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1. Introduction 

Electrically-driven ionic separations has been historically important for water desalination and the 

production of ultra-pure water for semiconductor, food, and pharmaceutical manufacturing. They 

are also emerging as platforms for the recovery of organic acids from processed biomass streams1,2 

and valuable metals from waste and hydrometallurgy streams3 as well as remediating water 

streams with bad actors (e.g., PFAS4,5 and heavy metals6). Electrically-driven ionic separations 

include electrodialysis (ED), membrane capacitive deionization (MCDI) and electrodeionization 

(EDI) 2–6, and each of these processes utilize ion-exchange membranes (IEMs). The two main 

types of IEMs are anion exchange membranes (AEMs) and cation exchange membranes (CEMs) 

The chemistry and molecular architecture of IEMs influence their ionic conductivity and 

permselectivity and other transport properties such as osmotic drag.10–13 Thus, chemistry and 

microstructure of IEMs have a profound impact on the said properties. The ionic conductivity of 

IEMs is inversely commensurate to the ohmic overpotential of electrochemical separations. In 

other words, it can have a large effect on the energy efficiency of electrochemical separations when 

trying to operate at high current density values. Operating at high current density is important to 

reducing the size of the separation system and reducing capital costs that arise from ion-exchange 

membranes and electrodes.1,2,14 There are many parameters within polymeric IEMs that affect 

conductivity and permselectivity and they include repeat unit sequence14 repeat unit chemistry, 

microstructure14, concentration of tethered charge groups, the external salt concentration,14–17 the 

types of salts,15,18 and water content16. Establishing the said descriptors to ion transport rates within 

IEMs is time consuming and expensive because many experiments must be performed for a given 

structure and chemistry. Hence, it is desired to create accurate computational models to estimate 

these properties with small data sets for training and validation.  

Computational models that can bridge molecular descriptors to material properties and 

performance in electrochemical separation platforms are vital for the design and optimization of 

these systems.19 Moreover, finding descriptors that accurately capture the ionic transport between 

the solution and polymer could reveal insights to the various mechanisms of transport processes 

in materials. One such descriptor, which is the focus of this work, is the activity coefficient of co-

ions and counterions in polymeric IEMs. The activity coefficient is related to the Gibbs excess 

energy (when the Gibbs energy is selected as the partial molar property)20 – which is the difference 

between the actual Gibbs free energy change and the ideal Gibbs free energy change. Many of the 

counterion and co-ion properties in IEMs is a function of concentration. Under non-ideal behavior, 

the activity coefficient deviates from one and captures the activity these ions exert within 

membranes and liquids – which is often lower than the actual concentration of these species. Under 

constant temperature and pressure, the equilibrium is defined by the electrochemical potential for 

a given ion being equal in the liquid phase to that in the membrane phase.21 Exploiting the chemical 

equilibrium criteria allows one to determine the partitioning coefficient for one ion between the 
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IEMs and liquid phase. The permselectivity of an IEMs, which is the propensity of the membrane 

to transport one ion or another, is a product of the partitioning coefficient multiplied by the ratio 

of the ionic mobility coefficients. Equation 1 depicts permselectivity (𝑃𝑗
𝑖) and the partitioning 

coefficient (𝐾𝑗
𝑖) of one ion (‘i’) over another ion (‘j’) as a function of ion activity (𝑎𝑖) in the solution 

(i.e., liquid) and membrane phases (superscripts ‘s’ and ‘m’, respectively).22 Equation 2 is the 

definition of ion activity. 𝛾𝑖  is the activity coefficient and 𝐶𝑖 is the concentration.  

         <1> 

            <2> 

Despite its relevance, accurate ion activity coefficient models based upon the physics and 

chemistry of the ion-exchange membranes are lacking. Activity coefficient models for ions in 

liquids are semi-empirical or empirical and tend to be complex (e.g., Debye–Hückel and Pitzer).20 

To model the activity coefficient in IEMs, models such as Manning-Donnan correlation21 (and 

derivatives of this model) were proposed to determine the ion activity coefficient in IEMs when 

interfaced with an aqueous electrolyte solution (e.g., NaCl, or KI). The Manning-Donnan showed 

reasonable predictive ability for the studied scenario provided the dielectric constant (ε) within the 

hydrated IEMs can be reasonably determined and the average distance between fixed charges (b) 

can be estimated. Notably, the Manning-Donnan, and its modified versions, is chemistry agnostic 

and has been shown to fail in certain cases when IEMs are interfaced with dilute salt solutions 

(e.g., < 0.1 M).21 In the former scenario of chemical specificity, Arges and Kumar and co-workers 

showed that AEMs with tethered imidazolium groups rather than quaternary ammonium favor 

organic acid anion uptake.1,2 The current embodiments of the Manning-Donnan model are unable 

to account for the said observations with organic acid anions with AEMs. In the latter case of the 

Manning-Donnan model failing under dilute solutions, an alternative approach is to fit the 

Manning parameter (ξ) to datasets rather than estimating ε and b to calculate the Manning 

parameters23. It is also worth noting that the role of hydration has a profound impact on ion 

transport and activity coefficients, and it is only captured in the Manning-Donnan model with ε.  

The utility of the empirical and semi-empirical activity coefficient models often needs large data 

sets for estimating the empirical constants in these models. Since there is a lack of data for ion 

activity coefficients in various IEMs materials, attaining effective and accurate activity coefficient 

models for new IEMs systems is elusive. To address this problem, we have developed a strategy 

of ML tools with molecular dynamics simulations to model and predict activity coefficients of ions 

in IEMs. ML has been successfully applied in other research endeavors ranging from discovery 
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and synthesis of new materials to prediction of material properties and device level 

performance.8,19 ML is a subfield of artificial intelligence and computer science which aims to 

simulate human learning processes using data and algorithms, gradually increasing the accuracy 

of the results. ML represents a unique tool to streamline model development for attaining accurate 

activity coefficients of IEMs.  Specifically, in polymer informatics, these methods have found 

successful applications in predicting key properties such as glass transition temperature,23,24 gas 

permeability,25–27 and phase diagrams.28  

Increase in computational power has boosted the growth of physics-based tools like molecular 

dynamics (MD). For example, MD simulation has been used to study polymer phase behavior29,30 

and estimate properties such as thermal conductivity,31,32 water diffusion constant,14 and diffusion 

coefficient.33 MD simulations provide valuable information about the solvation and spatial 

distribution of counterions and ionic groups along the polymer backbone, which helps to explain 

the measured conductivity and ionic activity in experiments. In previous studies, Arges et al.17,14,2  

demonstrated the importance of capturing water activity in IEMs materials using the results from 

experiments and simulations to understand ion activity and ion dissociation. MD simulations 

provide information about ion-ion and ion-IEMs pair distribution functions, coordination and 

hydration numbers around charged moieties using the corresponding radial distribution function.  

Here, a computational framework is proposed to predict the activity coefficient of ions in charged 

IEMs. This approach uses a ML model that leverages molecular scale attributes from MD 

simulations such as on solvation properties with the IEMs. Both existing and novel data were used 

in the development of this ML-MD modeling strategy. More specifically, ML methods such as 

Support Vector Regression (SVR), Artificial Neural Network (ANN), and Random Forest (RFR) 

were used to connect the polymer fingerprint (based on chemical structure) and molecular level 

attributes to the macroscopic attribute of IEMs (i.e., activity coefficient). To train the ML methods 

and to validate predictions, experimental data on ion activity coefficient (ɣM+ɣM-) in polymeric 

IEMs (and thin films variants) were obtained from published literature, which contains detailed 

information regarding the polymer structure, the ion exchange capacity (IEC), water uptake, and 

ion activity coefficient. The ML-MD modeling strategy accurately predicted activity coefficients 

of ions in IEMs with less than 10% error and only required small data sets for ML training. The 

activity coefficient obtained from this ML-MD framework study will be used in a future study to 

quantify the resistance of the IEM, specifically the Donnan potential responsible for the actual 

separation of ions, within physics-aware models for electrochemical separations systems, 

providing a more comprehensive understanding of the underlying mechanisms of the electrically-

driven process. 
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2. Methods 

2.1. Datasets 

2.1.1. Experimental data 

Data consists of experimentally measured ion activity coefficients in 13 different copolymer IEMs 

and thin films interfaced with varying salt concentrations. The compiled data includes ionomers 

with different arrangements of monomeric units (i.e., random – termed random copolymer 

electrolyte (RCE) and block – termed block copolymer electrolyte (BCE)), different number of 

side chains and different counterions for the charged monomeric unit. Examples of these 

copolymers are AR103,21 AR204,21 CR61,21,34  Nafion,15 polyvinyl alcohol sulfate PVAS,21,35 

poly(styrene-block-2-vinylpyridine/n-methylpyridinium iodide) PSbNMP,14,17 poly(2-

acrylamido-2-methylpropanesulfonic acid-block-diethylene glycol dimethacrylate) CEM,16 

poly(ethylene glycol) diacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid (XL-AMPS-

PEGDA).36 Note:  AR103, AR204, and CR61 are commercial IEMs. Figure 1 illustrates the 

chemical representations of the sampled ionomers. The data curation process considered 

information about the chemical structure of the IEMs, IEC (expressed as mequiv/g) and water 

uptake (expressed as g of water per g of dry IEMs). Lastly, each entry in our data set was compared 

with other sources to ensure the accuracy of the data.  

2.1.2. Molecular dynamics data 

Classical canonical MD simulations were carried out to gain molecular insight into the activity 

coefficients of ion exchange polymeric IEMs in ionic separations. Approximately, 100 simulations 

were conducted using the LAMMPS37 software package for a ~40 A0 cubic system containing 

IEMs, ions, and water. Herein,  the IEMs were modeled with either the OPLS-AA38,39 or GAFF240 

forcefield and the water molecules with the TIP3P41 forcefield. Depending on the forcefield, the 

partial charges of the constituent elements in the IEMs were computed with GAUSSIAN42 and 

ANTECHAMBER.43 Since IEMs are long-chain molecules composed of several repeating units 

of one (or two) monomers that are difficult to represent completely, we adopted a polymer chain 

with 6–9 repeating units for all our studied IEMs and thin film variants. Despite their shorter 

length, these 6-mer (or 9-mer) chains have many of the same characteristics as the finitely long 

chain. To conduct MD simulations that are representative of experimental conditions, the water 

molecules per tethered ions (for a given volume) were calculated as described by Kohl and co-

workers.44 The chemistry of the tethered charges, counterions, and co-ions were selected based 

upon the IEMs materials’ chemistry and salt used in the external solution. In each MD run, a total 

of 17 polymer chains were solvated in a cubic water box with a box length of around 40 A0 to 

replicate the experimental setup. (see Table S1 for details on IEMs in various simulations). For 

the different IEMs the solvation properties, such as radial distribution function in the first hydration 

shell around ions/charge moiety, were investigated using canonical MD simulations at 300K 
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temperature. Detailed information on the simulation setup is provided in the supporting 

information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Molecular structure of the ionomers, along with the accompanying counter-ions (X+). 

2.2. Feature Engineering 

Information about molecular properties and system conditions must be properly extracted and 

organized for a ML model to use them as predictors. In this work, three strategies are combined to 

produce input features that integrate molecular structure information, system conditions, and 

molecular dynamics calculations. First, Morgan Fingerprints (MF),45 which have found 

tremendous applications in ML,23,27,28 was selected to represent the molecular structure of the 
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different IEMs. The MF algorithm can identify substructures in a molecule, and then represent 

them in a sparse bit vector. In this work, the MF of each polymer was generated using the RDKit 

package.46 The radius and size of the fingerprint were set to 3 and 128-bit, respectively. 

Furthermore, each IEMs contains different ion types (i.e., tethered ion, co-ion, and counterion 

species) and there is a need to encode their effects in the modeling framework. Thus, these ion 

species were represented as binary vectors obtained via one-hot encoding. This one-hot encoding 

involves converting categorical features into numeric arrays. One-hot encoding was implemented 

via the Scikit-Learn package.47 Finally, twelve (12) properties obtainable from equilibrium MD as 

described in Section 2.1.2 were considered as additional descriptors to quantify the microscopic 

behavior of the IEM and thin film variant systems. These MD parameters defined as solvation 

descriptors including coordination numbers from the first solvation shell and various radial 

distribution functions (RDF). Specifically, the chosen RDF features include position of first 

minima and peak height, peak position and coordination numbers of counterion and oxygen of 

water, tethered charge and oxygen of water, and tethered charge and counterion.  

 

 

 

 

 

 

 

 

 

Figure 2. Workflow for handling the preprocessing of the input features for ML model 

development. The chemical structure of the polymers were generated in Avogadro and then 

converted to SMILES and finally converted to Morgan fingerprints with the RDKit package. The 

salt ions i.e., categorical variables are converted into numeric arrays with OneHotEncoder in the 

Scikit-Learn package. The highlighted areas of polymer structure descriptors illustrate the selected 

fingerprint bits. Herein, the blue, yellow, and the gray colors depicts the central atom in the 

environment, aromatic atoms, and the aliphatic ring atoms, respectively. 
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2.3. Machine learning models 

ML algorithms tend to perform differently depending on the nature of the training data. Although 

there are some guidelines that help in determining which algorithm to use, in most application 

several approaches have to be explored to find the best one for the given problem. In this work, 

three representative algorithms, namely, support vector regression, decision trees, and artificial 

neural networks were investigated.  

A support vector machine (SVM) is an algorithm that tries to find the hyperplane that gives the 

best separation between two linearly separable regions. The idea of a SVM was first proposed by 

Boser et al.48 in 1996 and remains a powerful ML modeling method, especially for low-

dimensional and small datasets. A useful extension of this method is the introduction of a kernel 

that transforms non-linearly separable data into linearly separable data by adding an extra 

dimension. The classification problem, that is finding the boundary between two or more classes, 

can be reframed as a regression problem by setting the algorithm to find the two hyperplanes that 

contain both the training data and the predicted values, while minimizing the distance between 

said hyperplanes.49 This latter implementation is called "Support Vector Regression".  

Decision-tree based regression (DT) and its extensions have been shown to be versatile modeling 

frameworks with good performance in many different applications.50 The most common 

implementations use the idea of random forest (RF) in which multiple models (decision tree 

models) are fit to the training data, and the final prediction is made via a voting mechanism. This 

type of approach, typically referred to as ensemble methods, helps prevent overfitting by training 

multiple models, each with a different bias, and then averaging their predictions. Another 

advantage of DT is that they tend to perform well with high-dimensional data.  

Artificial neural networks (ANN) are a type of machine learning method that constructs a model 

as a network of nodes connected by edges, arranged in layers (also known as fully connected 

layers). Each node multiplies the outputs from the previous layer's nodes by their corresponding 

weights (represented by the edges), adds them, and passes the result through an activation function 

to feed the next layer of nodes. To train ANN, the predicted output is calculated for a given set of 

inputs, the error between the predicted and true values is computed, and the weights are adjusted 

accordingly. The high tunability of ANNs, especially their architecture (number of nodes and 

layers), makes them flexible and thus attractive for a wide variety of applications. A considerable 

drawback, however, is the fact that the amount of data required to effectively train the model 

increases greatly with model complexity.  

2.4. Training of models 

We explored two different model development frameworks to estimate the ion activity coefficient. 

The first framework involves predicting the solvation descriptors of IEM type materials. In 
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developing this model, the polymer fingerprints, salt concentration, number of water molecules 

per tethered ions and the one-hot encoded categorical features of the salt ions are considered as the 

input while the solvation descriptors as the output. In the second modeling task, a new ML model 

was constructed to predict the ion activity coefficient in the IEM and thin film variants. In 

developing this ML model, the polymer fingerprints, encoded salt ions, number of water molecules 

per tethered ions, solvation descriptors (obtainable from the first ML model) and salt concentration 

were considered as the model input while the activity coefficient as the target variable. In this 

work, all the model development phases were implemented with the aid of the python packages 

Scikit-Learn47 and Pymoo.51   

 

 

 

 

 

 

 

 

 

Figure 3. The workflow of the modeling strategies involved in this study. Two major steps in 

setting up a proper ML model to achieve the two model frameworks. Going through the steps, it 

shows how the chemical structures (molecular fingerprints) are fed to predict the solvation 

parameters (RDF, coordination numbers, ect.) and then finally, the experiment data (i.e., activity 

coefficient).  

  



   

 

10 

One major step in ML development is to ensure that the input features are in the same scale without 

losing its original distribution, else the disparity in data ranges can significantly alter the 

generalizability of the resulting model. Data normalization was needed only for the solvation 

descriptors which were converted into a standard range of -1 and 1. Also, normalization was 

implemented because variables such as the coordination numbers show small changes in values 

even when their controlling variables (i.e., salt concentration) changes significantly. By 

normalizing the input variables, any small changes in any variables becomes more prominent. The 

resulting model from this framework should serve as a useful tool for future users when there exists 

no MD data for their chosen IEMs.  

In developing the two models, we split the different corresponding dataset based on a chosen ratio. 

Data splitting is frequently used in ML to prevent overfitting. In this study, 80% of the dataset 

served as training data, and the remaining as test data. To identify issues like overfitting or 

selection bias and to provide insight into how the model will generalize to an independent dataset 

during the training process, the idea of cross validation was implemented during the training phase. 

The training data in this study was further divided into 5 folds such that 1 out of every 5 data points 

in the training data was used to test the model's ability to predict data that was not used in its 

estimation. It is noteworthy to mention that the original test data was never used during the training 

process and thus, any prediction with these data gives the best representation of the developed 

model. Furthermore, statistical measures namely coefficient of determination (R2) and mean 

absolute error (MAE) were computed to assess the performance of the developed models.  

To obtain the best model, there is a need to obtain the best hyperparameters that accurately define 

the best-performing model. Manually finding the right set of hyperparameters for a ML model can 

be challenging and time-consuming. Therefore, a systematic way of choosing the right 

combination of hyperparameters is needed to efficiently deploy the models and understand their 

performance. Hyperparameters can be explored using various methods, such as random search, 

grid search, and Bayesian search, to find the optimal combination. However, evolutionary 

algorithms have proven useful in addressing multi-objective optimization problems,8,52,53 and 

shown to perform better for multi-objective hyperparameter optimization54. For this study, 

hyperparameter selection for the regression methods was defined as a Mixed Integer Nonlinear 

Programming problem and solved using the Non-dominated Sorting Genetic Algorithm (NSGA-

II), 55 a multi-objective evolutionary algorithm implemented in Pymoo.51 

Principal component analysis (PCA) is a dimensionality reduction technique used for data 

exploration and analysis with the presence of big data, including numerous variables, multiple 

observations for each variable, and closely corelated data. By employing this technique, a low-

dimension space with reduced set of features that represents the original data set can be identified. 

The original data are projected to the first principal axis to create the first principal component, 

which captures the greatest variation in the data while the second principal component, which 

accounts for most of the variance in the data not covered by the first principal component. Up until 
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the entire data matrix is deconstructed, each succeeding principal component explains the 

maximum amount of variance it can give the restriction that it is orthogonal to the preceding 

principal components. The principal element with the lowest variance in the data may be 

eliminated in accordance with user requirements. The advantages of this technique include the 

elimination of collinearity, noise reduction, need for less storage, and the ability to visualize in 2D 

and 3D spaces.56 

3. Results and Discussion 

3.1. Polymer space under exploration 
The dataset under study consists of 13 IEMs (and thin film variants) linked to experimental ion 

activity coefficients. To assess the difference between the available IEMs, the Tanimoto 

similarity57,58 based on the Morgan Fingerprints of the SMILES representation of each polymer 

was computed. Similarity metrics including Tanimoto or Dice or Cosine similarity has been found 

to be a better metric compared to other metrics that work based on Manhattan or Euclidean 

distance.59 Stemming from this discovery, Tanimoto similarity is the most popular and widely 

accepted similarity metrics for polymer chemistry. In this study, the Tanimoto (Tc) and Dice (Dc) 

similarity index were computed to understand the similarities in sampled polymer space. The 

results of the analysis are depicted in Figure 4 and Figure S1. Two polymers are considered 

identical when the Tc (or Dc) equals 1 and completely different when the Tc (or Dc) equals 0. The 

similarity matrix showed that our selected polymers are very different from one another. Only the 

RCE and BCE forms of a polymer have high similarity values (>0.7). This is expected because 

these polymer forms have the same chemistry except with different arrangement of monomers. 

Overall, a model generated from these polymers will have a good generalization to other polymers 

with similar constituents because the sampled polymers exhibit great variation. 
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Figure 4. Visualization of the dissimilarity among the studied ionomers. The labels represents 

AR103 (pA), AR204 (pB), CR61 (pC), Nafion (pD), PVAS (pE, pF), PSbNMP (pG, pH), CEM1 

(pI), CEM2 (pJ), CEM3 (pK), XL-(AMPS-PEGDA, pL: n = 4, x/(x+y) = 9%, pM: n = 4, x/(x+y) 

= 45%). Herein, pA, pB, pC, pI, pJ, pK, pL, pM are crosslinked IEM (model in BCE form for MD 

simulations), while the PVAS and PSbNMP model in both BCE and RCE forms and Nafion in 

RCE form. The heat map shows the computed Tanimoto similarity between each polymer. The 

Tanimoto similarity between ionomers A and B is mathematically equal to a/(a+b+c) where a, b 

and c are counts of bits in MF of ionomer A but not in B, counts of bits in MF of ionomer B but 

not in A and counts of bits in MF of ionomer A and B, respectively. 

3.2. MD simulations 

3.2.1. Solvation descriptors  

MD simulations can determine the solvation environment of IEMs at the atomic level. Information 

on spatial distribution, solvation as well as ion pairing between counterions and co-ions can be 

studied using the radial distribution function g(r). The first solvation shell of the charged species 

can be defined using the first minimum in g(r). The water molecules and the counterions are 

considered in the initial hydration shell of the IEMs if the distance is smaller than this cut-off. 

Additionally, the peak height and peak position of the g(r) provide more information about the 

strength of association between tethered charged groups in these IEMs. These g(r) characteristics 

are all dependent on the polymer structure, type of salt as well as salt concentration of various 

IEMs. The radial distribution function of the CR61 IEMs at various KCl concentrations are shown 
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in Figure 5. The SI provides a detailed explanation of the calculations used to determine these 

dynamical quantities. 

 

 

 

 

 

 

 

 

 

Figure 5. The radial distribution function, g(r), (solid line) and coordination number, n(r), (dashed 

line) (a) between the counter ion (K+) and (O) water, (b) Charged group (𝑆𝑂3
−)  and O (water) in 

a CR61 - KCl - water system 

3.2.2. Identification of influential descriptors 

The important features among the collected polymer properties and solvation descriptors were 

related to the ion activity coefficient values. Computing the pairwise correlations between the 

features and target data can offer preliminary insights into the descriptive performance of the 

selected features. In other words, a correlated feature-target data assists the model to predict the 

desired properties. The pairwise correlation was computed based on spearman rank correlation. The 

correlation heat map indicated that the selected features are correlated with the ion activity 

coefficient, as seen in Figure 6. 

The spearman’s correlations for the number of water molecules per tethered ions and salt 

concentrations were 0.59 and 0.37, respectively, whereas the correlations for the peak height of RDF 

between tethered charge (in IEMs) and oxygen of water and coordination number (at first minima) 

from RDF between tethered charge (in IEMs) and oxygen (in water) were −0.39 and -0.35, 

respectively. Finally, the peak position of RDF between the tethered charge (in IEMs) with the 

oxygen of water and coordination number (at first minima) of RDF between counterion with the 

oxygen of water were found to have correlations of -0.11 and -0.13, respectively. Overall, the 

computed solvation descriptors correlated significantly with the desired activity coefficients. 

(a) (b) 
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Utilizing SHAP (SHapley Additive exPlanations) feature importance analysis, it was possible to 

examine the precise impact of these features including the polymer fingerprints on the prediction of 

the ion activity coefficient in ionomers. Some of the features may exhibit some level of relationship 

between one another, which in turn could possibly lead to multicollinearity if a linear regression 

algorithm was selected as the desired ML algorithm. Also, it is possible to eliminate 

multicollinearity by combining two or more collinear variables into a single variable. In this study, 

data dimensionality reduction and three ML methods were studied.  

 

 

Figure 6: Heatmap showing the pairwise relationship between the solvation parameters, number of 

water molecules per tethered ions, salt concentration and experimental ion activity coefficient. Table 

1 shows the description of the legends (A-N, Exp). 
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Table 1. The descriptions of the MD solvation descriptions. (RDF refers to radial distribution 

function). 

A number of water molecules per tethered ions I peak height of RDF between tethered charge (in IEMs) 

and oxygen of water 

B concentration of salt (M) J coordination number (at first minima) from RDF between 

tethered charge (in IEMs) and oxygen (in water) 

C first minima of RDF between the counterion and 

oxygen of water. 

K first minima of RDF between tethered charge (in IEMs) 

and counterion (in salt) 

D peak position of RDF between counterion and 

oxygen of water 

L peak position of RDF between tethered charge (in IEMs) 

and counterion (in salt) 

E peak height of RDF between counterion and oxygen 

of water 

M peak height of RDF between tethered charge (in ionomer) 

and counterion (in salt) 

F coordination number (at first minima) from RDF 

between counterion and oxygen of water 

N coordination number (at first minima) from RDF between 

tethered charge (in ionomer) and counterion (in salt) 

G first minima of RDF between tethered charge (in 

IEMs) and oxygen of water 

Exp experimental ion activity coefficient 

H peak position of RDF between tethered charge (in 

IEMs) and oxygen of water 

  

 

3.3. Performance of Machine learning models 

3.3.1. Solvation descriptors  

In this section, the performance of the regression algorithms was evaluated to predict the solvation 

descriptors gathered from MD simulations. Figure S4 presents a scheme of the modeling and ML 

development approach utilized in predicting each solvation descriptor. This approach employs 137 

input variable types based on the polymer fingerprints, one-hot encoded salt ions, number of water 

molecules per tethered ions, concentration of salt, and twelve (12) solvation descriptors obtainable 

from MD simulations as target variables. Specifically, the target variables include position of RDF 

first minima, position of 1st RDF peak, height of 1st RDF peak and coordination number from RDF. 

Table 2 describes the 12 solvation descriptors considered in this study. Prior to model development, 

the target data was normalized to range between -1 and 1 because data normalization enhances the 

coherence of entry types resulting in data segmentation and greater data quality. Furthermore, PCA 



   

 

16 

was applied to varying combinations of input features to help eliminate the issue of dimensionality 

that may arise from having several input features. Specifically, these combinations are as follows: 

input vector A0 - no transformation, input vector A1 - PCA applied only to the polymer fingerprints, 

and input vector A2 - PCA applied to all input features. By applying the PCA to the features, the 

optimal number of components was computed based on the explained variance and the results are 

shown in Figure 7. The computed number of components that ensures a 99% of variance using the 

two transformed input vectors explained equals 10. Finally, the input vectors were transformed to 

obtain A1 and A2. 

 

 
 

Figure 7. Explained Variance using PCA. For input vector A1, all entries remain intact except for 

Morgan Fingerprints that were transformed using PCA. In input vector A2, all the features namely 

Morgan Fingerprints, one hot encoded salt ions, salt concentrations and number of water molecules 

per tethered cation were transformed using PCA. 

 

Afterwards, three ML algorithms including Support Vector Regression (SVR), Artificial Neural 

Network (ANN) and Random Forest Regression (RFR) were created, trained, and validated (as 

shown in Figure S3) using the three input data types (A0, A1, A2). The performance of the trained 

models was analyzed using two performance metrics (R2 and MAE) listed in Table S2. The NSGA-

II algorithm was utilized to optimize the model's hyperparameters on a training dataset, which 

consisted of 80% of the total 92 data points. The hyperparameters selected by NSGA-II were then 

used to train the final ML models, as presented in Table S4. The final model's predictive 

performance is illustrated in Figure 8, which is based on the testing dataset comprising the 

remaining 20% of the data. Each solvation descriptor was trained as a Multiple Input Single Output 
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(MISO) approach and their corresponding optimal hyper-parameters are listed in Table S1 of the 

supplementary information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Performance of the ML models (SVR, ANN and RFR) in terms of mean absolute error 

(MAE) for predicting the solvation descriptors based on the best input matrix. The boxplot indicates 

the mean absolute error, MAE (mathematically shown in Table S2 of the Supplementary file) of the 

predictions and the legends are coded based on Table 2. 
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A good ML model is labeled good if R2 is close to 1 and MAE is very close to zero. Though high 

R2 indicates a good model, it may be misleading. In this study, the MAE was selected as the choice 

parameter to assess the predictive performance of the developed model. ML models typically exhibit 

higher accuracy levels in predicting outcomes on the dataset used for training as compared to the 

testing dataset. A ML model does not suffer from underfitting or overfitting if and only if it predicts 

training and test data with similar accuracy. Based on the three data types (input vectors A0, A1, 

A2) and available ML algorithms (SVR, ANN, RFR), we formulated 9 different models for each 

solvation descriptor. The best set of hyperparameters for the SVR, ANN, and RFR model based on 

the three different input vectors are shown in Table S4, S6 and S8, respectively. For simplicity, only 

the prediction performance of the three ML models based on the best input vector is presented in 

Figure 8. The results illustrate that the small size of the train data is enough to train the different 

models without underfitting or overfitting. After tuning the hyperparameters for each solvation 

descriptors, the MAE values for the SVR model falls averagely to 0.059, 0.071 and 0.122 for A0, 

A1 and A2 training data respectively, while R2 value rose to 0.931, 0.937, and 0.763 for A0, A1 and 

A2 training data, respectively. Meanwhile, the average MAE values for the ANN model decreased 

to 0.021 for A0, 0.026 for A1, and 0.065 for A2 training data, while R2 value rose to 0.986, 0.984, 

and 0.928 in the same order. Similarly, the change in MAE and R2 values follows the same trend 

for the testing data. In comparison to the ANN and SVR model, the tuned RFR model based on the 

training data resulted in averaged R2 values of 0.989, 0.984 and 0.844, and averaged MAE values 

of 0.013, 0.022 and 0.084, respectively for A0, A1 and A2.  

 

The results showed that the dimensionality reduction via PCA does not significantly alter the 

performance of the different ML models when applied only to the Morgan fingerprints - i.e., input 

vector A1. If applied to the full input vector (i.e., input vector A2), the use of PCA significantly 

resulted in the loss of predictability of the selected features. Thus, it can be inferred that the number 

of input variables arising from the combinations of polymer fingerprints, one-hot encoded salt ions, 

salt concentration, and number of water molecules do not exhibit a negative multicollinearity or 

curse of dimensionality effects.  

 

Furthermore, the developed ML models exhibit a low MAE and high R2 values. Table S3 

summarized the performance of different ML models based on best input vector representation. The 

detailed statistical performance of the different ML models based on the three input vectors are 

listed in Table S5, S7 and S9. The MAE values indicate that the prediction performance of the 

various ML models followed this trend: ANN > RFR > SVR. Overall, the ANN model outperformed 

the other models. The results demonstrate that the proposed method for feature generation and ML 

architecture optimization, with the assistance of the NSGA-II algorithm, facilitated the selection of 

the most appropriate hyperparameters for the selected ML models. Based on this study, it is 

suggested that the integration of ANN models with NSGA-II can be a valuable approach for 

predicting solvation descriptors without requiring MD simulations. This can significantly reduce 

computational costs and time, with minimal input parameters. 
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Table 2. The descriptions of the MD descriptions shown by the boxplot in Figure 9. (RDF refers 

to radial distribution function). 

A first minima of RDF between the counterion and 

oxygen of water 

G peak height of RDF between tethered charge (in IEMs) and 

oxygen of water 

B peak position of RDF between counterion and 

oxygen of water 

H coordination number (at first minima) from RDF between 

tethered charge (in IEMs) and oxygen (in water) 

C peak height of RDF between counterion and 

oxygen of water 

I first minima of RDF between tethered charge (in IEMs) and 

counterion (in salt) 

D coordination number (at first minima) from RDF 

between counterion and oxygen of water 

J peak position of RDF between tethered charge (in IEMs) 

and counterion (in salt) 

E first minima of RDF between tethered charge (in 

IEMs) and oxygen of water 

K peak height of RDF between tethered charge (in IEMs) and 

counterion (in salt) 

F peak position of RDF between tethered charge (in 

IEMs) and oxygen of water 

L coordination number (at first minima) from RDF between 

tethered charge (in IEMs) and counterion (in salt) 
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3.3.2. Ion activity coefficient in IEMs and ion-exchange thin films 

In this section, the performance of the regression algorithms was evaluated to predict the 

experimental activity coefficients of ion exchange membranes. Initial Cheminformatics included 

152 input variable types based on the polymer fingerprints (Morgan fingerprint), one-hot encoded 

salt ions, number of water molecules per tethered ions and concentration of salt and twelve (12) 

solvation descriptors obtainable from MD simulations as input variables. These solvation attributes 

are particularly important for understanding atomistic level properties in IEMs in ionic separations 

(described in Table 2). Figure S7 illustrates the ML approach used in predicting activity 

coefficients.  

By employing a dimensionality reduction technique, we created a ML model with the fewest 

components possible in order to prevent overfitting and conserve computational resources. To keep 

both models comparable, this approach uses the same three combinations as in the solvation 

property prediction model. These include input vector A0 - no transformation, A1 - PCA applied 

only to the polymer fingerprints and A2 - PCA applied to all input features in the input vector. By 

applying the PCA to the features, the optimal number of components was computed based on the 

explained variance and the results are shown in Figure S8. Model construction was based on the 

principal component analysis findings when explained variance exceeded 99%. Using the three 

input vectors, three ML algorithms were developed, trained, and verified (as shown in Figure S3). 

These algorithms included Support Vector Regression (SVR), Artificial Neural Network (ANN), 

and Random Forest Regression (RFR). Two performance indicators (R2, and MAE) were utilized 

to (shown in Table S2) evaluate the models' performance. The same approach as in section 3.3.1 

was employed to optimize hyperparameters using 80% of the total 80 data points from the training 

dataset with the NSGA-II algorithm. The final ML models were then trained using the optimized 

hyperparameters, as presented in Table S10, and their performance was evaluated in Figure 3 

through prediction on the testing dataset (the remaining 20% of the data). 

We formulated 9 different models to predict activity coefficients based on the three input vectors 

(A0, A1, A2) and three ML algorithms mentioned above (SVR, ANN, RFR). The prediction 

performance of the three ML models based on the different input vectors with A0, A1 and A2 is 

presented in Figures 9 and S9 respectively. Even with the small set of data, these models show 

better performance of predicting the activity coefficients. The MAE values for the SVR model fall 

on average to 0.0165, 0.0164, and 0.0185 for the A0, A1, and A2 training data, respectively, using 

the best set of hyperparameters for the SVR model. In contrast, the R2 value slightly increases 

from 0.994 to 0.998 and 0.997 for the same training data while the opposite trend can be seen for 

the R2 value for test data. The average MAE values for the ANN model are 0.0156 for A0, 0.0315 

for A1, and 0.0298 for A2 training data, while R2 value shoes best fit with 0.99. Moreover, the 

RFR model based on the training data produced averaged R2 values with 0.98 and averaged MAE 

values of 0.0286, 0.0291, and 0.0273 for A0, A1, and A2, respectively. Overall, the performance 

of the testing set of data for the SVR and ANN algorithms shows better performance compared to 
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the RFR model (see Table 3 for more details). Furthermore, the effect of PCA on testing data 

compared to the training set is not that significant in this study. (See S8 and S9 for more details) 

Similar observations can be seen in the solvation descriptors prediction model in section 3.3.1.  

Table 3: Performance of the activity models based on the input vector type in predicting the 

activity coefficients. (Input vector A0 - no transformation, input vector A1 - PCA applied only to 

the polymer fingerprints, and input vector A2 - PCA applied to all input features.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Understanding the reasoning behind a model's prediction can be equally crucial as determining its 

accuracy. By identifying the class of addictive feature importance methods, the SHAP approach is 

utilized to describe how ML models produce their output in a test data set. SHAP has a unified 

approach to assign each feature an importance value for a particular prediction. The bar plot of the 

SHAP values displays a global feature importance plot, where the global relevance of each feature 

is determined as the mean absolute value of that feature across all provided samples. Figure 9 

summarizes the results of SHAP global feature importance plot with top 20 features based on their 

average SHAP values with different ML models importance with no transformation of initial 

features (A0). A summary of the definitions of these descriptors that are used in Figure 9 is 

Metric Data Model A0 A1 A2 

MAE 

Train 

SVR 0.0165 0.0164 0.0185 

ANN 0.0156 0.0315 0.0298 

RFR 0.0286 0.0291 0.0273 

Test 

SVR 0.0535 0.0626 0.0730 

ANN 0.0412 0.0677 0.0714 

RFR 0.0783 0.1067 0.1141 

R2 

Train 

SVR 0.9941 0.9980 0.9973 

ANN 0.9966 0.9901 0.9916 

RFR 0.9884 0.9898 0.9885 

Test 

SVR 0.9776 0.8724 0.8427 

ANN 0.9880 0.8406 0.8147 

RFR 0.9508 0.6711 0.6114 



   

 

22 

provided in Table 1. In general, from top 20 features, higher contribution can be seen from Morgan 

fingerprint bits followed by solvation descriptors in all the three ML models. Despite some 

solvation descriptors not showing much contribution to existing models, salt concentrations and 

RDF characteristics between charge bearing groups/counter ion and waters are significant 

contributors to all three models. A correlation between above solvation descriptors and activity 

coefficient values can be further verified based on spearman's correlation matrix. Using these 

frameworks, the materials properties can then be correlated to device settings for cost-effective 

operation and for the design of effective materials. Microscopical properties and macroscopic 

properties can be mapped easily into the manufacturing process of such materials and devices 

using these ML frameworks. 
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Figure 9. Activity coefficient predictions versus measured values; Activity coefficients as a 

function of input vector (left) and corresponding feature importance (SHAP) values (right) for A0 

- no transformation, (a) SVR (b) ANN (c) RFR.  Here, Mfp_’n’ (n = 0 - 127) and Ohe_’n’ (n = 0 

(a) 

(b) 

(c) 
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- 9) represents the Morgan fingerprint bits of the IEM and One hot encoding of the salt ions, 

respectively. Table 1 shows the description of the legends (A-N) 

4. Conclusions 

In this work, an integrated framework was introduced by leveraging the advantages of molecular 

dynamics and ML algorithms to map the interrelationships between molecular descriptors and the 

ion activity coefficients in ionomer media (i.e., IEMs and ion-exchange thin films). The study 

established a two-step link between the molecular fingerprints of the co-polymers, the solvation 

properties obtained from molecular dynamics (MD) and their corresponding ion activity 

coefficients parameters. This approach enabled the acquisition of activity coefficients for existing 

and emerging ion-exchange materials even in the absence of solvation data or experimental data, 

which effectively reduced the complexity associated with computing the solvation properties from 

MD and the measuring of activity coefficients from experiments.  

To construct the framework, different molecular representation approaches and ML algorithms 

were assessed to predict the solvation properties and activity coefficient of the ion-exchange 

materials. The performance of the trained models was verified with the aid of various statistical 

parameters. Overall, the ANN model showed the best predictive ability compared to other ML 

algorithms in solvation prediction model. Specifically, the results demonstrated the efficacy of the 

ANN-predicted parameters in modeling desired properties based on selected features with minimal 

errors compared to available MD/experimental data, with errors less than 7% for solvation 

properties. Overall, all the three ML models accurately predict the ion activity coefficient with an 

average mean absolute error of <10%. SVR and ANN shows slightly better performance compared 

to RFR. Moreover, the trained solvation parameters model and activity coefficient models proved 

to be capable of characterizing the ionic activity coefficient with acceptable deviations. The sparse 

available dataset can give rise to discrepancies; however, these can be improved by using larger 

datasets. This, in turn, necessitates the creation of a library of polymeric IEMs for a variety of 

electrochemical technologies that have IEMs interfaced with liquid solutions with dissolved ions. 

In addition, the use of newly developed force fields (though computationally expensive) for the 

MD simulations can help improve the accuracy of the proposed framework. 

Even in situations where there is insufficient experimental data available, the results of this work 

demonstrate the potential of the integrated approach for predicting the activity coefficient of IEMs, 

facilitating the search for new materials with accepted behavior that meet both technical and 

industrial requirements for successful electrochemical separations.  
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