DATA-DRIVEN DEEP GENERATIVE DESIGN OF STABLE SPINTRONIC MATERIALS

Edirisuriya M. Dilanga Siriwardane
Department of Physics
University of Colombo
Colombo 3, Sri Lanka

Yong Zhao
Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29201

Jianjun Hu *
Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29201
jianjunh@cse.sc.edu

February 21, 2023

ABSTRACT

Discovering novel magnetic materials is essential for advancing the spintronic technology with significant applications in data communication, data storage, quantum computing, and etc. While Density functional theory (DFT) has been widely used for designing materials, its high computational demand for estimating the magnetic ground states of even a single material limits its ability to explore the vast chemical design space for finding the right materials for spintronic applications. In this work, we developed a computational framework combining generative adversarial networks (GAN), machine learning (ML) classifiers, and DFT for de novo magnetic material discovery. We used the CubicGAN generative crystal structure design model for creating new ternary cubic structures. Machine learning classifiers were developed with around 90% accuracy to screen candidate ternary magnetic materials, which are then subject to DFT based stability validation. Our calculations discovered and confirmed that Na$_6$TcO$_6$, K$_6$TcO$_6$, and BaCuF$_6$ are stable ferromagnetic compounds, while Rb$_6$IrO$_6$ is a stable antiferromagnetic material. Moreover, Na$_6$TcO$_6$ and BaCuF$_6$ are found to be half metals that are highly favorable for spintronic applications. Due to the structural differences, A$_6$MO$_6$ materials have a higher thermal capacity (C_v) compared to BaCuF$_6$. At 300 K temperature, C_v of A$_6$MO$_6$ materials is around 1100 JK$^{-1}$mol$^{-1}$ and that of BaCuF$_6$ is about 176 JK$^{-1}$mol$^{-1}$. This work demonstrates the promising potential of deep generative design for discovering novel functional materials.

Keywords Generative design · Deep learning · DFT · Magnetic materials · Material discovery · Spintronics

1 Introduction

Spintronic (spin-based electronics) technology has recently emerged by incorporating the spin degree of freedom into conventional charge-based electronics, as spintronic devices offer low power consumption and limited current leakage. Spintronics is considered for a vast amount of applications like energy harvesting, spin photovoltaics, and data storage [1]. In magnetic materials, the spin-polarized current is readily available due to different populations of spin-up and spin-down electrons [2] [3]. Therefore, magnetic materials are highly favorable for spintronic devices since their spin orientation can be efficiently manipulated using an external magnetic field. Spintronic devices like magnetic field sensors and hard-disk read-heads use giant-magneto resistance (GMR) to control the electron conductivity by aligning the spin direction of two ferromagnetic materials parallel or antiparallel to each other. GMR technology is widely used in the automotive industry, mobile phones, and the medical field [4] [5]. Lately, antiferromagnetic materials have
become attractive candidates for magnetic memories due to their benefits over ferromagnetic compounds, like their good stability under external magnetic fields, their capability of generating large magnetotransport effects, and the absence of stray fields \[6,7\]. Therefore, both ferromagnetic and antiferromagnetic materials are vital for developing next-generation spintronic applications.

Designing computational methods for discovering novel ferromagnetic and antiferromagnetic materials is beneficial for the evolution of spintronic technology. Density functional theory (DFT) was widely utilized to study the potential magnetic materials \[8,9,10,11,12,13\]. It is required to compare the DFT energies of nonmagnetic (NM), ferromagnetic (FM), and antiferromagnetic (AFM) states of a structure to locate the true magnetic ground state. One of the challenges of using DFT for the above purpose is the availability of multiple AFM configurations for a single compound. Thus, analyzing a large number of materials using DFT to find suitable candidates for spintronic applications is challenging. To reduce the computational burden, we are interested in informatics-guided approaches along with DFT for designing novel spintronic materials. Xia et al. predicted Fe\textsubscript{3}CoB\textsubscript{2} magnetic compound employing machine learning (ML)-guided adaptive feedback method with DFT, and also they synthesized it using a conventional arc-melting process \[14\]. ML models were also developed by Long et al. \[15\] for intermetallic compounds to classify the AFM and FM materials and predict their Curie temperatures. Lu et al. developed an adaptive ML framework to search the chemical space with over \(2 \times 10^3\) candidates to realize new 2-dimensional magnetic compositions \[16\]. However, it should be noted that most of those available machine learning techniques predict only the magnetic properties and compositions. They are not capable of predicting the compositions along with their structures.

The lack of ML models for discovering stable spintronic material structures motivated us to propose a new framework. In the computational material science field, structure prediction is one of the key problems. Recent studies \[17\] have shown that deep learning based generative models can be used to generate new stable crystal structures. In materials informatics, two types of generative models can be trained to generate crystal structures: Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). A VAE model contains an encoder and a decoder: the encoder learns to represent materials with latent vectors and the decoder reconstructs the materials via latent vectors. After training, the decoder can be used to sample new materials. iMatGen \[18\] is the first work that uses VAEs to generate metastable \(V_{2}O_{3}\) materials. Later works \[19,20\] use VAEs generate different types of materials with variations of VAEs’ architectures. Like iMatGen, they have difficulty in generating high-symmetry materials because the VAEs do not have symmetry information in their training. On the other hand, A GAN also has two parts: a generator and a discriminator. The generator takes random noise as input to generate fake samples and the discriminator tells fake samples from real ones. CubicGAN \[17\] and PGCGM \[21\] are two typical crystal generative models using GANs. Both are provided with the space group in the training and physical losses are added in PGCGM to improve the performance. With symmetry information and physical losses, both can generate stable materials.

In this research, our design strategies for stable spintronic materials can be divided into four primary sections.

- **Chemical space:** Most probable combinations of elements for transition metal elements-based spintronics materials; Feature Importance of nonmagnetic-magnetic classifiers.
- **Structure:** Material generation using generative adversarial networks (GAN)
- **Magnetic Ground State:** Nonmagnetic-magnetic classifier development; the magnetic ground state verification using DFT.
- **Stability and Properties:** The thermodynamic, mechanical, and dynamical stability and the property investigation using DFT.

First, we filter out the potential magnetic materials using information-guided approaches to lower the time consumption of the DFT calculations. Our chemical space analysis shows that the ternary transition metal element-based oxides and fluorides exhibit a higher probability of having a magnetic ground state. Furthermore, we developed a highly accurate deep neural network (DNN) and random forest classifier (RFC) to scan magnetic materials from the ternary cubic structures generated by the CubicGAN model. Feature Importance of the RFC model shows that a number of unfilled orbitals, availability of unfilled D and F orbitals, and the ground state magnetic moments of the elements play a significant role in classifying the nonmagnetic or magnetic compounds. From the predicted magnetic compounds, the DFT calculations encountered three stable transition metal elements-based oxides (Na\textsubscript{2}TcO\textsubscript{6}, K\textsubscript{6}TcO\textsubscript{6}, and Rb\textsubscript{6}IrO\textsubscript{6}) and one stable transition metal elements-based fluoride (BaCuF\textsubscript{6}) with magnetic ground states. Thus, those three oxides have a common chemical formula type \(A\textsubscript{6}MO\textsubscript{6}\). Here, Na\textsubscript{2}TcO\textsubscript{6}, K\textsubscript{6}TcO\textsubscript{6}, and BaCuF\textsubscript{6} exhibit ferromagnetic ground state while Rb\textsubscript{6}IrO\textsubscript{6} has an antiferromagnetic ground state. Moreover, we found that BaCuF\textsubscript{6} and Na\textsubscript{2}TcO\textsubscript{6} ferromagnetic materials are half-metals where only the spin-up bands can conduct. Due to the distinct structures in \(A\textsubscript{6}MO\textsubscript{6}\) and BaCuF\textsubscript{6} materials, they contain considerably different physical properties. Our results show that \(A\textsubscript{6}MO\textsubscript{6}\) materials (\(Y > 90\) GPa and \(G > 20\) GPa) have higher Young’s (\(Y\)) and Shear (\(G\)) moduli compared to BaCuF\textsubscript{6} (\(Y < 13\) GPa and \(G < 5\) GPa). On the contrary, BaCuF\textsubscript{6} has a higher Poisson’s ratio (\(\approx 0.44\)) than that of the
other three materials (< 0.25). The specific thermal capacity \((C_v) \) of \(\text{A}_6\text{MO}_6 \) is much higher relative to \(\text{BaCuF}_6 \). At 300 K temperature, \(C_v \) of \(\text{A}_6\text{MO}_6 \) materials is approximately 1100 JK\(^{-1}\)mol\(^{-1}\) and that of \(\text{BaCuF}_6 \) is around 176 JK\(^{-1}\)mol\(^{-1}\).

2 Method

2.1 Generative design based on Generative Adversarial Network (GAN)

Generating crystal structures using generative models is a much harder task than generating images or text. Several unique challenges still remain that prevent generative models to generate materials under full spectrum of the periodic table: 1) The extreme variability, such as various number of elements/atoms in the crystal structure; 2) The generation of precise fractional coordinates and lattice parameters; 3) The extreme biased distribution of materials in 230 space groups; 4) The generation of materials with high symmetry.

The materials data used to discover potential stable magnetic materials is generated by our CubicGAN \cite{17}, which is a crystal generative model that can generate crystal structures for three cubic space groups at a large scale. CubicGAN tackles the crystal generative design challenges one by one via: 1) Nonequivalent atom positions are used to represent atoms’ arrangement in unit cell. We chose ternary materials that have only nonequivalent atom positions (a.k.a, one element has one nonequivalent atom positions). In this way, the size of input data to the generative model can be same if we train a generator to generate only ternary materials. To obtain all atom positions in the unit cell, affine matrix is used to convert nonequivalent atom positions. Affine matrix is determined by space groups and it contains rotation and translation matrices. 2) Only cubic ternary materials are used to grain the generator. In this way, we only need to generate the length of cubic lattice. The angles are all 90°. Then we discretize fractional coordinates by using fractional coordinate values in the set of \{0.0, 0.25, 0.5, 0.75\}. 3) We are not trying to generate crystal structures in 230 space groups like what VAE models claim \cite{19,22}. Instead, VAE models always generate crystal structures with very low symmetry \cite{21}. On the other hand, we only use materials falling in three space groups of \(\text{Fm} \bar{3} \text{m} \), \(\text{F} \bar{4} 3\text{m} \), and \(\text{Pm} \bar{3} \text{m} \) because these three space groups are with greatest number of materials in OQMD \cite{23} using selection criteria in CubicGAN.

Figure 1: The framework of CubicGAN. It has two main learning components: generator and discriminator.

The main framework of CubicGAN is illustrated in Figure 1. The framework primarily contains two learning parts: generator and discriminator. The generator takes elements, space groups, and random noise as input and then generate three non-equivalent fractional coordinates \(B_{\text{fake}} \) and lattice parameters \(P_{\text{fake}} \) (only lengths since cubic structures have constant angles). With random chosen space group \(S_{\text{fake}} \) and Elements \(E_{\text{fake}} \), we can assemble \(M_{\text{fake}} = (B_{\text{fake}}, P_{\text{fake}}, S_{\text{fake}}, E_{\text{fake}}) \) as the fake samples and the real samples \(M_{\text{real}} = (B_{\text{real}}, P_{\text{real}}, S_{\text{real}}, E_{\text{real}}) \) are collected through real crystal structures. Then discriminator learns to tell fake samples from real samples via two losses of \(L_{\text{adv}} \) and \(L_{\text{dis}} \) which are define below \cite{24,25}:

\[
\hat{\mathcal{M}} = \epsilon \mathcal{M}_{\text{real}} + (1 - \epsilon) \mathcal{M}_{\text{fake}}, \quad \epsilon \sim U(0, 1),
\]

\[
L_{\text{dis}} = D(\mathcal{M}_{\text{fake}}) - D(\mathcal{M}_{\text{real}}) + \lambda_d \left(\left\| \nabla_{\hat{\mathcal{M}}} D(\hat{\mathcal{M}}) \right\|_2^2 - 1 \right)^2,
\]

\[
L_{\text{adv}} = -D(\mathcal{M}_{\text{fake}}),
\]

where \(\hat{\mathcal{M}} \) is linearly interpolated between real samples \(\mathcal{M}_{\text{real}} \) and fake samples \(\mathcal{M}_{\text{fake}} \) and \(\epsilon \) is uniformly sampled from 0 and 1. \(L_{\text{adv}} \) and \(L_{\text{dis}} \) are losses for training the generator and the discriminator. In \(L_{\text{dis}} \), the penalty term \(\left(\left\| \nabla_{\hat{\mathcal{M}}} D(\hat{\mathcal{M}}) \right\|_2^2 - 1 \right)^2 \) is used to help original Generative Adversarial Networks (GANs) stabilize and prevent GANs
from collapsing to fixed mode because it enforces the norm of gradients to be close to 1. λ_d is set to 10 and $D(.)$ scores real and fake samples in the discriminator, respectively. The detailed architectures of generator and discriminator can be found in supplementary materials in CubicGAN [17].

After training, the generator generates (B_{gen}, P_{gen}) conditioning on (S_{gen}, E_{gen}) and then we assemble them into crystal structures. When 10 millions materials are generated, we find that most of the cubic materials in Materials Project and ICSD can be rediscovered. Then we filter down 10 millions by pymatgen CIFs readability, charge neutrality, and predicted negative formation energy for DFT relaxation. In final, 506 dynamically and mechanically stable ternary and quaternary new-prototyped materials are confirmed via phonon dispersion and mechanical property calculations.

2.2 Nonmagnetic-magnetic material Classifier

As we use the CubicGAN-generated ternary materials, we collected only the data of cubic ternary compositions from the material project (MP) database to develop nonmagnetic-magnetic classifiers. There were 10,285 materials in the above dataset, where 7,526 instances were nonmagnetic materials, while there were 2,759 magnetic compounds.

To develop the DNN and RFC models to classify the nonmagnetic and magnetic materials, we used 56 elemental and electronic structure attributes, such as total number of unfilled orbitals, atomic number, atomic weight, number of valence electrons, and number of unfilled s, p and d orbitals, to develop the feature set (see Supporting Information). Then, we computed the weighted average (Avg.) and the maximum difference of those properties for each chemical formula. The weighted Avg. of a property M of a ternary compound $A_\alpha B_\beta C_\gamma$ was calculated based on the following expression,

$$M_{A,B,C}^{Avg} = \frac{1}{\alpha + \beta + \gamma} (\alpha M_A + \beta M_B + \gamma M_C),$$

(2)

where M_A, M_B and M_C are the property M of A, B, and C elements, respectively. Thus, we had 112 total number of features for the two classifiers.

Our deep neural networks (DNN) model was developed using Keras [26] on top of TensorFlow [27]. This model consists of two hidden layers where the first and second hidden layers include 56, and 28 neurons, respectively. The rectified linear unit (ReLU) activation function was included for each hidden layer of neurons to shift the summed weighted inputs. As the model is a classifier, the output layer was connected with the sigmoid activation function. We observed that randomly dropping out 50% of the units of the hidden layers helps to reduce the overfitting significantly. To reduce the overfitting further, we used Ridge (L2) regularization method for adding penalties during updating weights. As the optimizer, we employed the adaptive moment estimation (Adam) optimizer with a 0.0001 learning rate. The loss function and the metric of the DNN model were the binary cross-entropy for the training. Moreover, 500 epochs and 1500 batch sizes were included.

Our next machine learning model is a random forest classifier (RFC). An RFC is an ensemble classifier that builds multiple decision trees using a randomly chosen subset of the training dataset. Finally, unweighted voting from each decision tree is used to make predictions. The SearchCV algorithm in Scikit-learn program [28] was used to optimize the hyperparameters. The optimized number of decision trees, minimum samples split, minimum samples leaf, and maximum depth are 1000, 2, 1, and 80, respectively.

2.3 Density Functional Theory

We utilized the Vienna ab simulation package (VASP) code to perform the DFT calculations with the plane wave basis set where the cut-off energy was set as 500 eV [29,30,31,32]. For the exchange-correlation potential, we considered the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) formulation [33,34]. The energy convergence criterion and the force convergence criterion were set to 10^{-8} eV and 10^{-2} eV/Å, respectively. The Brillouin zone integrations were carried out using a dense K-point mesh within the Monkhorst-Pack scheme. A $5 \times 5 \times 5$ K-mesh was used for the $A_2\text{MO}_3$ unit cells, while a $2 \times 5 \times 5$ K-mesh was used for their $2 \times 1 \times 1$ supercells. A $6 \times 6 \times 6$ K-mesh was used for the BaCuF_3 unit cells, while a $3 \times 6 \times 6$ K-mesh was used for their $2 \times 1 \times 1$ supercells. Since the considered cubic structures contain extensive lattice constants ($a > 8\text{Å}$) above K-meshes are sufficiently large. The density functional perturbation theory (DFPT) implemented in the VASP [35] program was used to determine the elastic constants. The bulk modulus (K), Shear modulus (G), Young’s modulus (Y), and Poisson’s ratio (ν) of the materials were calculated based on the Hill method using the VASPKIT code [36]. The phonon dissipation curves of the materials were obtained using Phonopy code [37].
3 Results and Discussion

3.1 Probability of Discovering Transition Metal-based Spintronic Materials

One of the main objectives of this research is to find the most probable combinations of elements with transition metal elements for discovering spintronic materials. We first collected the composition, crystal system, and magnetic type of the ternary materials from the material project (MP) database. We considered the ternary materials with transition metal elements (M) and the common anions (X): O, F, N, S, Cl, Br, I, and H. We disregarded the rare-earth materials since we wanted the transition metal elements to be the source of the magnetism in the compounds. Only one of the above anions will appear in a single composition (i.e., if O is in a composition, then F, N, S, Cl, Br, I, or H is not present). Therefore, the chemical formulas take $\text{A}^{\alpha}\text{M}^{\beta}\text{X}^{\gamma}$ form, where A can be any element type other than rare-earth or above anions.

In the MP database, we found 6,814 ferromagnetic, 872 antiferromagnetic, 2,382 ferrimagnetic, and 9,164 nonmagnetic ternary materials, which satisfy the above conditions. We regard all the ferromagnetic, antiferromagnetic, and ferrimagnetic compounds as magnetic/spintronics materials. Thus, altogether we have 10,068 magnetic and 9,164 nonmagnetic materials in the dataset. Next, we computed the probability of finding an $\text{A}^{\alpha}\text{M}^{\beta}\text{X}^{\gamma}$ material for each X element as shown in Fig. 2. Since we specifically use CubicGAN to discover potential stable materials, cubic materials were also studied for the above anions. It is clear that O- and F-based $\text{A}^{\alpha}\text{M}^{\beta}\text{X}^{\gamma}$ materials have a higher probability of being spintronic materials. When $X=\text{O}$ or $X=\text{F}$, the probability of finding a magnetic material from all crystal systems is around 60 %, and it is less than 35 % for other anions. The dataset of cubic systems also shows that the $\text{A}^{\alpha}\text{M}^{\beta}\text{O}^{\gamma}$ and $\text{A}^{\alpha}\text{M}^{\beta}\text{F}^{\gamma}$ materials have a high probability of having a magnetic ground state. The probability of finding a cubic spintronics material is greater than 50 %, whereas that from other materials is less than 43 %. This indicates that one can focus on transition metal oxides and fluorides for discovering potential spintronics materials.

Figure 2: Probability of finding a ternary magnetic (m) and nonmagnetic (nm) material with transition metal elements and an anion (X).
3.2 Feature Importance

Figure 3: Feature Importance as a percentage (> 1.8%) from the RFC model. Labels on the x-axis: Number of unfilled orbitals (Unfilled Orbs), magnetic moment of BCC structure of elements (BCC Magmom), availability of unfilled F orbitals (Avail Unfilled F), availability of unfilled D orbitals (Avail Unfilled D), and magnetic moment of ground state of elements (GS Magmom). MaxDiff, Avg and Avail, stand for the maximum difference of the feature, weighted average of the feature and availability, respectively.

Figure 4: Number of ternary cubic magnetic (m) and nonmagnetic (nm) materials as a function of maximum difference of unfilled orbitals.

Feature Importance (FI) is a procedure that estimates a score for all the features of a given machine-learning model. The scores indicate the significance of each feature. A higher score means the specific feature will greatly impact the model used to predict a specific target. Figure 3 shows the RFC computed FI as percentages. Here, we show only the feature FI greater than 1.8%. It is clear that the number of unfilled orbitals, availability of unfilled D and F orbitals, and the magnetic moments of the elements are the main influencing features of the RFC model to determine whether a material is magnetic or not. The number of unfilled orbitals is considerably higher in transition metal and rare earth elements. The magnetic moments of the ground state and BCC structure are nonzero for most of the materials formed with those elements (i.e., pure Fe, Co, and so on). The availability of unfilled D and F orbitals indicates the presence of partially filled D and F orbitals. Figure 4 shows the number of ternary cubic materials as a function of the maximum difference of unfilled orbitals for both nonmagnetic and magnetic classes. Based on our data, the nm: m ratio is 3.4:1 when the maximum difference of unfilled orbitals (MaxDiff Unfilled Orbs) is less than 11. If that quantity is greater
than 11, the nm:m ratio becomes 1:3.4. Thus, there is a higher probability of finding a magnetic material compared to nonmagnetic materials if MaxDiff Unfilled Orbs is greater than 11.

3.3 Predicting Potential Spintronics Materials

![Confusion matrices](image)

Figure 5: Confusion matrices of the DNN and RFC models for ternary cubic nonmagnetic (nm) and magnetic (m) material classification. The normalized values for true nm, true m, false nm and false m are mentioned.

<table>
<thead>
<tr>
<th>DNN</th>
<th>RFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm</td>
<td>m</td>
</tr>
<tr>
<td>0.67</td>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>nm</td>
<td>m</td>
</tr>
<tr>
<td>0.65</td>
<td>0.07</td>
</tr>
<tr>
<td>0.07</td>
<td>0.22</td>
</tr>
</tbody>
</table>

To train the DNN and RFC models, we randomly split the ternary cubic transition metal-based dataset into train and test subsets. The training subset contains 90% of the 10,285 compositions, whereas the test subset has 10%. The k-fold cross-validation is a technique utilized to assess the predicting ability of the model on new data. We used 3-fold cross-validation, which provides 0.885, 0.884, and 0.885 accuracies for each training step of DNN, while that of RFC are 0.915, 0.898, and 0.900. Thus, we got 0.88 ± 0.0005 and 0.90 ± 0.01 mean accuracy for the DNN and RFC models, respectively. Figure 5 shows the normalized confusion matrices of the two machine learning models. After classifying the materials, 67 (65) % were identified as nonmagnetic materials, and 23 (22) % were predicted as magnetic materials by the DNN (RFC) models correctly. The false nonmagnetic and false magnetic materials are less than 8 % from both models. In the test dataset, ≈ 28% of the data were magnetic materials, and ≈ 72% of them were nonmagnetic materials. Therefore, the true nonmagnetic and true magnetic data have a good agreement with the percentages in the test dataset.

The classification reports of the two machine learning models are given in Table 1. Precision indicates the quality of a positive prediction made by the model. Precision is given by the number of true positives divided by the total number of positive predictions. The DNN and RFC models exhibit 0.93 (0.82) and 0.92 (0.84) precision for the nonmagnetic (magnetic) materials, respectively. The recall is computed as the ratio between the number of positive samples accurately categorized as positive to the total number of Positive instances in the test dataset. The recall from the DNN model is 0.93 (0.81), and that from the RFC model is 0.93 (0.81) for the nonmagnetic (magnetic) compositions. The weighted average of precision and recall is given the F1-score, which is 0.93 (0.81) from the DNN model and 0.95 (0.74) from the RFC model for the nonmagnetic (magnetic) compositions. Finally, the accuracy of the models was calculated as the total number of correctly predicted samples over the total number of samples. It was found that the accuracy of the DNN model for the test set is 0.90 and that for the training set is 0.93. However, the accuracy of the RFC model is 0.91 for the test set and ≈ 1 for the train set. As a result of having an accuracy ≈ 1 for the training set, the RFC model can show poor performance on the new data samples. Therefore, we used the DNN model for predicting the new spintronic materials.

The CubicGAN model generated 183 mechanically and dynamically stable ternary cubic materials. However, only 141 compositions contain transition metal elements. Our DNN predicts that 45 of them are magnetic materials (See Supporting Information). Nevertheless, only four comply with all thermodynamic, dynamical, and mechanical stability
3.4 Structure and Magnetic Properties

The BaCuF$_6$ material was found with the space group F$\bar{4}$3m (216), while that of A$_6$MO$_6$ materials is Fm$\bar{3}$m (225). Thus, both materials are face-centered cubic structures. The conventional unit cell of A$_6$MO$_6$ materials contains 52 atoms where 24 atoms are K, 4 atoms are M elements, and 24 atoms are O. However, the conventional unit cell of BaCuF$_6$ material contains only 32 atoms with 4 Ba atoms, 4 Cu atoms, and 24 F atoms. The side views of both unit cells are shown in Fig. 6 (a). In Table 2, we label all alkaline earth atoms and alkali elements as A, transition metal as M, and O and F elements as X. It contains the A-M, M-X and A-X bond lengths in Å. It is clear that both M and A atoms have relatively stronger interactions with X atoms due to lower bond lengths compared to the M-A bonds. The M-X distances are considerably shorter than the other two bond types. Figure 6 (b) shows the polyhedra in the materials. In a BaCuF$_6$ unit cell, each Ba atom bonds with 12 F atoms to form BaF$_{12}$ cuboctahedra, while each Cu atom makes CuF$_6$ octahedra by making bonds with 12 F atoms. A single BaF$_{12}$ cuboctahedron shares faces with four CuF$_6$ octahedra. In A$_6$MO$_6$, M atoms form MO$_6$ octahedra by bonding with 6 O atoms. However, each A element with 4 neighboring O atoms constructs an AO$_4$ rectangle where O atoms are at the corners and M atom is at the center. A single AO$_4$ rectangle shares its two short edges with two MO$_6$ octahedra. The lattice constant (a) of BaCuF$_6$ (a = 8.1253 Å) is the shortest, while Rb$_6$IrO$_6$ (a = 9.2751 Å) has the longest (see Table 2). It is clear that a of A$_6$MO$_6$ materials increases as

\[a_{[Na_6TcO_6]} < a_{[K_6TcO_6]} < a_{[Rb_6IrO_6]} \]

This can be mainly because atomic radius (R) of Alkali elements increases as

\[R_{[Na]} < R_{[K]} < R_{[Rb]} \]

To find the magnetic ground state structure of the materials, We performed DFT-based structure optimization for ferromagnetic (FM), anti-ferromagnetic (AFM), and non-magnetic (NM) states. As shown in Fig. 7 we considered five AFM configurations, where AFM1, AFM2, and AFM3 are collinear configurations, and AFM4 and AFM5 are non-collinear configurations. Those collinear AFM configurations were considered for FCC structures by previous research works [11, 12, 13]. Figure 7 shows only the M atoms, as it allows us to show the directions of the spins conveniently. The atoms with spin-up and spin-down are indicated by red and blue, respectively. In the AFM1 configuration, all the spins at the middle M layer are arranged in the spin-down direction, while the bottom M layer has spin-up electrons. To create the AFM2 and AFM3 configurations, we used $2 \times 1 \times 1$ super-cell structures. Only the middle atoms get the opposite spin directions compared to the rest of the atoms in the same M layer in the $2 \times 1 \times 1$ structure for the AFM2 configuration. In the AFM3 configuration, two consecutive layers in a-direction have M atoms with spin-up while the other two have M atoms with spin-down. All the spins point toward the center in the AFM4 non-collinear configuration, whereas spin directions lie on the a-plane in the AFM5 non-collinear configuration.

Table 3 contains the energy values for each FM, AFM, and NM state relative to the FM state. The NM state of all the materials poses high relative energy confirming those materials are magnetic. It is clear that the non-collinear
AFM configurations exhibit the highest energy compared to the FM state. This indicated that the non-collinear spin arrangements are not energetically favorable. BaCuF$_6$, Na$_6$TcO$_6$ and K$_6$TcO$_6$ materials have FM ground state, while Rb$_6$IrO$_6$ has AFM1 ground state. BaCuF$_6$ and Na$_6$TcO$_6$ retain a total magnetic moment of 1 μ_B per unit cell, whereas K$_6$TcO$_6$ provides 0.71 μ_B per unit cell.

The formation energy (E_{form}) of the magnetic ground state of the materials was calculated based on the following formula.

$$E_{\text{form}} = \frac{1}{N}(E_{\text{tot}} - \sum x_i E_i)$$ \hspace{1cm} (3)

Here, the total energy of a unit formula is indicated by E_{tot}. Moreover, x_i is the number of atoms and E_i is the energy of the i^{th} element. The sum of x_i provides the number of atoms in a unit formula, which is 8 for BaCuF$_6$ and 13 for A$_6$MO$_6$. To calculate E_i for each species, we used the Pymatgen code to collect the most stable structure of each element. E_{form} indicates the thermodynamic stability of a material against its elements. The negative E_{form} in Table 3 reflects that all four materials are stable. It is also clear that E_{form} increases as $E_{\text{form}}[\text{Na}_6\text{TcO}_6] < E_{\text{form}}[\text{K}_6\text{TcO}_6] < E_{\text{form}}[\text{Rb}_6\text{IrO}_6]$. Moreover, the lowest E_{form} is found at BaCuF$_6$ material.

Table 2: The structural properties of the spintronics Materials. The bond lengths between A, M and X atoms and lattice constant (α) are mentioned in Å.

<table>
<thead>
<tr>
<th>Material</th>
<th>A-M</th>
<th>M-X</th>
<th>A-X</th>
<th>α</th>
<th>Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCuF$_6$</td>
<td>3.5184</td>
<td>1.8589</td>
<td>2.8779</td>
<td>8.1253</td>
<td>216</td>
</tr>
<tr>
<td>Na$_6$TcO$_6$</td>
<td>3.2793</td>
<td>1.9553</td>
<td>2.3471</td>
<td>9.2751</td>
<td>225</td>
</tr>
<tr>
<td>K$_6$TcO$_6$</td>
<td>3.6541</td>
<td>1.9600</td>
<td>2.6580</td>
<td>10.3352</td>
<td>225</td>
</tr>
<tr>
<td>Rb$_6$IrO$_6$</td>
<td>3.8064</td>
<td>1.9957</td>
<td>2.7800</td>
<td>10.7662</td>
<td>225</td>
</tr>
</tbody>
</table>

Figure 7: FM and AFM configurations. Here, only the transition metal atoms are shown.
Table 3: The energy (E) relative to FM state for NM state and each configuration of AFM phase in eV, the total magnetic moment per unit formula (magmom) in μ_B and the formation energy in eV/atom for the magnetic ground state structure based on DFT calculations. Here, negative energy of AFM state means it is stable compared to the FM state.

<table>
<thead>
<tr>
<th>Material</th>
<th>E_{FM}</th>
<th>E_{NM}</th>
<th>E_{AFM1}</th>
<th>E_{AFM2}</th>
<th>E_{AFM3}</th>
<th>E_{AFM4}</th>
<th>E_{AFM5}</th>
<th>magmom (μ_B)</th>
<th>E_{form}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCuF$_6$</td>
<td>0.00</td>
<td>78.97</td>
<td>17.64</td>
<td>18.02</td>
<td>26.59</td>
<td>414.35</td>
<td>1157.72</td>
<td>-2.18</td>
<td>-2.18</td>
</tr>
<tr>
<td>Na$_6$TcO$_6$</td>
<td>0.00</td>
<td>72.79</td>
<td>53.78</td>
<td>72.90</td>
<td>19.41</td>
<td>408.15</td>
<td>945.88</td>
<td>-1.62</td>
<td>-1.62</td>
</tr>
<tr>
<td>K$_6$TcO$_6$</td>
<td>0.00</td>
<td>28.59</td>
<td>19.09</td>
<td>20.71</td>
<td>9.55</td>
<td>381.87</td>
<td>930.07</td>
<td>0.71</td>
<td>-1.57</td>
</tr>
<tr>
<td>Rb$_6$IrO$_6$</td>
<td>0.00</td>
<td>299.26</td>
<td>-78.63</td>
<td>-71.73</td>
<td>-63.97</td>
<td>221.31</td>
<td>407.41</td>
<td>0.00</td>
<td>-1.28</td>
</tr>
</tbody>
</table>

3.5 Mechanical Properties and Stability

Table 4: The mechanical properties of the spintronics materials. The C_{11}, C_{13} and C_{44} elastic constants, Bulk modulus (K), Shear modulus (G) and Young’s modulus (Y) are mentioned in GPa. Moreover, Poisson’s ratio ν is also calculated.

<table>
<thead>
<tr>
<th>Material</th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{44}</th>
<th>K</th>
<th>G</th>
<th>Y</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCuF$_6$</td>
<td>36.107</td>
<td>35.252</td>
<td>12.227</td>
<td>35.537</td>
<td>4.261</td>
<td>12.292</td>
<td>0.442</td>
</tr>
<tr>
<td>Na$_6$TcO$_6$</td>
<td>89.134</td>
<td>26.645</td>
<td>27.420</td>
<td>47.474</td>
<td>28.891</td>
<td>72.056</td>
<td>0.247</td>
</tr>
<tr>
<td>K$_6$TcO$_6$</td>
<td>65.887</td>
<td>16.337</td>
<td>20.483</td>
<td>32.854</td>
<td>22.104</td>
<td>54.164</td>
<td>0.225</td>
</tr>
<tr>
<td>Rb$_6$IrO$_6$</td>
<td>67.104</td>
<td>16.342</td>
<td>18.462</td>
<td>33.045</td>
<td>21.023</td>
<td>52.035</td>
<td>0.238</td>
</tr>
</tbody>
</table>

Next, we computed the elastic constants C_{ij} ($i, j = 1, 2, 3, 4, 5, 6$) to study the mechanical stability and properties of the materials as shown in Table 4. In crystals with cubic symmetry, $C_{11} = C_{22} = C_{33}, C_{12} = C_{13} = C_{23}$, and $C_{44} = C_{55} = C_{66}$. Therefore, there are only three independent elastic constants which are C_{11}, C_{12}, and C_{44}. The higher C_{11} constants of A_6MO$_6$ materials compared to that of BaCuF$_6$ reveal that those materials are relatively stiffer than BaCuF$_6$ in a, b, and c directions. Furthermore, the shear elastic constants C_{44}, C_{55} and C_{66} of A_6MO$_6$ materials are significantly higher than that of BaCuF$_6$. M, O, and F atoms are arranged in the materials such that M-O-M and M-F-M chains are parallel to a, b, and c directions in A_6MO$_6$ materials. M-O bonds may be stronger than M-F bonds since O atoms can contribute 2 electrons to form bonds with M atoms. In contrast, only an F atom can offer only a single electron. And also A-O-A atomic chains are also almost parallel to the a, b, and c directions, while A-F-A bonds make around 45° angle. Therefore, there is an extra strength from A-O bonds in those directions for A_6MO$_6$. This can be the main reason for having higher C_{11} constants in A_6MO$_6$ than in BaCuF$_6$. The Born stability criteria for the crystals with cubic unit cells are $C_{11} - C_{12} > 0, C_{11} + 2C_{12} > 0$ and $C_{44} > 0$. The C_{ij} constants in Table 4 proves that BaCuF$_6$ and A_6MO$_6$ spintronic materials are mechanically stable.

Table 4 also includes the average Bulk modulus (K), Shear modulus (G), Young’s modulus (Y) and Poisson ratio (ν) which were calculated using the Hill approximation [38]. The mechanical properties were computed using the VASP/KIT code [36]. It shows that the above considerable elastic constant differences affect the average mechanical properties like G and Y. Among the spintronics materials studied in this research, the highest Y can be expected from Na$_6$TcO$_6$. In contrast, the lowest Y can be expected from BaCuF$_6$. Y of BaCuF$_6$ is around 83 % lower than that of Na$_6$TcO$_6$. ν is defined as the negative ratio of the resulting transverse strain over the applied longitudinal strain in the direction of the applied force [39]. Generally, this value lies in the range of 0-0.5. Natural rubber exhibits $\nu = 0.5$ [40] and steels has $\nu = 0.3$ [41]. Rubber has a high expansion to a small axial stretching, while steel has a relatively weak expansion. Table 4 illustrates that BaCuF$_6$ value is around 0.4 while that of A_6MO$_6$ compounds is between 0.22 – 0.24. This indicates that BaCuF$_6$ is more deformable elastically at a small strain. A_6MO$_6$ materials show lateral expansion/compression under strain is smaller than steel.
3.6 Electronic Properties

Figure 8: (a) The electronic band structures and (b) the partial density of states (PDOS) of the spintronics materials. Fermi energy marks zero energy. Only transition metal (M)-d and alkaline/alkali metal (A)-p orbitals contribute significantly.

Table 5: The Bader charge transfer (Δq) in electrons for the spintronics materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Δq_A</th>
<th>Δq_M</th>
<th>Δq_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCuF$_6$</td>
<td>1.749</td>
<td>1.656</td>
<td>-0.568</td>
</tr>
<tr>
<td>Na$_6$TcO$_6$</td>
<td>0.833</td>
<td>2.318</td>
<td>-1.220</td>
</tr>
<tr>
<td>K$_6$TcO$_6$</td>
<td>0.762</td>
<td>2.067</td>
<td>-1.106</td>
</tr>
<tr>
<td>Rb$_6$IrO$_6$</td>
<td>0.789</td>
<td>2.338</td>
<td>-1.178</td>
</tr>
</tbody>
</table>
Table 5 shows the Bader charge transfer (Δq) of each atomic species of the spintronics materials. The A and M atoms lose electrons, although O and F atoms gain electrons. Therefore, A-X and M-X bond lengths have ionic character. The O atoms draw more than one electron as they can acquire up to two. In contrast, the F atoms acquire less than one electron. It evidences that the alkali metal elements are in their usual oxidation state, $+1$. At the same time, the Ba has its common oxidation state ($+2$) as Ba is an alkaline earth metal. The transition metal element Tc of Na$_6$TcO$_6$ material have an oxidation state between $+2$ and $+3$, whereas that of K$_6$TcO$_6$ is $+2$. The oxidation state of Ir in Rb$_6$IrO$_6$ is also between $+2$ and $+3$. Cu atoms of BaCuF$_6$ have an oxidation state between $+1$ and $+2$. As described before, MO$_6$ octahedra and AO$_4$ rectangles are in A$_6$MO$_6$, and CuF$_6$ octahedra and BaF$_{12}$ cuboctahedra are in BaCuF$_6$. Based on the data in Table 5, it can be shown that A$_6$MO$_6$ materials contain MO$_6^{5-}$ and AO$_4^{4-}$ complexes, while BaCuF$_6$ has CuF$_{6}^{2-}$ and BaF$_{12}^{5-}$ complexes.

3.7 Thermodynamic Properties and Dynamical Stability

Next, we investigated the thermodynamic properties of the spintronics materials based on the following expressions.

$$\theta_D = \frac{h}{k_B} \left(\frac{3N}{4\pi V_0} \right)^{\frac{1}{3}} \nu_D$$

(4)

$$\nu_D = \left[\frac{1}{3} \left(\frac{2}{\nu_l^2} + \frac{1}{\nu_t^2} \right) \right]^{-\frac{1}{2}}$$

(5)

$$\nu_l = \left(\frac{3K + 4G}{3\rho} \right)^{\frac{1}{2}} \text{ and } \nu_t = \left(\frac{G}{\rho} \right)^{\frac{1}{2}}$$

(6)

Here, θ_D is the Debye temperature which can be computed using Debye sound velocity (ν_D) as shown in Eq. 4. In this expression, N, V_0, and ρ are the number of atoms, volume, and density of the unitcell, respectively. Moreover, h represents Plank’s constant, and k_B indicates Boltzmann’s constant. ν_D depends on the longitudinal (ν_l) and transverse (ν_t) sound velocities as explained by Eq. 4. ν_l and ν_t velocity components can be determined based on the K and G mechanical properties mentioned in Table 4. According to Eq. 5 and 6, it is evident that θ_D increases if the K and G mechanical properties increase.

We studied C_v against temperature T employing the Phonopy code [37]. In this code, C_v is calculated based on the following formula,

$$C_v = \sum_{qj} k_B \left(\frac{\hbar \omega_{qj}}{k_B T} \right)^2 \frac{\exp(\hbar \omega_{qj}/k_B T)}{[\exp(\hbar \omega_{qj}/k_B T) - 1]^2},$$

(7)

where each phonon frequency of q wave vector at jth phonon band index is indicated by ω_{qj} and \hbar is the reduced Plank’s constant [37]. Table 6 The G values of A$_6$MO$_6$ materials are significantly higher than that of BaCuF$_6$. Thus, this can be the main reason for having considerably lower θ_D in BaCuF$_6$ compared to the other three materials. It is clear from Fig. 9 that the C_v of BaCuF$_6$ is much smaller than that of the A$_6$MO$_6$ materials. The C_v of BaCuF$_6$ is 176.15 JK$^{-1}$mol$^{-1}$, whereas $C_v > 1100$ JK$^{-1}$mol$^{-1}$ for A$_6$MO$_6$ materials at 300 K temperature. We also investigated the phonon dispersion of the spintronics materials as shown in Fig. 10. It evidences that those materials are dynamically stable at 0 K temperature as there are no imaginary frequencies in the plots.

<table>
<thead>
<tr>
<th>Material</th>
<th>ρ (gcm$^{-3}$)</th>
<th>v_l (ms$^{-1}$)</th>
<th>v_t (ms$^{-1}$)</th>
<th>v_D (ms$^{-1}$)</th>
<th>θ_D (K)</th>
<th>C_v^{300K} (JK$^{-1}$mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCuF$_6$</td>
<td>0.97</td>
<td>6.503.12</td>
<td>2.090.90</td>
<td>2.951.59</td>
<td>216.30</td>
<td>176.15</td>
</tr>
<tr>
<td>Na$_6$TcO$_6$</td>
<td>0.69</td>
<td>11.157.54</td>
<td>6.467.14</td>
<td>8.358.68</td>
<td>630.87</td>
<td>1110.31</td>
</tr>
<tr>
<td>K$_6$TcO$_6$</td>
<td>0.64</td>
<td>9.832.71</td>
<td>5.855.63</td>
<td>7.509.42</td>
<td>508.64</td>
<td>1147.89</td>
</tr>
<tr>
<td>Rb$_6$IrO$_6$</td>
<td>0.45</td>
<td>11.627.59</td>
<td>6.821.87</td>
<td>8.786.82</td>
<td>571.34</td>
<td>1152.78</td>
</tr>
</tbody>
</table>
4 Conclusion

DFT based screening approaches for discovering materials have been widely used in materials science, which, however, is not suitable for finding new magnetic materials as it consumes too much computational resources: finding the magnetic ground state of a single magnetic material is much more computationally demanding due to it has multiple antiferromagnetic configurations. Here, we developed a computational framework to de novo design novel spintronic materials by combining GAN, machine learning classifiers, and DFT. We first studied the chemical space to find the most probable combination of elements for transition metal elements-based magnetic materials. We found that ternary transition metal-based oxides and fluorides are most likely to have a magnetic ground state. Next, we developed the deep neural network(DNN) and Random forest classifier models to screen candidate magnetic materials out of the CubicGAN-generated ternary structures. Both models achieve accuracies around 90%, while DNN shows less over-training. Thus, the DNN model can work well for screening new magnetic materials. Out of 141 ternary materials generated by CubicGAN, 45 were classified by our DNN model as magnetic materials. Our DFT studies discovered that three transition metal-based oxides and one fluoride were stable magnetic compounds. Furthermore, we considered NM, FM, three AFM collinear (AFM1, AFM2, and AFM3), and two AFM noncollinear (AFM4 and AFM5) configurations to find the minimum energy states. We found that Na₆TcO₆, K₆TcO₆, and BaCuF₆ are ferromagnetic compounds while Rb₆IrO₆ is an antiferromagnetic material with AFM1 configuration. Na₆TcO₆ and BaCuF₆ are half metals where only spin-up bands contribute to electron conduction. Moreover, A₆MO₆ materials hold higher thermal capacity (Cᵥ) than that in BaCuF₆. At 300 K temperature, $Cᵥ \approx 1100 \text{ JK}^{-1} \text{ mol}^{-1}$ for A₆MO₆ materials, whereas $Cᵥ \approx 176 \text{ JK}^{-1} \text{ mol}^{-1}$ for BaCuF₆. Our work demonstrates that the new generation of deep learning and machine learning based generative design framework has big potential in novel functional materials discovery.
5 Data Availability

The structures of the materials generated from CubicGAN model can be downloaded from Carolina Materials Database at http://www.carolinamatdb.org/.

6 Code Availability

The source code of the classifier can be obtained from github at https://github.com/dilangaem/SpinAI.

7 Acknowledgement

The research reported in this work was supported in part by National Science Foundation under the grant and 1940099, 1905775, and 2110033. The views, perspectives, and content do not necessarily represent the official views of the NSF.

8 Author Contributions

Conceptualization, J.H. and E.S.; methodology, E.S., Y.Z.; software, J.H., Y.Z.; resources, J.H.; writing–original draft preparation, E.S., Y.Z.; writing–review and editing, J.H. and E.S.; visualization, E.S. and Y.Z.; supervision, J.H.; funding acquisition, J.H.

9 Competing Interests

The authors declare no competing interests.

References

