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Abstract:
The aim of achieving selectivity in kinase inhibition is a big challenge within the realm of 
drug discovery, particularly due to the structural similarities between various kinases. Can 
machine learning be leveraged to overcome this hurdle? Utilizing different fingerprints may 
indeed lead to improved results. However, is there a single machine-learning approach 
that can effectively address selectivity across all kinases. In this study, the author collect 
kinase activity data from PubChem database (January 2023) using Uniprot IDs for each 
kinase. Each Uniprot ID is associated with its unique dataset, and duplicate points were 
removed to ensure accuracy. The data was then appended together, and any datasets 
containing fewer than 120 points were discarded. Each data point was categorized as 
either Active (1) or Inactive (0) based on the activity data. Two fingerprinting approaches 
were employed for predictions: MACCS fingerprints and Morgan2 (ECFP2) with a 2048-bit 
representation. The combined dataset was then divided into two subsets, one featuring 
imbalance  data  and  another  with  balanced  data.  Random Forest  and  Artificial  Neural 
Network models were applied to both datasets.  To evaluate the performance of  these 
models,  various metrics  were employed,  including accuracy,  sensitivity,  specificity,  and 
area under the curve (AUC). The results showed that Morgan fingerprinting performed 
slightly better than MACCS fingerprinting. A total of 480 target IDs was produced, with 452 
unique  IDs  identified.  On  each  dataset(balance  and  imbalance),  two  models  were 
developed  for  both  fingerprints,  resulting  in  a  combined  total  of  1920  predictions. 
Interestingly, the imbalance data yielded higher specificity compared to the balanced data. 
Each  model  has  been  deployed  and  made  publicly  available  at 
(github.com/phalem/minKLIFSAI).  However,  the  current  data  on  all  kinases  is  not  yet 
sufficient to enable machine learning to reliably discover selective inhibitors.

Related work:

This work is a continuation of [1], with the ultimate goal of developing an app that can 
generate, predict, and explain selective inhibitors for any protein target of interest. The 
application of machine learning to kinases is not a novel concept; previous studies have 
explored this approach to create kinase inhibitor apps using different datasets [2-5]. Others 
have established valuable data sources as well [6]. For this work, the data was collected 
from PubChem in January 2023, utilizing Uniprot IDs provided in the supplementary 
section. The author provides both the app and the data as starting points for future 
research in the bioassay and docking studies, available 
at(https://github.com/phalem/KLIFSAI). The name KLIFSAI was inspired by KLIFS [7], a 
valuable resource for kinase-related research.
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Introduction:

Kinases are among the most crucial proteins within a cell, involved in various processes 
such as cell survival, signaling, and proliferation. Alongside GPCRs, they represent one of 
the largest  protein  target  families[8].  The development  of  selective kinase inhibitors  is 
particularly  challenging  due  to  the  structural  similarities  between  different  kinases. 
Manning et al. have categorized them into over 508 distinct groups [9]. One of the primary 
reasons for striving towards kinase selectivity is the risk of off-target effects, as exemplified 
by Imatinib's impact on opening up new avenues for discovering selective kinase inhibitors 
[9-10].  Molecular  Fingerprints  are  a  valuable  source  of  information  that  captures  the 
presence or absence of specific features within compounds. Examples include MACCS 
fingerprints, which involve the mathematical representation of functional groups [12], and 
Morgan  fingerprints  (also  known  as  ECFP2),  which  involve  creating  an  environment 
around atoms to produce either 1024-bit or 2048-bit representations [13]. To evaluate such 
models, several metrics have been developed. For instance, accuracy is a straightforward 
metric that represents the number of correct predictions made by a model. Other metrics 
commonly used in binary classification scenarios include specificity, sensitivity, and the 
Area Under the Curve (AUC) [14]. 

Method:

1.Data collection and preparation:

Data collected from PubChem[15] based on Uniprot ID of each Gen ID using PubChem 
GUI. Every ID has its own data separated. Data was appended together, with duplicate 
CID removed to make it easy to retrieve the SMILES string for each compound. SMILES 
was canonicalized using RDKit to remove invalid molecules as well as duplicated SMILES 
were removed. After that, each SMILES was aligned with each CID in the original data. 
According to the Activity label of PubChem data, active compounds were assigned a value 
of 1 and inactive compounds were assigned a value of 0 for further model classification 
tasks. Any target with less than 20 active points and 100 inactive points was removed. 
Data was separated into two groups:

(1) Imbalanced data contained different ratios of active and inactive data without applying 
any enrichment values, with some data reduced to 150K points for both.

(2) Balanced data, in which the number of inactive compounds was less than or equal to 
the number of active compounds.

For each model, the number of compounds used are stored in a dictionary in the model 
directory in the supplementary files. For each target ID, molecular descriptors were 
calculated using MACCS Fingerprint and Morgan2 or ECFP2 fingerprint based on 2048 
bits using RDKit. Data was split into 80% for the training set and 20% for the test set, 
respectively, using scikit-learn[16] library's model_selection module and train_test_split 
method.

2. Model:

In order to reproduce the results, the author used code inspired by TeachopenCADD [17]. 
The code and notebook are provided in the github for reproducibility. For each Uniprot ID, 
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Random Forest (RF)[18] and Artificial Neural Network(ANN) were applied to both 
imbalanced and balanced data using scikit-learn[16] library. The number of estimators was 
set equal to 10, and the criterion equal to entropy. For ANN, the hidden layer size was set 
equal to (30,3). In the case of balanced data, hyperparameter optimization (named as 
balanced_opt in the supplementary materials) was performed for each number of 
estimator from 1 to 20, and hidden layer sizes were considered to be one of the following: 
(5,3), (10,3), or (30,3).

3.Evaluation:

Accuracy, sensitivity, specificity, and area under the curve (AUC) were calculated using the 
accuracy_score, recall_score, and roc_auc_score functions from scikit-learn. ROC curves 
were plotted using matplotlib [19] for each model based on the test set predictions.

4.Deployed: Streamlit (https://streamlit.io) was used for real-time prediction, both offline 
and online, at (github.com/phalem/minKLIFSAI). An example of a single data with code 
provided to reproduce the results of each model.

Result:

Data: With a total of 18.8 million data points, comprising 18 million inactive and 0.5 million 
active points, each has a target, after removing duplicated SMILES for all data the data 
become  1.2  million  unique  compounds,  consisting  of  300k  active  and  900K  inactive 
compounds. Figure (1a) shows the ratio of both active and inactive data in the figure. 
Figures (b,c) represent each target ID, with the size of the representation corresponding to 
the amount of data available for that target ID. The obtained data are small compared to 
typical datasets, but were reduced to 480 target IDs, which correspond to 452 unique 
Uniprot IDs.

  

A)Number of Active and Inactive compounds for all targets.
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b)Number of data points for balance data c)Number of data points for imbalance data

Models: For each of the 480 target IDs, there are four models trained: two Random Forest 
models  and two Artificial  Neural  Network  (ANN)  models,  based on  both  MACCS and 
Morgan  Fingerprints,  respectively.  Each  target  ID  has  a  target  analysis  dictionary 
containing information about the target data, including the number of data points, ROC 
curves,  and  other  parameters  and  evaluation  metrics  for  both  MACCS and  Morgan2 
models.  This  information can be found in  the  supplementary  materials.  Figure(2)  is  a 
summary that describes the analysis of each model for all 480 targets. Further details for 
each target ID and data type can also be found in the supplementary materials.

a)Model evaluation on the balance dataset with hyperparameter optimization
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b)Model evaluation on the imbalanced data
c)Model evaluation on the balanced data.

Models trained on imbalanced data tend to have high specificity, but lower accuracy and 
sensitivity  compared  to  those  trained  on  balanced  data.  Models  based  on  Morgan2 
perform  slightly  better  than  MACCS  on  both  imbalanced  and  balanced  datasets. 
Hyperparameter optimization of balanced data led to a slight increase in all  evaluation 
metrics,  particularly  when  dealing  with  limited  data.  Most  Random  Forest  models 
performed well on the balanced dataset using 16 estimators as the optimal number. Even 
with high evaluation metrics, the small size of the dataset make it difficult to determine 
whether the model would perform well in real-time scenarios. Further examples can be 
found in the supplementary materials for additional research and use. The Streamlit app 
provides the capability to utilize the model in both online and offline modes, generating 
target predictions as well as scripts that aid in identifying active targets against certain 
molecules, which can be easily downloaded. The app and models are provided with the 
hope of reducing the cost of cancer treatments by discovering selective kinase inhibitors or 
making it available for free. 

Limitation:

Although these models are not among the most accurate ones published, they can still be 
useful  tools.  The models  have been evaluated,  but  not  thoroughly  tested using either 
structure-based  or  ligand-based  approaches.  Unfortunately,  some  targets  have  very 
limited data available, which makes it challenging to predict active compounds or selective 
inhibitors using this model alone. Since the model has not been experimentally validated, 
further experimental validation is necessary to confirm its effectiveness.

Conclusion:

In  this  paper,  the author  demonstrate  the feasibility  of  developing a  machine learning 
model for each kinase. By providing a user-friendly interface app that is ready to use, with 
the aim to make the process much easier for researchers to discover and utilize these 
models. The ability to predict active compounds for 480 targets represents a significant 
first step towards realizing KLIFSAI's dream of generating active compounds, predicting 
bioactivity, and performing kinase docking prediction. However, further activity prediction, 
optimization, and experimental validation will be necessary to advance this process. The 
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way  may  be  long,  but  small  steps  can  make  it  farther  possible,  and  the  dreams  of 
yesterday will become the realities of tomorrow.

Abbreviations: 

GPCR: G protein-coupled receptors

MACCS key: Molecular ACCess System keys

ECFP: Extended connectivity fingerprints       

SMILES: Simplified Molecular Input Line Entry System  

RF: Random forest

ANN : Artificial Neural Network  

AUC:  Area Under the Curve

ROC: Receiver-operating characteristic curve

GUI: Graphical User Interface
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