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Abstract 
Molecular docking is widely used to leverage protein structure for ligand 

discovery, but the technique retains important liabilities that make it challenging to 

deploy on a large scale.  Notwithstanding multiple attempts at automation, molecular 

docking continues to require the guidance of an expert thus limiting its use by many 

investigators who could benefit from it.  To make docking more accessible we have 

created new software that allows us to investigate the automation of molecular docking 

screens.  Our method currently requires known ligands and decoys for model 

evaluation.  Of 42 DUDEZ targets, all show automated docking results that are better 

than our previous automated protocol.  The new system is available both as part of the 

UCSF DOCK 3.8 package, which is free to academics, as well as via our website 

tldr.docking.org/start/dockopt (free registration required), which is free to everyone. 

  



  

Introduction 
Molecular docking screens are widely used for ligand discovery in industry and 

academia1-3.  The technique can screen libraries of billions of molecules and - unlike 

ligand-based methods - can often discover novel ligands entirely unrelated to what was 

previously known.2, 4-13.  In select cases docking can even lead to compounds in the 

sub-nM range4, 5, 8, 10 and some of these lead to compounds with interesting in vivo 

activities5, 8-10.  But whereas other techniques in computational biology such as 

homology modeling14-16 and sequence database searching17 have been successfully 

automated on a proteomic scale, docking remains manually intensive.  Docking 

programs are challenging to use, with many parameters to be chosen, file formats to be 

manipulated, and decisions to be made, particularly at the model building stage.  Even 

in expert hands, there are targets for which docking simply fails to recapitulate 

experimentally known binding information.  These barriers to entry have diminished the 

impact of the technique by making it less accessible to biologically oriented non-experts 

and challenging even for specialists to deploy on a large scale. 

 

Automation would allow docking to be deployed more widely, without the 

involvement of a docking expert.  As a result, there have been numerous attempts at 

automated molecular docking over the past 14 years18-20 and some docking services 

are available to use via websites21-25 .  However, although docking model 

optimization protocols are widely use by experts when preparing a receptor for a 

docking screen26-30, such optimization is generally not exploited in automated 

pipelines.  Instead, automated pipelines have focused on handling the many 



  

mechanical steps in a docking campaign, without tackling model parameter 

optimization for the optimal enrichment of known actives over property matched 

decoys. 

 

Our work on docking automation began in 2009 with DOCK Blaster18, our first 

attempt at automated molecular docking.  Although we successfully ran retrospective 

docking against thousands of targets, our program had important limitations.  It was 

unable to optimize the parameters used for scoring as an expert in our lab would. It was 

unable to perform self-assessment automatically using annotated actives and decoys.  

The program was a prototype, cobbled together from many scripts, brittle and difficult to 

maintain let alone develop.  DOCK Blaster was also too “black-box-ish” for experts yet 

somehow still too complex for non-experts. 

 

Since the appearance of DOCK Blaster, many other web-based docking systems 

have appeared 31 23, 32-34 including some that are designed for the scalability of the 

cloud35-37.  There have also been numerous reports of software that is increasingly 

automatic, but is not available in a public, ready-to-use website6, 37-46. 

 

Meanwhile we have been improving our docking methods, trying to make 

docking easier to use.  We re-wrote the command-line docking pipeline to be more 

modular and modern47 and we standardized and published our lab docking protocol26.  

In both cases, docking model parameter optimization and model testing, which are often 



  

critical to docking success, remained manual and dependent on expert involvement. 

Neither advance was accompanied by a website to simplify access. 

 

To be most useful an automatic docking solution should optimize docking 

parameters to perform as well as an expert would if given the same information.  This 

system should automatically assess how well the docking model is working by testing 

its ability to recapitulate known ligands and to rank them higher than property-matched 

or other decoys48.  The preparation of the docking model should be easy for non-experts 

to access and still allow an expert to tinker with the model.  And whereas it is 

unreasonable to expect a free public docking server to dock at multi-billion molecule 

scale, an ideal system should make it easy to transition to a pay-for-scale system so 

that non-expert users can access large screening libraries at their own expense. 

 

Here we investigate a new automated docking system, DOCK Blaster 2.0, 

benchmarking it against the DUDEZ benchmark48. 

  



  

Results 

New software for automatic docking is now available as part of UCSF DOCK 

3.8.  This software is available free to academics (license via dock.compbio.ucsf.edu) 

and at modest cost otherwise (write dock_industry@googlegroups.com).  First, we 

describe the software and how to use it on the command line.  Second, we test the 

software retrospectively against 42 targets in the DUDEZ benchmark48, investigating 

its performance, generality and limitations.  Third, we present a web-based interface 

to this software that can build and optimize a docking model using self-assessment, 

followed by prospective docking to a small set of molecules.  The docking model built 

using our webserver may be downloaded and deployed to other platforms such as the 

user’s on-premises computers or to a cloud provider such as Amazon’s AWS49 to dock 

billions of molecules prospectively at the user’s expense.  We take up each of these in 

turn. 

 

Dockopt. We created a new software pipeline that combines, condenses and 

refines what we learned from three prior projects:  the original DOCK Blaster18, the 

command line script blastermaster.py in DOCK 3.747 and the standard published lab 

protocol26. The new system is written in python 3.8 and is documented. (see 

Supporting Information S1).  We describe the algorithm in detail in the Methods. 

 

Dockopt is a single command for generating and evaluating many different 

docking configurations when control ligands are available.  A docking configuration is 

a set of ready-to-dock files that describe a receptor structure and associated 



  

parameter choices.  Docking configurations may perform better or worse as evaluated 

by retrospective docking, where the ability of the docking program to distinguish 

between reported binders (“actives”) and presumed non-binders (“decoys”) is 

assessed.  Dockopt wraps the entire parameter generation, testing and optimization 

protocol within a single script. 

 

There are over a dozen parameters whose values can affect the docking 

configurations that are produced by dockopt, but a few are typically most impactful.  

Important parameters include the thickness of the layer of low dielectric and ligand 

desolvation regions in the binding site that affect the electrostatic score and the ligand 

desolvation calculation, respectively50.  Other important parameters include the 

number and position of orientation spheres (“hotspots”), which affect how ligand poses 

in the binding site are generated51.  Still other significant parameters include the target 

number of poses to generate (nmatch), how overlap between ligand and protein is 

treated (bump parameters), and whether conformations are biased for compatible 

matches during sampling (called coloring)52, 53. 

 

Retrospective docking of enumerated docking configurations is performed in 

parallel using a job scheduler such as Slurm, SGE or GNU parallel. It should be 

straightforward to adapt our scripts to any queuing system.  When finished, the 

enrichment capacity and the parameters of each docking configuration are tabulated 

and sorted to identify the best performing configuration(s).  Depending on choices 

made by the user, the optimization process may repeat until optimal parameters have 



  

been identified.  A report in PDF format of the best parameter set choices is 

generated, together with figures summarizing the other runs (see Methods, and 

below).  A text file of the performance of all docking configurations is also saved as 

results.csv.  The best job’s dockfiles (docking configuration) are saved in its own 

directory.  If other docking configurations are desired, they may be found in the 

working/ directory, indexed within results.csv.  In the absence of control ligands 

, blastermaster, a modernization of blastermaster.py from earlier work47, will 

produce files ready for docking using standard, unoptimized parameter choices. 

 

Getting Started.  To begin using the new code on your own computer, obtain, 

download, install and configure the software (see Supporting Information S2). 

 

To use dockopt, the receptor and a single ligand or an indication of the 

binding site should be prepared as we recommend.  (see Supporting Information 

S3). The DUDEZ benchmark contains forty-two examples of such files in ready-to-use 

formats (dudez2022.docking.org).  To use dockopt on the command line, prepare 

rec.crg.pdb and xtal-lig.pdb, the receptor and crystallographic ligand, in an empty 

directory, together with actives.tgz and decoys.tgz, the annotated ligands and their 

decoys in ready-to-dock format (see Supporting Information S4). The user enters: 

 

 pydock3 dockopt – init 

 cd dockopt_job 

 pydock3 dockopt – run slurm 



  

 

The program runs, here using slurm, preparing a report. 

 

How well does Dockopt work?  To benchmark the dockopt program, we ran 

forty-two DUDEZ benchmarks, using the data available on the DUDEZ website 

(dudez2022.docking.org).  The resulting enrichment scores are all better than the 

enrichment using the docking grids that were used for development of the DUDEZ 

benchmark(Figure 1).  The procedure for acquiring the benchmark is:  

 

git clone https://github.com/docking-org/dude-z-benchmark 

cd dude-z-benchmark 

bash make_dataset.sh 

 To run a single benchmark, e.g. AMPC, in the property_matched directory: 

 bash run_benchmark.sh AMPC 

 To run all benchmarks,  

 bash run_all_benchmarks.sh 

 

The enrichment of annotated ligands over property-matched decoys produced 

by the default automated procedure coded in dockopt are better for 40 of the 42 

unoptimized grids from the DUDEZ benchmarking study48 (Figure 1), whose 

parameters were mostly based on defaults from our previous blastermaster.py47, 48 

protocol.  On average, we saw a 5 to 10%  increase in enrichment score 54 following 

parameter optimization.  



  

 

 

 

Figure 1.  Performance of molecular docking as measured by enrichment of ligands 

over property matched decoys for 42 DUDEZ systems.  Above: Docking configurations 

published in the DUDEZ paper48 (blue) with docking configurations optimized by 

dockopt (orange, this work)  Below. Improvement of enrichment using dockopt over 

the grids published with DUDEZ.  In all but two cases the enrichment is improved 

using dockopt. 

 

Dockopt produces a report for each target, and these are included in the 

dudez2022.docking.org website for reference.  Here, we use two targets for illustration 



  

and to demonstrate the features of the report (Figure 2).  The Linear-log ROC plot of 

enrichment of ligands and decoys (Figure 2A) assesses the performance of a docking 

model reduced to a single graph and a single value, the area under the curve (AUC).  

The Dockopt report includes additional graphs that provide additional insight into the 

performance of the docking calculation, and into biases present in the dataset.  Thus 

the split violin charts (Figure 2B) show the scores of actives and decoys grouped by 

net molecular charge. This graph, used in the construction of the DUDEZ benchmark, 

provides insight into the discrimination power of the docking model, in its ability to rank 

actives better than decoys, where each molecular charge is considered independently.  

The ridgeline plots (Figure 2C) show how actives and decoys are ranked by each 

contribution to the scoring function.  These plots illustrate potential biases in the data 

or biases in the model parameterization that could be a problem for a prospective 

screen. Too vague. Re-write.  Finally, the heatmaps summarize the dependence of the 

enrichment as a function of two variables: the electrostatic spheres (thin layer) and the 

desolvation spheres (thin boundary).  Here, the enrichment of HIVPR is uniformly poor 

regardless of these two variables, whereas in Factor 7A, there is a sharp dependence 

on these parameters and a clear winner may be identified.  Taken together, these 

charts, all generated automatically by Dockopt, may be used to gain insight into a 

docking model, its biases, and its likelihood of success for prospective docking 

screens. 

  



  

A. B.  

C.  

D.  

 

Figure 2. Selected graphical reports of docking models optimized for two 

targets. Left: FA7. Right: HIVPR. Linear-log ROC plot of enrichment of ligands vs 

decoys. B. Violin plots of the distribution of charges.  C. Unidimensional plots of the 

distribution energy terms of docked ligands and decoys. D. Bidimensional plots of 

enrichment as function of electrostatic and desolvation radii. 

 

 



  

A complete set of enrichment plots for all DUDEZ systems may be found at 

dude2022.docking.org. 

 

Enrichment without the correct pose is erroneous.  Whereas we do not know 

the pose of every active ligand, in general, we expect it to be in the same region as the 

crystallographic ligand, and often to make many of the same interactions with the 

receptor. We capture this in a chimera session that superposes the receptor, the 

crystallographic ligand and the docked ligands (Figure 3).  Sometimes, the 

superposition is excellent, controlled by a single “warhead” as in HIV protease. Other 

times, the superposition may be less obvious, but at least we can check that the 

docked molecules occupy the same binding site.  

 

   

Figure 3.  Superposition of the crystallographic ligand (sticks) with the docked ligands 

(wire) showing H-bonding and polar interactions with the protein in mustard.  Left. 

HIVPR. Right: FA7.  

 

Since the automated system appears to work well at least in some cases, and 

we can tell which based on retrospective tests, we built a web-based interface to run 



  

automated docking.  To use this interface (Figure 4), the user should browse to 

tldr.docking.org (login required), select the dockopt module. To demonstrate its use we 

suggest the use of one of the 40 test systems at dudez2022.docking.org. 

 

 

Figure 4. A web interface to dockopt.  (free registration required).  

 

When the receptor, ligand, actives and decoys have been specified, the user 

clicks “Dock” to start the automatic docking process. Building an optimized docking 

model can take a day, depending on the data supplied, how many other jobs are 

running on our server.  When docking is complete, the user receives an email 

invitation to login to tldr.docking.org to view the results.  The user may download the 

report, which includes bar plots of single multi-valued parameters, heatmaps of pairs 

of multi-valued parameters, charge distributions in violin plots, energy terms ridge plot, 

as well as the docked ligands and decoys themselves (Figure 4).  We allow the user 



  

to test-dock a set of 100,000 sample molecules.  To dock at scale, the user should 

download the best docking model model, and use it on other hardware, such as in the 

AWS cloud 49.  The user may also download the docking model and relocate it to a 

departmental cluster, or the cloud, where a full-scale docking screen may be 

prosecuted.  

 

The system can even - mechanically - dock without any experimentally known 

ligands, but here it wanders into the same terrain that a human would. Without controls, 

it is difficult to assess how well docking is performing, short of a prospective screen.  

Blastermaster uses sensible average values for parameters that would be optimized by 

DockOpt.  To use blastermaster on the command line, put rec.crg.pdb and xtal-lig.pdb 

into a directory and run: 

 

 blastermaster 

 

The program runs.  Blastermaster uses average default values for all 

parameters that would normally be optimized by DockOpt, but cannot, given the lack 

of control ligands. 

 

DOCK Blaster 2.0, a method that includes dockopt for parameter optimization 

and Blastermaster if no control ligands are available is now ready to use. The software 

may be accessed either by licensing, downloading and installing it on your local 



  

computer or in the cloud, or by using it via the TLDR website on our server 

(tldr.docking.org) as described.  



  

Discussion 
 

Three themes emerge from this study.  First, a new automated procedure for 

docking model optimization has been developed. Provided ligands and decoys are 

available for self-assessment, this automated procedure can optimize the parameters 

for docking as well as an expert and can self-assess whether this model warrants a 

large-scale prospective docking screen.  Second, when tested against the DUDEZ 

benchmark, the automated protocol performs as well as an expert from our lab in most 

cases.  In over half the cases studied, a single control ligand proved sufficient for 

model optimization and assessment.  Third, the new pipeline can be installed locally, 

or accessed in a web browser.  Although the website offers only very limited 

prospective docking services, the docking model may be downloaded and used for 

large scale docking in the cloud 49.  We take up each of these themes in turn.  

 

An automated docking parameter optimization is now available, implementing 

many of the best practices embodied in our standard protocol26. We have augmented 

this protocol with optimization steps that capture many of the current best practices in 

our lab.  In particular, the system optimizes parameters for the boundary of the region 

of low dielectric and ligand desolvation in the binding site.  Work in our lab suggests 

that defining these boundaries are often critical to obtaining satisfactory retrospective 

enrichment during benchmarking.  This same protocol is now available, fully 

automatic, to everyone via the dockopt script.  The procedure also optimizes the 

matching spheres used for sampling ligand orientations.  Although these parameters 



  

are not used in the scoring function per se, they affect which configurations are 

evaluated, and thus often play a key role in obtaining satisfactory retrospective 

enrichment prior to running a successful docking campaign.  The software has been 

written in a general way to allow other parameters to be optimized. 

 

Our automated docking performs well against the DUDEZ benchmark we use 

regularly in our lab.  In all but perhaps six of the 42 DUDEZ systems, this fully 

automated procedure yields a docking model that, in our experience, is suitable for 

prospective docking.  These failures present opportunities for further improvements to 

our protocol.  

 

Since model building and assessment is now fully automatic when control 

ligands are available, we have built a web interface, which is now available.  The new 

system is capable of building and refining a docking model completely automatically 

and can evaluate the model’s suitability for prospective use when it is finished.  The 

method currently requires known actives to use for automated evaluation.  Without 

known actives, we are unable to perform sanity checks as to whether prospective 

docking is likely to highly rank new ligands that actually bind or not. 

 

There are numerous caveats to this work.  The current protocol requires ligands 

– or at least one ligand - with which to optimize the docking model and later to score it 

for enrichment success.  Absent ligand controls, we are currently unable to optimize 

the docking model, and certainly unable to say whether it should be useful for 



  

prospective docking.  This protocol does not work well on every target.  Against the 42 

DUDEZ targets, it appears to work well for perhaps 80% of systems tried, but this is no 

general guarantee, and the reader should not be misled that this approach is in any 

way a universal solution to automated docking. 

 

Notwithstanding these concerns, fully automated docking software with 

automatic self-evaluation and parameter optimization is now available in DOCK 3.8 

and via our website.  The software is available free to academics and can be used via 

our website by everyone.  We cannot guarantee the results of any docking screen – 

you must use the software at your own risk.  We strongly recommend running sanity 

checks and controls at every stage, as exemplified in this work, to increase the 

opportunities for new ligand discovery.  The software is available to use online at 

tldr.docking.org (authentication required) and license requests at 

dock.compbio.ucsf.edu. 
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Methods 

All software is written in Python 3.8 or later.  All software libraries used within our 

code are defined in the pyproject.toml file of the pydock python package in the DOCK 

3.8 software distribution.  

 

From Blastermaster to DockOpt.  Blastermaster is a program that uses 

computational methods to generate DOCK parametrizations for a given protein-ligand 

complex.  DockOpt is an extension of Blastermaster that takes the process one step 

further by creating several DOCK configurations simultaneously and using retrospective 

docking to evaluate their performance. This allows DockOpt to identify the best 

parametrizations according to a specified criterion, here enrichment. DockOpt uses a 

specified job scheduler, such as Slurm, to efficiently evaluate candidate 

parametrizations in parallel. In summary, DockOpt is a program that improves upon 

Blastermaster by adding model testing and to the process of crafting DOCK 

parametrizations and by efficiently searching for the best parameterizations using 

parallel processing. 

 

DockOpt algorithm (high-level).  A high-level description of how the DockOpt 

algorithm works is summarized in a schematic (Figure 5) 

 

 



  

 

Figure 5. Schematic of the DockOpt algorithm.  

 

 

How dockopt creates DOCK configurations.  A directed acyclic graph (DAG) 

defines how input files and input parameters are transformed into the output files, called 

“dockfiles” which are actually used by DOCK for docking. A toy example of a such a 

DAG is given in the Supporting Information S5. The user may generate a DAG for any 

particular dockopt run using the command: 

 

Command_to_generate_DAG.  An edge in the DAG represents a dependence 

relation between an input and an output for a specific step in the pipeline.  Every edge 

has data associated with it that points to the software that executes the step that 

produces the corresponding child node (output).  Child nodes can only be created when 

all their parent nodes exist already. 



  

 

The full DAG is derived automatically from all the different sequences of steps 

induced by all the combinations of parameters specified for the given DockOpt pipeline 

step. 

 

Two parameter search algorithms are supported: grid search and beam search.  

Beam search, the default, is a heuristic search that sacrifices the exhaustive nature of 

grid search for significantly shorter run times. It is recommended. 

 

In its first instantiation, dockopt performed simple grid search of the Cartesian 

product of several parameters which take multiple values. E.g., distance to surface for 

electrostatic thin spheres might be in the range  (1.0, 1.1, …, 1.9) and distance to 

surface for ligand desolvation thin spheres might be in the range (0.1, 0.2, …, 1.0), 

resulting in a Cartesian product space of 10 * 10 = 100 combinations.  This worked well 

enough for small numbers of parameters with a reasonable number of values per 

parameter. However, it clearly is too inefficient to serve as a general search algorithm 

that would allow users to explore parameter space at a fine resolution without being 

subjected to exponentially increasing computational cost. Therefore, the current 

instantiation of dockopt uses beam search55 instead to efficiently search for DOCK 

parametrizations.  

 

Paragraph describing beam search (Ian ???). 

 



  

Below, we show that beam search allows one to find better DOCK 

parametrizations in practice than by using grid search. 

 

DockOpt pipelines are flexible.  The software framework in dockopt is far more 

general than the default usage case might imply.  We recommend that new users adopt 

our default configuration or something similar. The system is capable of far more than it 

is currently being used for.  

 

Dockopt is controlled by parameters in the dockopt_config.yaml file.  This is 

where the users can control the range of parameters that should be explored and define 

the architecture of the optimization pipeline.   

A single step in dockopt generated several parameterizations that can are created and 

evaluated in parallel.  The user may use dockopt_config.yaml to define a sequence of 

steps, including iteration and early stopping. Sequences may be recursively embedded.  

 

Ian writes a paragraph about all the paramters that can be controlled in a single 

step. 

 

Each step may use the best parameterization from the preceeding step as the 

seed for determinating what new range of parameter space to search. For example, 

evaluating increasingly narrow windows of values around a center value of the same 

parameter across steps. 

 



  

DockOpt is modular.  The DAG is derived automatically from the 

dockopt_config.yaml.  Steps may be modified and new ones introduced without 

additional complexity.  The DockOpt pipeline consists of pre-defined sequences of 

steps. Individual sequences or steps may be defined once and re-used and optionally 

modified to form new ones.  Different DOCK executables may be used / tested against 

each other.  Different evaulation criteria may be used in different steps of the same 

DockOpt pipeline (e.g. enrichment first, RMSD last). 

 

DockOpt allows algorithmic experimentation.  A core feature of DockOpt is that it 

allows the rigorous comparison of several DOCK parametrizations and even several 

different DOCK executables. Therefore, an entire experiment intended to measure the 

efficacy of a modification to one or several variables can be defined in a single DockOpt 

job and reproduced at a later time simply by re-running the job.  DockOpt makes 

benchmarking incredibly easy.  

 

DockOpt Reports.  DockOpt generates comprehensive reporting of the results of 

a job, including a CSV of results for each DOCK parametrization tested and a report 

PDF containing: ROC plots showing enrichment; Bar plots for performance of single 

multi-valued parameters; Heat maps comparing performances across 2 multi-valued 

parameters with respect to each other; Joy plot showing the importance of energy terms 

for actives vs. decoys; Violin plot showing the charge distribution for actives vs. Decoys 

 

 



  

 

How to run the benchmarks.  

 

(describe wget/git clone)  

 

run on our machine 

 

get results.  
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